]> git.dujemihanovic.xyz Git - u-boot.git/commitdiff
fs: btrfs: Crossport volumes.[ch] from btrfs-progs
authorQu Wenruo <wqu@suse.com>
Wed, 24 Jun 2020 16:02:54 +0000 (18:02 +0200)
committerTom Rini <trini@konsulko.com>
Tue, 8 Sep 2020 00:57:27 +0000 (20:57 -0400)
This patch crossports volumes.[ch] from btrfs-progs, including:
- btrfs_map_block()
  The core mechanism to map btrfs logical address to physical address.
  This version includes multi-device support, along with RAID56 support.

- btrfs_scan_one_device()
  This is the function to register one btrfs device to the list.
  This is the main part of the multi-device btrfs assembling process.
  Although we're not going to support multiple devices until U-Boot
  allows us to scan one device without actually opening it.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Marek BehĂșn <marek.behun@nic.cz>
[trini: Use %zu in a debug print to avoid warning]
Signed-off-by: Tom Rini <trini@konsulko.com>
fs/btrfs/Makefile
fs/btrfs/compat.h
fs/btrfs/ctree.h
fs/btrfs/volumes.c [new file with mode: 0644]
fs/btrfs/volumes.h [new file with mode: 0644]

index 53be6e8835f2d1164254d5f5e162264910921cb5..ec30aae76546400b29c8144004335a1daba487f6 100644 (file)
@@ -4,4 +4,4 @@
 
 obj-y := btrfs.o chunk-map.o compression.o ctree.o dev.o dir-item.o \
        extent-io.o inode.o root.o subvolume.o crypto/hash.o disk-io.o \
-       common/rbtree-utils.o extent-cache.o
+       common/rbtree-utils.o extent-cache.o volumes.o
index 12fb9f803c3ec5ba27819e4b210240e1f462e76b..be4f4e7a706d4e77419d583636ee11e61b8cd351 100644 (file)
@@ -68,4 +68,9 @@ static inline void uuid_unparse(const u8 *uuid, char *out)
        return uuid_bin_to_str((unsigned char *)uuid, out, 0);
 }
 
+static inline int is_power_of_2(unsigned long n)
+{
+       return (n != 0 && ((n & (n - 1)) == 0));
+}
+
 #endif
index a09587233e6ae0f4581275a25628085b4b984448..c746d3fd45e286f580ff4d23575b80a25e7210ae 100644 (file)
@@ -12,6 +12,7 @@
 #include <common.h>
 #include <compiler.h>
 #include <linux/rbtree.h>
+#include <linux/bug.h>
 #include <linux/unaligned/le_byteshift.h>
 #include <u-boot/crc.h>
 #include "kernel-shared/btrfs_tree.h"
diff --git a/fs/btrfs/volumes.c b/fs/btrfs/volumes.c
new file mode 100644 (file)
index 0000000..c671b53
--- /dev/null
@@ -0,0 +1,872 @@
+// SPDX-License-Identifier: GPL-2.0+
+#include <stdlib.h>
+#include <common.h>
+#include <fs_internal.h>
+#include "ctree.h"
+#include "disk-io.h"
+#include "volumes.h"
+
+const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
+       [BTRFS_RAID_RAID10] = {
+               .sub_stripes    = 2,
+               .dev_stripes    = 1,
+               .devs_max       = 0,    /* 0 == as many as possible */
+               .devs_min       = 4,
+               .tolerated_failures = 1,
+               .devs_increment = 2,
+               .ncopies        = 2,
+               .nparity        = 0,
+               .raid_name      = "raid10",
+               .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
+       },
+       [BTRFS_RAID_RAID1] = {
+               .sub_stripes    = 1,
+               .dev_stripes    = 1,
+               .devs_max       = 2,
+               .devs_min       = 2,
+               .tolerated_failures = 1,
+               .devs_increment = 2,
+               .ncopies        = 2,
+               .nparity        = 0,
+               .raid_name      = "raid1",
+               .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
+       },
+       [BTRFS_RAID_RAID1C3] = {
+               .sub_stripes    = 1,
+               .dev_stripes    = 1,
+               .devs_max       = 3,
+               .devs_min       = 3,
+               .tolerated_failures = 2,
+               .devs_increment = 3,
+               .ncopies        = 3,
+               .raid_name      = "raid1c3",
+               .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C3,
+       },
+       [BTRFS_RAID_RAID1C4] = {
+               .sub_stripes    = 1,
+               .dev_stripes    = 1,
+               .devs_max       = 4,
+               .devs_min       = 4,
+               .tolerated_failures = 3,
+               .devs_increment = 4,
+               .ncopies        = 4,
+               .raid_name      = "raid1c4",
+               .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C4,
+       },
+       [BTRFS_RAID_DUP] = {
+               .sub_stripes    = 1,
+               .dev_stripes    = 2,
+               .devs_max       = 1,
+               .devs_min       = 1,
+               .tolerated_failures = 0,
+               .devs_increment = 1,
+               .ncopies        = 2,
+               .nparity        = 0,
+               .raid_name      = "dup",
+               .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
+       },
+       [BTRFS_RAID_RAID0] = {
+               .sub_stripes    = 1,
+               .dev_stripes    = 1,
+               .devs_max       = 0,
+               .devs_min       = 2,
+               .tolerated_failures = 0,
+               .devs_increment = 1,
+               .ncopies        = 1,
+               .nparity        = 0,
+               .raid_name      = "raid0",
+               .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
+       },
+       [BTRFS_RAID_SINGLE] = {
+               .sub_stripes    = 1,
+               .dev_stripes    = 1,
+               .devs_max       = 1,
+               .devs_min       = 1,
+               .tolerated_failures = 0,
+               .devs_increment = 1,
+               .ncopies        = 1,
+               .nparity        = 0,
+               .raid_name      = "single",
+               .bg_flag        = 0,
+       },
+       [BTRFS_RAID_RAID5] = {
+               .sub_stripes    = 1,
+               .dev_stripes    = 1,
