#define SPI_SIMPLEX_RX 2
#define SPI_HALF_DUPLEX 3
-struct stm32_spi_priv {
+struct stm32_spi_plat {
void __iomem *base;
struct clk clk;
struct reset_ctl rst_ctl;
struct gpio_desc cs_gpios[MAX_CS_COUNT];
+};
+
+struct stm32_spi_priv {
ulong bus_clk_rate;
unsigned int fifo_size;
unsigned int cur_bpw;
bool cs_high;
};
-static void stm32_spi_write_txfifo(struct stm32_spi_priv *priv)
+static void stm32_spi_write_txfifo(struct udevice *bus)
{
+ struct stm32_spi_priv *priv = dev_get_priv(bus);
+ struct stm32_spi_plat *plat = dev_get_plat(bus);
+ void __iomem *base = plat->base;
+
while ((priv->tx_len > 0) &&
- (readl(priv->base + STM32_SPI_SR) & SPI_SR_TXP)) {
+ (readl(base + STM32_SPI_SR) & SPI_SR_TXP)) {
u32 offs = priv->cur_xferlen - priv->tx_len;
if (priv->tx_len >= sizeof(u32) &&
IS_ALIGNED((uintptr_t)(priv->tx_buf + offs), sizeof(u32))) {
const u32 *tx_buf32 = (const u32 *)(priv->tx_buf + offs);
- writel(*tx_buf32, priv->base + STM32_SPI_TXDR);
+ writel(*tx_buf32, base + STM32_SPI_TXDR);
priv->tx_len -= sizeof(u32);
} else if (priv->tx_len >= sizeof(u16) &&
IS_ALIGNED((uintptr_t)(priv->tx_buf + offs), sizeof(u16))) {
const u16 *tx_buf16 = (const u16 *)(priv->tx_buf + offs);
- writew(*tx_buf16, priv->base + STM32_SPI_TXDR);
+ writew(*tx_buf16, base + STM32_SPI_TXDR);
priv->tx_len -= sizeof(u16);
} else {
const u8 *tx_buf8 = (const u8 *)(priv->tx_buf + offs);
- writeb(*tx_buf8, priv->base + STM32_SPI_TXDR);
+ writeb(*tx_buf8, base + STM32_SPI_TXDR);
priv->tx_len -= sizeof(u8);
}
}
log_debug("%d bytes left\n", priv->tx_len);
}
-static void stm32_spi_read_rxfifo(struct stm32_spi_priv *priv)
+static void stm32_spi_read_rxfifo(struct udevice *bus)
{
- u32 sr = readl(priv->base + STM32_SPI_SR);
+ struct stm32_spi_priv *priv = dev_get_priv(bus);
+ struct stm32_spi_plat *plat = dev_get_plat(bus);
+ void __iomem *base = plat->base;
+ u32 sr = readl(base + STM32_SPI_SR);
u32 rxplvl = (sr & SPI_SR_RXPLVL) >> SPI_SR_RXPLVL_SHIFT;
while ((priv->rx_len > 0) &&
(priv->rx_len >= sizeof(u32) || (sr & SPI_SR_RXWNE))) {
u32 *rx_buf32 = (u32 *)(priv->rx_buf + offs);
- *rx_buf32 = readl(priv->base + STM32_SPI_RXDR);
+ *rx_buf32 = readl(base + STM32_SPI_RXDR);
priv->rx_len -= sizeof(u32);
} else if (IS_ALIGNED((uintptr_t)(priv->rx_buf + offs), sizeof(u16)) &&
(priv->rx_len >= sizeof(u16) ||
(rxplvl >= 2 || priv->cur_bpw > 8)))) {
u16 *rx_buf16 = (u16 *)(priv->rx_buf + offs);
- *rx_buf16 = readw(priv->base + STM32_SPI_RXDR);
+ *rx_buf16 = readw(base + STM32_SPI_RXDR);
priv->rx_len -= sizeof(u16);
} else {
u8 *rx_buf8 = (u8 *)(priv->rx_buf + offs);
- *rx_buf8 = readb(priv->base + STM32_SPI_RXDR);
+ *rx_buf8 = readb(base + STM32_SPI_RXDR);
priv->rx_len -= sizeof(u8);
}
