]> git.dujemihanovic.xyz Git - linux.git/blob
1394951
[linux.git] /
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/mm/fault.c
4 *
5 * Copyright (C) 1995 Linus Torvalds
6 * Modifications for ARM processor (c) 1995-2004 Russell King
7 */
8 #include <linux/extable.h>
9 #include <linux/signal.h>
10 #include <linux/mm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/kprobes.h>
14 #include <linux/uaccess.h>
15 #include <linux/page-flags.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/debug.h>
18 #include <linux/highmem.h>
19 #include <linux/perf_event.h>
20 #include <linux/kfence.h>
21
22 #include <asm/system_misc.h>
23 #include <asm/system_info.h>
24 #include <asm/tlbflush.h>
25
26 #include "fault.h"
27
28 #ifdef CONFIG_MMU
29
30 /*
31 * This is useful to dump out the page tables associated with
32 * 'addr' in mm 'mm'.
33 */
34 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
35 {
36 pgd_t *pgd;
37
38 if (!mm)
39 mm = &init_mm;
40
41 pgd = pgd_offset(mm, addr);
42 printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd));
43
44 do {
45 p4d_t *p4d;
46 pud_t *pud;
47 pmd_t *pmd;
48 pte_t *pte;
49
50 p4d = p4d_offset(pgd, addr);
51 if (p4d_none(*p4d))
52 break;
53
54 if (p4d_bad(*p4d)) {
55 pr_cont("(bad)");
56 break;
57 }
58
59 pud = pud_offset(p4d, addr);
60 if (PTRS_PER_PUD != 1)
61 pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
62
63 if (pud_none(*pud))
64 break;
65
66 if (pud_bad(*pud)) {
67 pr_cont("(bad)");
68 break;
69 }
70
71 pmd = pmd_offset(pud, addr);
72 if (PTRS_PER_PMD != 1)
73 pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
74
75 if (pmd_none(*pmd))
76 break;
77
78 if (pmd_bad(*pmd)) {
79 pr_cont("(bad)");
80 break;
81 }
82
83 /* We must not map this if we have highmem enabled */
84 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
85 break;
86
87 pte = pte_offset_map(pmd, addr);
88 pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
89 #ifndef CONFIG_ARM_LPAE
90 pr_cont(", *ppte=%08llx",
91 (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
92 #endif
93 pte_unmap(pte);
94 } while(0);
95
96 pr_cont("\n");
97 }
98 #else /* CONFIG_MMU */
99 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
100 { }
101 #endif /* CONFIG_MMU */
102
103 static inline bool is_write_fault(unsigned int fsr)
104 {
105 return (fsr & FSR_WRITE) && !(fsr & FSR_CM);
106 }
107
108 static void die_kernel_fault(const char *msg, struct mm_struct *mm,
109 unsigned long addr, unsigned int fsr,
110 struct pt_regs *regs)
111 {
112 bust_spinlocks(1);
113 pr_alert("8<--- cut here ---\n");
114 pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
115 msg, addr);
116
117 show_pte(KERN_ALERT, mm, addr);
118 die("Oops", regs, fsr);
119 bust_spinlocks(0);
120 do_exit(SIGKILL);
121 }
122
123 /*
124 * Oops. The kernel tried to access some page that wasn't present.
125 */
126 static void
127 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
128 struct pt_regs *regs)
129 {
130 const char *msg;
131 /*
132 * Are we prepared to handle this kernel fault?
133 */
134 if (fixup_exception(regs))
135 return;
136
137 /*
138 * No handler, we'll have to terminate things with extreme prejudice.
139 */
140 if (addr < PAGE_SIZE) {
141 msg = "NULL pointer dereference";
142 } else {
143 if (kfence_handle_page_fault(addr, is_write_fault(fsr), regs))
144 return;
145
146 msg = "paging request";
147 }
148
149 die_kernel_fault(msg, mm, addr, fsr, regs);
150 }
151
152 /*
153 * Something tried to access memory that isn't in our memory map..