+               .devs_max       = 0,
+               .devs_min       = 2,
+               .tolerated_failures = 1,
+               .devs_increment = 1,
+               .ncopies        = 1,
+               .nparity        = 1,
+               .raid_name      = "raid5",
+               .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
+       },
+       [BTRFS_RAID_RAID6] = {
+               .sub_stripes    = 1,
+               .dev_stripes    = 1,
+               .devs_max       = 0,
+               .devs_min       = 3,
+               .tolerated_failures = 2,
+               .devs_increment = 1,
+               .ncopies        = 1,
+               .nparity        = 2,
+               .raid_name      = "raid6",
+               .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
+       },
+};
+
+struct stripe {
+       struct btrfs_device *dev;
+       u64 physical;
+};
+
+static inline int nr_parity_stripes(struct map_lookup *map)
+{
+       if (map->type & BTRFS_BLOCK_GROUP_RAID5)
+               return 1;
+       else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
+               return 2;
+       else
+               return 0;
+}
+
+static inline int nr_data_stripes(struct map_lookup *map)
+{
+       return map->num_stripes - nr_parity_stripes(map);
+}
+
+#define is_parity_stripe(x) ( ((x) == BTRFS_RAID5_P_STRIPE) || ((x) == BTRFS_RAID6_Q_STRIPE) )
+
+static LIST_HEAD(fs_uuids);
+
+/*
+ * Find a device specified by @devid or @uuid in the list of @fs_devices, or
+ * return NULL.
+ *
+ * If devid and uuid are both specified, the match must be exact, otherwise
+ * only devid is used.
+ */
+static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
+               u64 devid, u8 *uuid)
+{
+       struct list_head *head = &fs_devices->devices;
+       struct btrfs_device *dev;
+
+       list_for_each_entry(dev, head, dev_list) {
+               if (dev->devid == devid &&
+                   (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
+                       return dev;
+               }
+       }
+       return NULL;
+}
+
+static struct btrfs_fs_devices *find_fsid(u8 *fsid, u8 *metadata_uuid)
+{
+       struct btrfs_fs_devices *fs_devices;
+
+       list_for_each_entry(fs_devices, &fs_uuids, list) {
+               if (metadata_uuid && (memcmp(fsid, fs_devices->fsid,
+                                            BTRFS_FSID_SIZE) == 0) &&
+                   (memcmp(metadata_uuid, fs_devices->metadata_uuid,
+                           BTRFS_FSID_SIZE) == 0)) {
+                       return fs_devices;
+               } else if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0){
+                       return fs_devices;
+               }
+       }
+       return NULL;
+}
+
+static int device_list_add(struct btrfs_super_block *disk_super,
+                          u64 devid, struct blk_desc *desc,
+                          struct disk_partition *part,
+                          struct btrfs_fs_devices **fs_devices_ret)
+{
+       struct btrfs_device *device;
+       struct btrfs_fs_devices *fs_devices;
+       u64 found_transid = btrfs_super_generation(disk_super);
+       bool metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
+               BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
+
+       if (metadata_uuid)
+               fs_devices = find_fsid(disk_super->fsid,
+                                      disk_super->metadata_uuid);
+       else
+               fs_devices = find_fsid(disk_super->fsid, NULL);
+
+       if (!fs_devices) {
+               fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
+               if (!fs_devices)
+                       return -ENOMEM;
+               INIT_LIST_HEAD(&fs_devices->devices);
+               list_add(&fs_devices->list, &fs_uuids);
+               memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
+               if (metadata_uuid)
+                       memcpy(fs_devices->metadata_uuid,
+                              disk_super->metadata_uuid, BTRFS_FSID_SIZE);
+               else
+                       memcpy(fs_devices->metadata_uuid, fs_devices->fsid,
+                              BTRFS_FSID_SIZE);
+
+               fs_devices->latest_devid = devid;
+               fs_devices->latest_trans = found_transid;
+               fs_devices->lowest_devid = (u64)-1;
+               device = NULL;
+       } else {
+               device = find_device(fs_devices, devid,
+                                   disk_super->dev_item.uuid);
+       }
+       if (!device) {
+               device = kzalloc(sizeof(*device), GFP_NOFS);
+               if (!device) {
+                       /* we can safely leave the fs_devices entry around */
+                       return -ENOMEM;
+               }
+               device->devid = devid;
+               device->desc = desc;
+               device->part = part;
+               device->generation = found_transid;
+               memcpy(device->uuid, disk_super->dev_item.uuid,
+                      BTRFS_UUID_SIZE);
+               device->total_devs = btrfs_super_num_devices(disk_super);
+               device->super_bytes_used = btrfs_super_bytes_used(disk_super);
+               device->total_bytes =
+                       btrfs_stack_device_total_bytes(&disk_super->dev_item);
+               device->bytes_used =
+                       btrfs_stack_device_bytes_used(&disk_super->dev_item);
+               list_add(&device->dev_list, &fs_devices->devices);
+               device->fs_devices = fs_devices;
+       } else if (!device->desc || !device->part) {
+               /*
+                * The existing device has newer generation, so this one could
+                * be a stale one, don't add it.