- sr = readl(priv->base + STM32_SPI_SR);
+ sr = readl(base + STM32_SPI_SR);
rxplvl = (sr & SPI_SR_RXPLVL) >> SPI_SR_RXPLVL_SHIFT;
}
log_debug("%d bytes left\n", priv->rx_len);
}
-static int stm32_spi_enable(struct stm32_spi_priv *priv)
+static int stm32_spi_enable(void __iomem *base)
{
log_debug("\n");
/* Enable the SPI hardware */
- setbits_le32(priv->base + STM32_SPI_CR1, SPI_CR1_SPE);
+ setbits_le32(base + STM32_SPI_CR1, SPI_CR1_SPE);
return 0;
}
-static int stm32_spi_disable(struct stm32_spi_priv *priv)
+static int stm32_spi_disable(void __iomem *base)
{
log_debug("\n");
/* Disable the SPI hardware */
- clrbits_le32(priv->base + STM32_SPI_CR1, SPI_CR1_SPE);
+ clrbits_le32(base + STM32_SPI_CR1, SPI_CR1_SPE);
return 0;
}
static int stm32_spi_claim_bus(struct udevice *slave)
{
struct udevice *bus = dev_get_parent(slave);
- struct stm32_spi_priv *priv = dev_get_priv(bus);
+ struct stm32_spi_plat *plat = dev_get_plat(bus);
+ void __iomem *base = plat->base;
dev_dbg(slave, "\n");
/* Enable the SPI hardware */
- return stm32_spi_enable(priv);
+ return stm32_spi_enable(base);
}
static int stm32_spi_release_bus(struct udevice *slave)
{
struct udevice *bus = dev_get_parent(slave);
- struct stm32_spi_priv *priv = dev_get_priv(bus);
+ struct stm32_spi_plat *plat = dev_get_plat(bus);
+ void __iomem *base = plat->base;
dev_dbg(slave, "\n");
/* Disable the SPI hardware */
- return stm32_spi_disable(priv);
+ return stm32_spi_disable(base);
}
static void stm32_spi_stopxfer(struct udevice *dev)
{
- struct stm32_spi_priv *priv = dev_get_priv(dev);
+ struct stm32_spi_plat *plat = dev_get_plat(dev);
+ void __iomem *base = plat->base;
u32 cr1, sr;
int ret;
dev_dbg(dev, "\n");
- cr1 = readl(priv->base + STM32_SPI_CR1);
+ cr1 = readl(base + STM32_SPI_CR1);
if (!(cr1 & SPI_CR1_SPE))
return;
/* Wait on EOT or suspend the flow */
- ret = readl_poll_timeout(priv->base + STM32_SPI_SR, sr,
+ ret = readl_poll_timeout(base + STM32_SPI_SR, sr,
!(sr & SPI_SR_EOT), 100000);
if (ret < 0) {
if (cr1 & SPI_CR1_CSTART) {
- writel(cr1 | SPI_CR1_CSUSP, priv->base + STM32_SPI_CR1);
- if (readl_poll_timeout(priv->base + STM32_SPI_SR,
+ writel(cr1 | SPI_CR1_CSUSP, base + STM32_SPI_CR1);
+ if (readl_poll_timeout(base + STM32_SPI_SR,
sr, !(sr & SPI_SR_SUSP),
100000) < 0)
dev_err(dev, "Suspend request timeout\n");
}
/* clear status flags */
- setbits_le32(priv->base + STM32_SPI_IFCR, SPI_IFCR_ALL);
+ setbits_le32(base + STM32_SPI_IFCR, SPI_IFCR_ALL);
}
static int stm32_spi_set_cs(struct udevice *dev, unsigned int cs, bool enable)
{
+ struct stm32_spi_plat *plat = dev_get_plat(dev);
struct stm32_spi_priv *priv = dev_get_priv(dev);
dev_dbg(dev, "cs=%d enable=%d\n", cs, enable);
if (cs >= MAX_CS_COUNT)