154 * User mode accesses just cause a SIGSEGV
155 */
156 static void
157 __do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig,
158 int code, struct pt_regs *regs)
159 {
160 struct task_struct *tsk = current;
161
162 if (addr > TASK_SIZE)
163 harden_branch_predictor();
164
165 #ifdef CONFIG_DEBUG_USER
166 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
167 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) {
168 pr_err("8<--- cut here ---\n");
169 pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
170 tsk->comm, sig, addr, fsr);
171 show_pte(KERN_ERR, tsk->mm, addr);
172 show_regs(regs);
173 }
174 #endif
175 #ifndef CONFIG_KUSER_HELPERS
176 if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000))
177 printk_ratelimited(KERN_DEBUG
178 "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n",
179 tsk->comm, addr);
180 #endif
181
182 tsk->thread.address = addr;
183 tsk->thread.error_code = fsr;
184 tsk->thread.trap_no = 14;
185 force_sig_fault(sig, code, (void __user *)addr);
186 }
187
188 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
189 {
190 struct task_struct *tsk = current;
191 struct mm_struct *mm = tsk->active_mm;
192
193 /*
194 * If we are in kernel mode at this point, we
195 * have no context to handle this fault with.
196 */
197 if (user_mode(regs))
198 __do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
199 else
200 __do_kernel_fault(mm, addr, fsr, regs);
201 }
202
203 #ifdef CONFIG_MMU
204 #define VM_FAULT_BADMAP ((__force vm_fault_t)0x010000)
205 #define VM_FAULT_BADACCESS ((__force vm_fault_t)0x020000)
206
207 static inline bool is_permission_fault(unsigned int fsr)
208 {
209 int fs = fsr_fs(fsr);
210 #ifdef CONFIG_ARM_LPAE
211 if ((fs & FS_PERM_NOLL_MASK) == FS_PERM_NOLL)
212 return true;
213 #else
214 if (fs == FS_L1_PERM || fs == FS_L2_PERM)
215 return true;
216 #endif
217 return false;
218 }
219
220 static vm_fault_t __kprobes
221 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int flags,
222 unsigned long vma_flags, struct pt_regs *regs)
223 {
224 struct vm_area_struct *vma = find_vma(mm, addr);
225 if (unlikely(!vma))
226 return VM_FAULT_BADMAP;
227
228 if (unlikely(vma->vm_start > addr)) {
229 if (!(vma->vm_flags & VM_GROWSDOWN))
230 return VM_FAULT_BADMAP;
231 if (addr < FIRST_USER_ADDRESS)
232 return VM_FAULT_BADMAP;
233 if (expand_stack(vma, addr))
234 return VM_FAULT_BADMAP;
235 }
236
237 /*
238 * ok, we have a good vm_area for this memory access, check the
239 * permissions on the VMA allow for the fault which occurred.
240 */
241 if (!(vma->vm_flags & vma_flags))
242 return VM_FAULT_BADACCESS;
243
244 return handle_mm_fault(vma, addr & PAGE_MASK, flags, regs);
245 }
246
247 static int __kprobes
248 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
249 {
250 struct mm_struct *mm = current->mm;
251 int sig, code;
252 vm_fault_t fault;
253 unsigned int flags = FAULT_FLAG_DEFAULT;
254 unsigned long vm_flags = VM_ACCESS_FLAGS;
255
256 if (kprobe_page_fault(regs, fsr))
257 return 0;
258
259
260 /* Enable interrupts if they were enabled in the parent context. */
261 if (interrupts_enabled(regs))
262 local_irq_enable();
263
264 /*
265 * If we're in an interrupt or have no user
266 * context, we must not take the fault..
267 */
268 if (faulthandler_disabled() || !mm)
269 goto no_context;
270
271 if (user_mode(regs))
272 flags |= FAULT_FLAG_USER;
273
274 if (is_write_fault(fsr)) {
275 flags |= FAULT_FLAG_WRITE;
276 vm_flags = VM_WRITE;
277 }
278
279 if (fsr & FSR_LNX_PF) {
280 vm_flags = VM_EXEC;
281
282 if (is_permission_fault(fsr) && !user_mode(regs))
283 die_kernel_fault("execution of memory",
284 mm, addr, fsr, regs);
285 }
286
287 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
288
289 /*
290 * As per x86, we may deadlock here. However, since the kernel only
291 * validly references user space from well defined areas of the code,
292 * we can bug out early if this is from code which shouldn't.