+                */
+               if (found_transid < device->generation) {
+                       error(
+       "adding devid %llu gen %llu but found an existing device gen %llu",
+                               device->devid, found_transid,
+                               device->generation);
+                       return -EEXIST;
+               } else {
+                       device->desc = desc;
+                       device->part = part;
+               }
+       }
+
+
+       if (found_transid > fs_devices->latest_trans) {
+               fs_devices->latest_devid = devid;
+               fs_devices->latest_trans = found_transid;
+       }
+       if (fs_devices->lowest_devid > devid) {
+               fs_devices->lowest_devid = devid;
+       }
+       *fs_devices_ret = fs_devices;
+       return 0;
+}
+
+int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
+{
+       struct btrfs_fs_devices *seed_devices;
+       struct btrfs_device *device;
+       int ret = 0;
+
+again:
+       if (!fs_devices)
+               return 0;
+       while (!list_empty(&fs_devices->devices)) {
+               device = list_entry(fs_devices->devices.next,
+                                   struct btrfs_device, dev_list);
+               list_del(&device->dev_list);
+               /* free the memory */
+               free(device);
+       }
+
+       seed_devices = fs_devices->seed;
+       fs_devices->seed = NULL;
+       if (seed_devices) {
+               struct btrfs_fs_devices *orig;
+
+               orig = fs_devices;
+               fs_devices = seed_devices;
+               list_del(&orig->list);
+               free(orig);
+               goto again;
+       } else {
+               list_del(&fs_devices->list);
+               free(fs_devices);
+       }
+
+       return ret;
+}
+
+void btrfs_close_all_devices(void)
+{
+       struct btrfs_fs_devices *fs_devices;
+
+       while (!list_empty(&fs_uuids)) {
+               fs_devices = list_entry(fs_uuids.next, struct btrfs_fs_devices,
+                                       list);
+               btrfs_close_devices(fs_devices);
+       }
+}
+
+int btrfs_open_devices(struct btrfs_fs_devices *fs_devices)
+{
+       struct btrfs_device *device;
+
+       list_for_each_entry(device, &fs_devices->devices, dev_list) {
+               if (!device->desc || !device->part) {
+                       printf("no device found for devid %llu, skip it \n",
+                               device->devid);
+                       continue;
+               }
+       }
+       return 0;
+}
+
+int btrfs_scan_one_device(struct blk_desc *desc, struct disk_partition *part,
+                         struct btrfs_fs_devices **fs_devices_ret,
+                         u64 *total_devs)
+{
+       struct btrfs_super_block *disk_super;
+       char buf[BTRFS_SUPER_INFO_SIZE];
+       int ret;
+       u64 devid;
+
+       disk_super = (struct btrfs_super_block *)buf;
+       ret = btrfs_read_dev_super(desc, part, disk_super);
+       if (ret < 0)
+               return -EIO;
+       devid = btrfs_stack_device_id(&disk_super->dev_item);
+       if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_METADUMP)
+               *total_devs = 1;
+       else
+               *total_devs = btrfs_super_num_devices(disk_super);
+
+       ret = device_list_add(disk_super, devid, desc, part, fs_devices_ret);
+
+       return ret;
+}
+
+struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
+                                      u8 *uuid, u8 *fsid)
+{
+       struct btrfs_device *device;
+       struct btrfs_fs_devices *cur_devices;
+
+       cur_devices = fs_info->fs_devices;
+       while (cur_devices) {
+               if (!fsid ||
+                  !memcmp(cur_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
+                       device = find_device(cur_devices, devid, uuid);
+                       if (device)
+                               return device;
+               }
+               cur_devices = cur_devices->seed;
+       }
+       return NULL;
+}
+
+/*
+ * slot == -1: SYSTEM chunk
+ * return -EIO on error, otherwise return 0
+ */
+int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
+                           struct extent_buffer *leaf,
+                           struct btrfs_chunk *chunk,
+                           int slot, u64 logical)
+{
+       u64 length;
+       u64 stripe_len;
+       u16 num_stripes;
+       u16 sub_stripes;
+       u64 type;
+       u32 chunk_ondisk_size;
+       u32 sectorsize = fs_info->sectorsize;
+
+       /*
+        * Basic chunk item size check.  Note that btrfs_chunk already contains
+        * one stripe, so no "==" check.