return -ENODEV;
- if (!dm_gpio_is_valid(&priv->cs_gpios[cs]))
+ if (!dm_gpio_is_valid(&plat->cs_gpios[cs]))
return -EINVAL;
if (priv->cs_high)
enable = !enable;
- return dm_gpio_set_value(&priv->cs_gpios[cs], enable ? 1 : 0);
+ return dm_gpio_set_value(&plat->cs_gpios[cs], enable ? 1 : 0);
}
static int stm32_spi_set_mode(struct udevice *bus, uint mode)
{
struct stm32_spi_priv *priv = dev_get_priv(bus);
+ struct stm32_spi_plat *plat = dev_get_plat(bus);
+ void __iomem *base = plat->base;
u32 cfg2_clrb = 0, cfg2_setb = 0;
dev_dbg(bus, "mode=%d\n", mode);
cfg2_clrb |= SPI_CFG2_LSBFRST;
if (cfg2_clrb || cfg2_setb)
- clrsetbits_le32(priv->base + STM32_SPI_CFG2,
+ clrsetbits_le32(base + STM32_SPI_CFG2,
cfg2_clrb, cfg2_setb);
if (mode & SPI_CS_HIGH)
static int stm32_spi_set_fthlv(struct udevice *dev, u32 xfer_len)
{
struct stm32_spi_priv *priv = dev_get_priv(dev);
+ struct stm32_spi_plat *plat = dev_get_plat(dev);
+ void __iomem *base = plat->base;
u32 fthlv, half_fifo;
/* data packet should not exceed 1/2 of fifo space */
if (!fthlv)
fthlv = 1;
- clrsetbits_le32(priv->base + STM32_SPI_CFG1, SPI_CFG1_FTHLV,
+ clrsetbits_le32(base + STM32_SPI_CFG1, SPI_CFG1_FTHLV,
(fthlv - 1) << SPI_CFG1_FTHLV_SHIFT);
return 0;
static int stm32_spi_set_speed(struct udevice *bus, uint hz)
{
struct stm32_spi_priv *priv = dev_get_priv(bus);
+ struct stm32_spi_plat *plat = dev_get_plat(bus);
+ void __iomem *base = plat->base;
u32 mbrdiv;
long div;
if (!mbrdiv)
return -EINVAL;
- clrsetbits_le32(priv->base + STM32_SPI_CFG1, SPI_CFG1_MBR,
+ clrsetbits_le32(base + STM32_SPI_CFG1, SPI_CFG1_MBR,
(mbrdiv - 1) << SPI_CFG1_MBR_SHIFT);
priv->cur_hz = hz;
struct udevice *bus = dev_get_parent(slave);
struct dm_spi_slave_plat *slave_plat;
struct stm32_spi_priv *priv = dev_get_priv(bus);
+ struct stm32_spi_plat *plat = dev_get_plat(bus);
+ void __iomem *base = plat->base;
u32 sr;
u32 ifcr = 0;
u32 xferlen;
xferlen = bitlen / 8;
if (xferlen <= SPI_CR2_TSIZE)
- writel(xferlen, priv->base + STM32_SPI_CR2);
+ writel(xferlen, base + STM32_SPI_CR2);
else
return -EMSGSIZE;
priv->cur_xferlen = xferlen;
/* Disable the SPI hardware to unlock CFG1/CFG2 registers */
- stm32_spi_disable(priv);
+ stm32_spi_disable(base);
- clrsetbits_le32(priv->base + STM32_SPI_CFG2, SPI_CFG2_COMM,
+ clrsetbits_le32(base + STM32_SPI_CFG2, SPI_CFG2_COMM,
mode << SPI_CFG2_COMM_SHIFT);
stm32_spi_set_fthlv(bus, xferlen);
/* Enable the SPI hardware */
- stm32_spi_enable(priv);
+ stm32_spi_enable(base);
}
dev_dbg(bus, "priv->tx_len=%d priv->rx_len=%d\n",
/* Be sure to have data in fifo before starting data transfer */
if (priv->tx_buf)
- stm32_spi_write_txfifo(priv);
+ stm32_spi_write_txfifo(bus);