293 */
294 if (!mmap_read_trylock(mm)) {
295 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
296 goto no_context;
297 retry:
298 mmap_read_lock(mm);
299 } else {
300 /*
301 * The above down_read_trylock() might have succeeded in
302 * which case, we'll have missed the might_sleep() from
303 * down_read()
304 */
305 might_sleep();
306 #ifdef CONFIG_DEBUG_VM
307 if (!user_mode(regs) &&
308 !search_exception_tables(regs->ARM_pc))
309 goto no_context;
310 #endif
311 }
312
313 fault = __do_page_fault(mm, addr, flags, vm_flags, regs);
314
315 /* If we need to retry but a fatal signal is pending, handle the
316 * signal first. We do not need to release the mmap_lock because
317 * it would already be released in __lock_page_or_retry in
318 * mm/filemap.c. */
319 if (fault_signal_pending(fault, regs)) {
320 if (!user_mode(regs))
321 goto no_context;
322 return 0;
323 }
324
325 if (!(fault & VM_FAULT_ERROR)) {
326 if (fault & VM_FAULT_RETRY) {
327 flags |= FAULT_FLAG_TRIED;
328 goto retry;
329 }
330 }
331
332 mmap_read_unlock(mm);
333
334 /*
335 * Handle the "normal" case first - VM_FAULT_MAJOR
336 */
337 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
338 return 0;
339
340 /*
341 * If we are in kernel mode at this point, we
342 * have no context to handle this fault with.
343 */
344 if (!user_mode(regs))
345 goto no_context;
346
347 if (fault & VM_FAULT_OOM) {
348 /*
349 * We ran out of memory, call the OOM killer, and return to
350 * userspace (which will retry the fault, or kill us if we
351 * got oom-killed)
352 */
353 pagefault_out_of_memory();
354 return 0;
355 }
356
357 if (fault & VM_FAULT_SIGBUS) {
358 /*
359 * We had some memory, but were unable to
360 * successfully fix up this page fault.
361 */
362 sig = SIGBUS;
363 code = BUS_ADRERR;
364 } else {
365 /*
366 * Something tried to access memory that
367 * isn't in our memory map..
368 */
369 sig = SIGSEGV;
370 code = fault == VM_FAULT_BADACCESS ?
371 SEGV_ACCERR : SEGV_MAPERR;
372 }
373
374 __do_user_fault(addr, fsr, sig, code, regs);
375 return 0;
376
377 no_context:
378 __do_kernel_fault(mm, addr, fsr, regs);
379 return 0;
380 }
381 #else /* CONFIG_MMU */
382 static int
383 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
384 {
385 return 0;
386 }
387 #endif /* CONFIG_MMU */
388
389 /*
390 * First Level Translation Fault Handler
391 *
392 * We enter here because the first level page table doesn't contain
393 * a valid entry for the address.
394 *
395 * If the address is in kernel space (>= TASK_SIZE), then we are
396 * probably faulting in the vmalloc() area.
397 *
398 * If the init_task's first level page tables contains the relevant
399 * entry, we copy the it to this task. If not, we send the process
400 * a signal, fixup the exception, or oops the kernel.
401 *
402 * NOTE! We MUST NOT take any locks for this case. We may be in an
403 * interrupt or a critical region, and should only copy the information
404 * from the master page table, nothing more.
405 */
406 #ifdef CONFIG_MMU
407 static int __kprobes
408 do_translation_fault(unsigned long addr, unsigned int fsr,
409 struct pt_regs *regs)
410 {
411 unsigned int index;
412 pgd_t *pgd, *pgd_k;
413 p4d_t *p4d, *p4d_k;
414 pud_t *pud, *pud_k;
415 pmd_t *pmd, *pmd_k;
416
417 if (addr < TASK_SIZE)
418 return do_page_fault(addr, fsr, regs);
419
420 if (user_mode(regs))
421 goto bad_area;
422
423 index = pgd_index(addr);
424
425 pgd = cpu_get_pgd() + index;
426 pgd_k = init_mm.pgd + index;
427
428 p4d = p4d_offset(pgd, addr);
429 p4d_k = p4d_offset(pgd_k, addr);
430
431 if (p4d_none(*p4d_k))
432 goto bad_area;
433 if (!p4d_present(*p4d))
434 set_p4d(p4d, *p4d_k);
435
436 pud = pud_offset(p4d, addr);
437 pud_k = pud_offset(p4d_k, addr);
438
439 if (pud_none(*pud_k))
440 goto bad_area;
441 if (!pud_present(*pud))
442 set_pud(pud, *pud_k);
443
444 pmd = pmd_offset(pud, addr);
445 pmd_k = pmd_offset(pud_k, addr);
446
447 #ifdef CONFIG_ARM_LPAE
448 /*
449 * Only one hardware entry per PMD with LPAE.