+        */
+       if (slot >= 0 &&
+           btrfs_item_size_nr(leaf, slot) < sizeof(struct btrfs_chunk)) {
+               error("invalid chunk item size, have %u expect [%zu, %zu)",
+                       btrfs_item_size_nr(leaf, slot),
+                       sizeof(struct btrfs_chunk),
+                       BTRFS_LEAF_DATA_SIZE(fs_info));
+               return -EUCLEAN;
+       }
+       length = btrfs_chunk_length(leaf, chunk);
+       stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
+       num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
+       sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
+       type = btrfs_chunk_type(leaf, chunk);
+
+       if (num_stripes == 0) {
+               error("invalid num_stripes, have %u expect non-zero",
+                       num_stripes);
+               return -EUCLEAN;
+       }
+       if (slot >= 0 && btrfs_chunk_item_size(num_stripes) !=
+           btrfs_item_size_nr(leaf, slot)) {
+               error("invalid chunk item size, have %u expect %lu",
+                       btrfs_item_size_nr(leaf, slot),
+                       btrfs_chunk_item_size(num_stripes));
+               return -EUCLEAN;
+       }
+
+       /*
+        * These valid checks may be insufficient to cover every corner cases.
+        */
+       if (!IS_ALIGNED(logical, sectorsize)) {
+               error("invalid chunk logical %llu",  logical);
+               return -EIO;
+       }
+       if (btrfs_chunk_sector_size(leaf, chunk) != sectorsize) {
+               error("invalid chunk sectorsize %llu",
+                     (unsigned long long)btrfs_chunk_sector_size(leaf, chunk));
+               return -EIO;
+       }
+       if (!length || !IS_ALIGNED(length, sectorsize)) {
+               error("invalid chunk length %llu",  length);
+               return -EIO;
+       }
+       if (stripe_len != BTRFS_STRIPE_LEN) {
+               error("invalid chunk stripe length: %llu", stripe_len);
+               return -EIO;
+       }
+       /* Check on chunk item type */
+       if (slot == -1 && (type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
+               error("invalid chunk type %llu", type);
+               return -EIO;
+       }
+       if (type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
+                    BTRFS_BLOCK_GROUP_PROFILE_MASK)) {
+               error("unrecognized chunk type: %llu",
+                     ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
+                       BTRFS_BLOCK_GROUP_PROFILE_MASK) & type);
+               return -EIO;
+       }
+       if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
+               error("missing chunk type flag: %llu", type);
+               return -EIO;
+       }
+       if (!(is_power_of_2(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) ||
+             (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)) {
+               error("conflicting chunk type detected: %llu", type);
+               return -EIO;
+       }
+       if ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
+           !is_power_of_2(type & BTRFS_BLOCK_GROUP_PROFILE_MASK)) {
+               error("conflicting chunk profile detected: %llu", type);
+               return -EIO;
+       }
+
+       chunk_ondisk_size = btrfs_chunk_item_size(num_stripes);
+       /*
+        * Btrfs_chunk contains at least one stripe, and for sys_chunk
+        * it can't exceed the system chunk array size
+        * For normal chunk, it should match its chunk item size.
+        */
+       if (num_stripes < 1 ||
+           (slot == -1 && chunk_ondisk_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) ||
+           (slot >= 0 && chunk_ondisk_size > btrfs_item_size_nr(leaf, slot))) {
+               error("invalid num_stripes: %u", num_stripes);
+               return -EIO;
+       }
+       /*
+        * Device number check against profile
+        */
+       if ((type & BTRFS_BLOCK_GROUP_RAID10 && (sub_stripes != 2 ||
+                 !IS_ALIGNED(num_stripes, sub_stripes))) ||
+           (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
+           (type & BTRFS_BLOCK_GROUP_RAID1C3 && num_stripes < 3) ||
+           (type & BTRFS_BLOCK_GROUP_RAID1C4 && num_stripes < 4) ||
+           (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
+           (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
+           (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
+           ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
+            num_stripes != 1)) {
+               error("Invalid num_stripes:sub_stripes %u:%u for profile %llu",
+                     num_stripes, sub_stripes,
+                     type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
+               return -EIO;
+       }
+
+       return 0;
+}
+
+/*
+ * Get stripe length from chunk item and its stripe items
+ *
+ * Caller should only call this function after validating the chunk item
+ * by using btrfs_check_chunk_valid().