- setbits_le32(priv->base + STM32_SPI_CR1, SPI_CR1_CSTART);
+ setbits_le32(base + STM32_SPI_CR1, SPI_CR1_CSTART);
while (1) {
- sr = readl(priv->base + STM32_SPI_SR);
+ sr = readl(base + STM32_SPI_SR);
if (sr & SPI_SR_OVR) {
dev_err(bus, "Overrun: RX data lost\n");
dev_warn(bus, "System too slow is limiting data throughput\n");
if (priv->rx_buf && priv->rx_len > 0)
- stm32_spi_read_rxfifo(priv);
+ stm32_spi_read_rxfifo(bus);
ifcr |= SPI_SR_SUSP;
}
if (sr & SPI_SR_TXP)
if (priv->tx_buf && priv->tx_len > 0)
- stm32_spi_write_txfifo(priv);
+ stm32_spi_write_txfifo(bus);
if (sr & SPI_SR_RXP)
if (priv->rx_buf && priv->rx_len > 0)
- stm32_spi_read_rxfifo(priv);
+ stm32_spi_read_rxfifo(bus);
if (sr & SPI_SR_EOT) {
if (priv->rx_buf && priv->rx_len > 0)
- stm32_spi_read_rxfifo(priv);
+ stm32_spi_read_rxfifo(bus);
break;
}
- writel(ifcr, priv->base + STM32_SPI_IFCR);
+ writel(ifcr, base + STM32_SPI_IFCR);
}
/* clear status flags */
- setbits_le32(priv->base + STM32_SPI_IFCR, SPI_IFCR_ALL);
+ setbits_le32(base + STM32_SPI_IFCR, SPI_IFCR_ALL);
stm32_spi_stopxfer(bus);
if (flags & SPI_XFER_END)
static int stm32_spi_get_fifo_size(struct udevice *dev)
{
- struct stm32_spi_priv *priv = dev_get_priv(dev);
+ struct stm32_spi_plat *plat = dev_get_plat(dev);
+ void __iomem *base = plat->base;
u32 count = 0;
- stm32_spi_enable(priv);
+ stm32_spi_enable(base);
- while (readl(priv->base + STM32_SPI_SR) & SPI_SR_TXP)
- writeb(++count, priv->base + STM32_SPI_TXDR);
+ while (readl(base + STM32_SPI_SR) & SPI_SR_TXP)
+ writeb(++count, base + STM32_SPI_TXDR);
- stm32_spi_disable(priv);
+ stm32_spi_disable(base);
dev_dbg(dev, "%d x 8-bit fifo size\n", count);
return count;
}
+static int stm32_spi_of_to_plat(struct udevice *dev)
+{
+ struct stm32_spi_plat *plat = dev_get_plat(dev);
+ int ret;
+
+ plat->base = dev_read_addr_ptr(dev);
+ if (!plat->base) {
+ dev_err(dev, "can't get registers base address\n");
+ return -ENOENT;
+ }
+
+ ret = clk_get_by_index(dev, 0, &plat->clk);
+ if (ret < 0)
+ return ret;
+
+ ret = reset_get_by_index(dev, 0, &plat->rst_ctl);
+ if (ret < 0)
+ goto clk_err;
+
+ ret = gpio_request_list_by_name(dev, "cs-gpios", plat->cs_gpios,
+ ARRAY_SIZE(plat->cs_gpios), 0);
+ if (ret < 0) {
+ dev_err(dev, "Can't get %s cs gpios: %d", dev->name, ret);
+ ret = -ENOENT;
+ goto clk_err;
+ }
+
+ return 0;
+
+clk_err:
+ clk_free(&plat->clk);
+
+ return ret;
+}
+
static int stm32_spi_probe(struct udevice *dev)
{
+ struct stm32_spi_plat *plat = dev_get_plat(dev);
struct stm32_spi_priv *priv = dev_get_priv(dev);
+ void __iomem *base = plat->base;
unsigned long clk_rate;
int ret;
unsigned int i;
- priv->base = dev_remap_addr(dev);
- if (!priv->base)
- return -EINVAL;
-
/* enable clock */