450 */
451 index = 0;
452 #else
453 /*
454 * On ARM one Linux PGD entry contains two hardware entries (see page
455 * tables layout in pgtable.h). We normally guarantee that we always
456 * fill both L1 entries. But create_mapping() doesn't follow the rule.
457 * It can create inidividual L1 entries, so here we have to call
458 * pmd_none() check for the entry really corresponded to address, not
459 * for the first of pair.
460 */
461 index = (addr >> SECTION_SHIFT) & 1;
462 #endif
463 if (pmd_none(pmd_k[index]))
464 goto bad_area;
465
466 copy_pmd(pmd, pmd_k);
467 return 0;
468
469 bad_area:
470 do_bad_area(addr, fsr, regs);
471 return 0;
472 }
473 #else /* CONFIG_MMU */
474 static int
475 do_translation_fault(unsigned long addr, unsigned int fsr,
476 struct pt_regs *regs)
477 {
478 return 0;
479 }
480 #endif /* CONFIG_MMU */
481
482 /*
483 * Some section permission faults need to be handled gracefully.
484 * They can happen due to a __{get,put}_user during an oops.
485 */
486 #ifndef CONFIG_ARM_LPAE
487 static int
488 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
489 {
490 do_bad_area(addr, fsr, regs);
491 return 0;
492 }
493 #endif /* CONFIG_ARM_LPAE */
494
495 /*
496 * This abort handler always returns "fault".
497 */
498 static int
499 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
500 {
501 return 1;
502 }
503
504 struct fsr_info {
505 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
506 int sig;
507 int code;
508 const char *name;
509 };
510
511 /* FSR definition */
512 #ifdef CONFIG_ARM_LPAE
513 #include "fsr-3level.c"
514 #else
515 #include "fsr-2level.c"
516 #endif
517
518 void __init
519 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
520 int sig, int code, const char *name)
521 {
522 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
523 BUG();
524
525 fsr_info[nr].fn = fn;
526 fsr_info[nr].sig = sig;
527 fsr_info[nr].code = code;
528 fsr_info[nr].name = name;
529 }
530
531 /*
532 * Dispatch a data abort to the relevant handler.
533 */
534 asmlinkage void
535 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
536 {
537 const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
538
539 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
540 return;
541
542 pr_alert("8<--- cut here ---\n");
543 pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
544 inf->name, fsr, addr);
545 show_pte(KERN_ALERT, current->mm, addr);
546
547 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
548 fsr, 0);
549 }
550
551 void __init
552 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
553 int sig, int code, const char *name)
554 {
555 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
556 BUG();
557
558 ifsr_info[nr].fn = fn;
559 ifsr_info[nr].sig = sig;
560 ifsr_info[nr].code = code;
561 ifsr_info[nr].name = name;
562 }
563
564 asmlinkage void
565 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
566 {
567 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
568
569 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
570 return;
571
572 pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
573 inf->name, ifsr, addr);
574
575 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
576 ifsr, 0);
577 }
578
579 /*
580 * Abort handler to be used only during first unmasking of asynchronous aborts
581 * on the boot CPU. This makes sure that the machine will not die if the
582 * firmware/bootloader left an imprecise abort pending for us to trip over.
583 */
584 static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
585 struct pt_regs *regs)
586 {
587 pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
588 "first unmask, this is most likely caused by a "
589 "firmware/bootloader bug.\n", fsr);
590
591 return 0;
592 }
593
594 void __init early_abt_enable(void)
595 {
596 fsr_info[FSR_FS_AEA].fn = early_abort_handler;
597 local_abt_enable();
598 fsr_info[FSR_FS_AEA].fn = do_bad;
599 }
600
601 #ifndef CONFIG_ARM_LPAE
602 static int __init exceptions_init(void)
603 {
604 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
605 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
606 "I-cache maintenance fault");
607 }
608
609 if (cpu_architecture() >= CPU_ARCH_ARMv7) {
610 /*
611 * TODO: Access flag faults introduced in ARMv6K.
612 * Runtime check for 'K' extension is needed
613 */
614 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
615 "section access flag fault");
616 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
617 "section access flag fault");
618 }
619
620 return 0;
621 }
622
623 arch_initcall(exceptions_init);
624 #endif