+ */
+u64 btrfs_stripe_length(struct btrfs_fs_info *fs_info,
+                       struct extent_buffer *leaf,
+                       struct btrfs_chunk *chunk)
+{
+       u64 stripe_len;
+       u64 chunk_len;
+       u32 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
+       u64 profile = btrfs_chunk_type(leaf, chunk) &
+                     BTRFS_BLOCK_GROUP_PROFILE_MASK;
+
+       chunk_len = btrfs_chunk_length(leaf, chunk);
+
+       switch (profile) {
+       case 0: /* Single profile */
+       case BTRFS_BLOCK_GROUP_RAID1:
+       case BTRFS_BLOCK_GROUP_RAID1C3:
+       case BTRFS_BLOCK_GROUP_RAID1C4:
+       case BTRFS_BLOCK_GROUP_DUP:
+               stripe_len = chunk_len;
+               break;
+       case BTRFS_BLOCK_GROUP_RAID0:
+               stripe_len = chunk_len / num_stripes;
+               break;
+       case BTRFS_BLOCK_GROUP_RAID5:
+               stripe_len = chunk_len / (num_stripes - 1);
+               break;
+       case BTRFS_BLOCK_GROUP_RAID6:
+               stripe_len = chunk_len / (num_stripes - 2);
+               break;
+       case BTRFS_BLOCK_GROUP_RAID10:
+               stripe_len = chunk_len / (num_stripes /
+                               btrfs_chunk_sub_stripes(leaf, chunk));
+               break;
+       default:
+               /* Invalid chunk profile found */
+               BUG_ON(1);
+       }
+       return stripe_len;
+}
+
+int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
+{
+       struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
+       struct cache_extent *ce;
+       struct map_lookup *map;
+       int ret;
+
+       ce = search_cache_extent(&map_tree->cache_tree, logical);
+       if (!ce) {
+               fprintf(stderr, "No mapping for %llu-%llu\n",
+                       (unsigned long long)logical,
+                       (unsigned long long)logical+len);
+               return 1;
+       }
+       if (ce->start > logical || ce->start + ce->size < logical) {
+               fprintf(stderr, "Invalid mapping for %llu-%llu, got "
+                       "%llu-%llu\n", (unsigned long long)logical,
+                       (unsigned long long)logical+len,
+                       (unsigned long long)ce->start,
+                       (unsigned long long)ce->start + ce->size);
+               return 1;
+       }
+       map = container_of(ce, struct map_lookup, ce);
+
+       if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
+                        BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))
+               ret = map->num_stripes;
+       else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
+               ret = map->sub_stripes;
+       else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
+               ret = 2;
+       else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
+               ret = 3;
+       else
+               ret = 1;
+       return ret;
+}
+
+int btrfs_next_bg(struct btrfs_fs_info *fs_info, u64 *logical,
+                 u64 *size, u64 type)
+{
+       struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
+       struct cache_extent *ce;
+       struct map_lookup *map;
+       u64 cur = *logical;
+
+       ce = search_cache_extent(&map_tree->cache_tree, cur);
+
+       while (ce) {
+               /*
+                * only jump to next bg if our cur is not 0
+                * As the initial logical for btrfs_next_bg() is 0, and
+                * if we jump to next bg, we skipped a valid bg.
+                */
+               if (cur) {
+                       ce = next_cache_extent(ce);
+                       if (!ce)
+                               return -ENOENT;
+               }
+
+               cur = ce->start;
+               map = container_of(ce, struct map_lookup, ce);
+               if (map->type & type) {
+                       *logical = ce->start;
+                       *size = ce->size;
+                       return 0;
+               }
+               if (!cur)
+                       ce = next_cache_extent(ce);
+       }
+
+       return -ENOENT;
+}
+
+static inline int parity_smaller(u64 a, u64 b)
+{
+       return a > b;
+}
+
+/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
+static void sort_parity_stripes(struct btrfs_multi_bio *bbio, u64 *raid_map)
+{
+       struct btrfs_bio_stripe s;
+       int i;
+       u64 l;
+       int again = 1;
+
+       while (again) {
+               again = 0;
+               for (i = 0; i < bbio->num_stripes - 1; i++) {
+                       if (parity_smaller(raid_map[i], raid_map[i+1])) {
+                               s = bbio->stripes[i];
+                               l = raid_map[i];
+                               bbio->stripes[i] = bbio->stripes[i+1];
+                               raid_map[i] = raid_map[i+1];
+                               bbio->stripes[i+1] = s;
+                               raid_map[i+1] = l;
+                               again = 1;
+                       }
+               }
+       }
+}
+
+int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
+                     u64 logical, u64 *length, u64 *type,
+                     struct btrfs_multi_bio **multi_ret, int mirror_num,
+                     u64 **raid_map_ret)
+{
+       struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
+       struct cache_extent *ce;
+       struct map_lookup *map;
+       u64 offset;
+       u64 stripe_offset;
+       u64 *raid_map = NULL;
+       int stripe_nr;
+       int stripes_allocated = 8;
+       int stripes_required = 1;
+       int stripe_index;
+       int i;
+       struct btrfs_multi_bio *multi = NULL;
+
+       if (multi_ret && rw == READ) {
+               stripes_allocated = 1;
+       }
+again:
+       ce = search_cache_extent(&map_tree->cache_tree, logical);
+       if (!ce) {
+               kfree(multi);
+               *length = (u64)-1;
+               return -ENOENT;
+       }
+       if (ce->start > logical) {
+               kfree(multi);
+               *length = ce->start - logical;
+               return -ENOENT;
+       }
+
+       if (multi_ret) {
+               multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
+                               GFP_NOFS);
+               if (!multi)
+                       return -ENOMEM;
+       }
+       map = container_of(ce, struct map_lookup, ce);
+       offset = logical - ce->start;
+
+       if (rw == WRITE) {
+               if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
+                                BTRFS_BLOCK_GROUP_RAID1C3 |
+                                BTRFS_BLOCK_GROUP_RAID1C4 |
+                                BTRFS_BLOCK_GROUP_DUP)) {
+                       stripes_required = map->num_stripes;
+               } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
+                       stripes_required = map->sub_stripes;
+               }
+       }
+       if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)
+           && multi_ret && ((rw & WRITE) || mirror_num > 1) && raid_map_ret) {
+                   /* RAID[56] write or recovery. Return all stripes */
+                   stripes_required = map->num_stripes;
+
+                   /* Only allocate the map if we've already got a large enough multi_ret */
+                   if (stripes_allocated >= stripes_required) {
+                           raid_map = kmalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
+                           if (!raid_map) {
+                                   kfree(multi);
+                                   return -ENOMEM;
+                           }
+                   }
+       }
+
+       /* if our multi bio struct is too small, back off and try again */
+       if (multi_ret && stripes_allocated < stripes_required) {
+               stripes_allocated = stripes_required;
+               kfree(multi);
+               multi = NULL;
+               goto again;
+       }
+       stripe_nr = offset;
+       /*
+        * stripe_nr counts the total number of stripes we have to stride
+        * to get to this block
+        */
+       stripe_nr = stripe_nr / map->stripe_len;
+
+       stripe_offset = stripe_nr * map->stripe_len;
+       BUG_ON(offset < stripe_offset);
+
+       /* stripe_offset is the offset of this block in its stripe*/
+       stripe_offset = offset - stripe_offset;
+
+       if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
+                        BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4 |
+                        BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
+                        BTRFS_BLOCK_GROUP_RAID10 |
+                        BTRFS_BLOCK_GROUP_DUP)) {
+               /* we limit the length of each bio to what fits in a stripe */
+               *length = min_t(u64, ce->size - offset,
+                             map->stripe_len - stripe_offset);
+       } else {
+               *length = ce->size - offset;
+       }
+
+       if (!multi_ret)
+               goto out;
+
+       multi->num_stripes = 1;
+       stripe_index = 0;
+       if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
+                        BTRFS_BLOCK_GROUP_RAID1C3 |
+                        BTRFS_BLOCK_GROUP_RAID1C4)) {
+               if (rw == WRITE)
+                       multi->num_stripes = map->num_stripes;
+               else if (mirror_num)
+                       stripe_index = mirror_num - 1;
+               else
+                       stripe_index = stripe_nr % map->num_stripes;
+       } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
+               int factor = map->num_stripes / map->sub_stripes;
+
+               stripe_index = stripe_nr % factor;
+               stripe_index *= map->sub_stripes;
+
+               if (rw == WRITE)
+                       multi->num_stripes = map->sub_stripes;
+               else if (mirror_num)
+                       stripe_index += mirror_num - 1;
+
+               stripe_nr = stripe_nr / factor;
+       } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
+               if (rw == WRITE)
+                       multi->num_stripes = map->num_stripes;
+               else if (mirror_num)
+                       stripe_index = mirror_num - 1;
+       } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
+                               BTRFS_BLOCK_GROUP_RAID6)) {
+
+               if (raid_map) {
+                       int rot;
+                       u64 tmp;
+                       u64 raid56_full_stripe_start;
+                       u64 full_stripe_len = nr_data_stripes(map) * map->stripe_len;
+
+                       /*
+                        * align the start of our data stripe in the logical
+                        * address space
+                        */
+                       raid56_full_stripe_start = offset / full_stripe_len;
+                       raid56_full_stripe_start *= full_stripe_len;
+
+                       /* get the data stripe number */
+                       stripe_nr = raid56_full_stripe_start / map->stripe_len;
+                       stripe_nr = stripe_nr / nr_data_stripes(map);
+
+                       /* Work out the disk rotation on this stripe-set */
+                       rot = stripe_nr % map->num_stripes;
+
+                       /* Fill in the logical address of each stripe */
+                       tmp = stripe_nr * nr_data_stripes(map);
+
+                       for (i = 0; i < nr_data_stripes(map); i++)
+                               raid_map[(i+rot) % map->num_stripes] =
+                                       ce->start + (tmp + i) * map->stripe_len;
+
+                       raid_map[(i+rot) % map->num_stripes] = BTRFS_RAID5_P_STRIPE;
+                       if (map->type & BTRFS_BLOCK_GROUP_RAID6)
+                               raid_map[(i+rot+1) % map->num_stripes] = BTRFS_RAID6_Q_STRIPE;
+
+                       *length = map->stripe_len;
+                       stripe_index = 0;
+                       stripe_offset = 0;
+                       multi->num_stripes = map->num_stripes;
+               } else {
+                       stripe_index = stripe_nr % nr_data_stripes(map);
+                       stripe_nr = stripe_nr / nr_data_stripes(map);
+
+                       /*
+                        * Mirror #0 or #1 means the original data block.
+                        * Mirror #2 is RAID5 parity block.
+                        * Mirror #3 is RAID6 Q block.
+                        */
+                       if (mirror_num > 1)
+                               stripe_index = nr_data_stripes(map) + mirror_num - 2;
+
+                       /* We distribute the parity blocks across stripes */
+                       stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
+               }
+       } else {
+               /*
+                * after this do_div call, stripe_nr is the number of stripes
+                * on this device we have to walk to find the data, and
+                * stripe_index is the number of our device in the stripe array
+                */
+               stripe_index = stripe_nr % map->num_stripes;
+               stripe_nr = stripe_nr / map->num_stripes;
+       }
+       BUG_ON(stripe_index >= map->num_stripes);
+
+       for (i = 0; i < multi->num_stripes; i++) {
+               multi->stripes[i].physical =
+                       map->stripes[stripe_index].physical + stripe_offset +
+                       stripe_nr * map->stripe_len;
+               multi->stripes[i].dev = map->stripes[stripe_index].dev;
+               stripe_index++;
+       }
+       *multi_ret = multi;
+
+       if (type)
+               *type = map->type;
+
+       if (raid_map) {
+               sort_parity_stripes(multi, raid_map);
+               *raid_map_ret = raid_map;
+       }
+out:
+       return 0;
+}
+
+int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
+                   u64 logical, u64 *length,
+                   struct btrfs_multi_bio **multi_ret, int mirror_num,
+                   u64 **raid_map_ret)
+{
+       return __btrfs_map_block(fs_info, rw, logical, length, NULL,
+                                multi_ret, mirror_num, raid_map_ret);
+}
diff --git a/fs/btrfs/volumes.h b/fs/btrfs/volumes.h
new file mode 100644 (file)
index 0000000..32e3938
--- /dev/null
@@ -0,0 +1,202 @@
+// SPDX-License-Identifier: GPL-2.0+
+
+#ifndef __BTRFS_VOLUMES_H__
+#define __BTRFS_VOLUMES_H__
+
+#include <fs_internal.h>
+#include "ctree.h"
+
+#define BTRFS_STRIPE_LEN       SZ_64K
+
+struct btrfs_device {
+       struct list_head dev_list;
+       struct btrfs_root *dev_root;
+       struct btrfs_fs_devices *fs_devices;
+
+       struct blk_desc *desc;
+       struct disk_partition *part;
+
+       u64 total_devs;
+       u64 super_bytes_used;
+
+       u64 generation;
+
+       /* the internal btrfs device id */
+       u64 devid;
+
+       /* size of the device */
+       u64 total_bytes;
+
+       /* bytes used */
+       u64 bytes_used;
+
+       /* optimal io alignment for this device */
+       u32 io_align;
+
+       /* optimal io width for this device */
+       u32 io_width;
+
+       /* minimal io size for this device */
+       u32 sector_size;
+
+       /* type and info about this device */
+       u64 type;
+
+       /* physical drive uuid (or lvm uuid) */
+       u8 uuid[BTRFS_UUID_SIZE];
+};
+
+struct btrfs_fs_devices {
+       u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
+       u8 metadata_uuid[BTRFS_FSID_SIZE]; /* FS specific uuid */
+
+       u64 latest_devid;
+       u64 lowest_devid;
+       u64 latest_trans;
+
+       u64 total_rw_bytes;
+
+       struct list_head devices;
+       struct list_head list;
+
+       int seeding;
+       struct btrfs_fs_devices *seed;
+};
+
+struct btrfs_bio_stripe {
+       struct btrfs_device *dev;
+       u64 physical;
+};
+
+struct btrfs_multi_bio {
+       int error;
+       int num_stripes;
+       struct btrfs_bio_stripe stripes[];
+};
+
+struct map_lookup {
+       struct cache_extent ce;
+       u64 type;
+       int io_align;
+       int io_width;
+       int stripe_len;
+       int sector_size;
+       int num_stripes;
+       int sub_stripes;
+       struct btrfs_bio_stripe stripes[];
+};
+
+struct btrfs_raid_attr {
+       int sub_stripes;        /* sub_stripes info for map */
+       int dev_stripes;        /* stripes per dev */
+       int devs_max;           /* max devs to use */
+       int devs_min;           /* min devs needed */
+       int tolerated_failures; /* max tolerated fail devs */
+       int devs_increment;     /* ndevs has to be a multiple of this */
+       int ncopies;            /* how many copies to data has */
+       int nparity;            /* number of stripes worth of bytes to store
+                                * parity information */
+       const char raid_name[8]; /* name of the raid */
+       u64 bg_flag;            /* block group flag of the raid */
+};
+
+extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
+
+static inline enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags)
+{
+       if (flags & BTRFS_BLOCK_GROUP_RAID10)
+               return BTRFS_RAID_RAID10;
+       else if (flags & BTRFS_BLOCK_GROUP_RAID1)
+               return BTRFS_RAID_RAID1;
+       else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
+               return BTRFS_RAID_RAID1C3;
+       else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
+               return BTRFS_RAID_RAID1C4;
+       else if (flags & BTRFS_BLOCK_GROUP_DUP)
+               return BTRFS_RAID_DUP;
+       else if (flags & BTRFS_BLOCK_GROUP_RAID0)
+               return BTRFS_RAID_RAID0;
+       else if (flags & BTRFS_BLOCK_GROUP_RAID5)
+               return BTRFS_RAID_RAID5;
+       else if (flags & BTRFS_BLOCK_GROUP_RAID6)
+               return BTRFS_RAID_RAID6;
+
+       return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
+}
+
+#define btrfs_multi_bio_size(n) (sizeof(struct btrfs_multi_bio) + \
+                           (sizeof(struct btrfs_bio_stripe) * (n)))
+#define btrfs_map_lookup_size(n) (sizeof(struct map_lookup) + \
+                                (sizeof(struct btrfs_bio_stripe) * (n)))
+
+#define BTRFS_RAID5_P_STRIPE ((u64)-2)
+#define BTRFS_RAID6_Q_STRIPE ((u64)-1)
+
+static inline u64 calc_stripe_length(u64 type, u64 length, int num_stripes)
+{
+       u64 stripe_size;
+
+       if (type & BTRFS_BLOCK_GROUP_RAID0) {
+               stripe_size = length;
+               stripe_size /= num_stripes;
+       } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
+               stripe_size = length * 2;
+               stripe_size /= num_stripes;
+       } else if (type & BTRFS_BLOCK_GROUP_RAID5) {
+               stripe_size = length;
+               stripe_size /= (num_stripes - 1);
+       } else if (type & BTRFS_BLOCK_GROUP_RAID6) {
+               stripe_size = length;
+               stripe_size /= (num_stripes - 2);
+       } else {
+               stripe_size = length;
+       }
+       return stripe_size;
+}
+
+#ifndef READ
+#define READ 0
+#define WRITE 1
+#define READA 2
+#endif
+
+int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
+                     u64 logical, u64 *length, u64 *type,
+                     struct btrfs_multi_bio **multi_ret, int mirror_num,
+                     u64 **raid_map);
+int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
+                   u64 logical, u64 *length,
+                   struct btrfs_multi_bio **multi_ret, int mirror_num,
+                   u64 **raid_map_ret);
+int btrfs_next_bg(struct btrfs_fs_info *map_tree, u64 *logical,
+                    u64 *size, u64 type);
+static inline int btrfs_next_bg_metadata(struct btrfs_fs_info *fs_info,
+                                        u64 *logical, u64 *size)
+{
+       return btrfs_next_bg(fs_info, logical, size,
+                       BTRFS_BLOCK_GROUP_METADATA);
+}
+static inline int btrfs_next_bg_system(struct btrfs_fs_info *fs_info,
+                                      u64 *logical, u64 *size)
+{
+       return btrfs_next_bg(fs_info, logical, size,
+                       BTRFS_BLOCK_GROUP_SYSTEM);
+}
+int btrfs_open_devices(struct btrfs_fs_devices *fs_devices);
+int btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
+void btrfs_close_all_devices(void);
+int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
+int btrfs_scan_one_device(struct blk_desc *desc, struct disk_partition *part,
+                         struct btrfs_fs_devices **fs_devices_ret,
+                         u64 *total_devs);
+struct list_head *btrfs_scanned_uuids(void);
+struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
+                                      u8 *uuid, u8 *fsid);
+int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
+                           struct extent_buffer *leaf,
+                           struct btrfs_chunk *chunk,
+                           int slot, u64 logical);
+u64 btrfs_stripe_length(struct btrfs_fs_info *fs_info,
+                       struct extent_buffer *leaf,
+                       struct btrfs_chunk *chunk);
+#endif