- ret = clk_get_by_index(dev, 0, &priv->clk);
+ ret = clk_enable(&plat->clk);
if (ret < 0)
return ret;
- ret = clk_enable(&priv->clk);
- if (ret < 0)
- return ret;
-
- clk_rate = clk_get_rate(&priv->clk);
+ clk_rate = clk_get_rate(&plat->clk);
if (!clk_rate) {
ret = -EINVAL;
goto clk_err;
priv->bus_clk_rate = clk_rate;
/* perform reset */
- ret = reset_get_by_index(dev, 0, &priv->rst_ctl);
- if (ret < 0)
- goto clk_err;
-
- reset_assert(&priv->rst_ctl);
+ reset_assert(&plat->rst_ctl);
udelay(2);
- reset_deassert(&priv->rst_ctl);
-
- ret = gpio_request_list_by_name(dev, "cs-gpios", priv->cs_gpios,
- ARRAY_SIZE(priv->cs_gpios), 0);
- if (ret < 0) {
- dev_err(dev, "Can't get cs gpios: %d", ret);
- goto reset_err;
- }
+ reset_deassert(&plat->rst_ctl);
priv->fifo_size = stm32_spi_get_fifo_size(dev);
-
priv->cur_mode = SPI_FULL_DUPLEX;
priv->cur_xferlen = 0;
priv->cur_bpw = SPI_DEFAULT_WORDLEN;
- clrsetbits_le32(priv->base + STM32_SPI_CFG1, SPI_CFG1_DSIZE,
+ clrsetbits_le32(base + STM32_SPI_CFG1, SPI_CFG1_DSIZE,
priv->cur_bpw - 1);
- for (i = 0; i < ARRAY_SIZE(priv->cs_gpios); i++) {
- if (!dm_gpio_is_valid(&priv->cs_gpios[i]))
+ for (i = 0; i < ARRAY_SIZE(plat->cs_gpios); i++) {
+ if (!dm_gpio_is_valid(&plat->cs_gpios[i]))
continue;
- dm_gpio_set_dir_flags(&priv->cs_gpios[i],
+ dm_gpio_set_dir_flags(&plat->cs_gpios[i],
GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE);
}
/* Ensure I2SMOD bit is kept cleared */
- clrbits_le32(priv->base + STM32_SPI_I2SCFGR, SPI_I2SCFGR_I2SMOD);
+ clrbits_le32(base + STM32_SPI_I2SCFGR, SPI_I2SCFGR_I2SMOD);
/*
* - SS input value high
* - transmitter half duplex direction
* - automatic communication suspend when RX-Fifo is full
*/
- setbits_le32(priv->base + STM32_SPI_CR1,
+ setbits_le32(base + STM32_SPI_CR1,
SPI_CR1_SSI | SPI_CR1_HDDIR | SPI_CR1_MASRX);
/*
* SS input value is determined by the SSI bit
* - keep control of all associated GPIOs
*/
- setbits_le32(priv->base + STM32_SPI_CFG2,
+ setbits_le32(base + STM32_SPI_CFG2,
SPI_CFG2_MASTER | SPI_CFG2_SSM | SPI_CFG2_AFCNTR);
return 0;
-reset_err:
- reset_free(&priv->rst_ctl);
-
clk_err:
- clk_disable(&priv->clk);
- clk_free(&priv->clk);
+ clk_disable(&plat->clk);
+ clk_free(&plat->clk);
return ret;
};
static int stm32_spi_remove(struct udevice *dev)
{
- struct stm32_spi_priv *priv = dev_get_priv(dev);
+ struct stm32_spi_plat *plat = dev_get_plat(dev);
+ void __iomem *base = plat->base;
int ret;
stm32_spi_stopxfer(dev);
- stm32_spi_disable(priv);
+ stm32_spi_disable(base);
- ret = reset_assert(&priv->rst_ctl);
+ ret = reset_assert(&plat->rst_ctl);
if (ret < 0)
return ret;
- reset_free(&priv->rst_ctl);
+ reset_free(&plat->rst_ctl);
- ret = clk_disable(&priv->clk);
+ ret = clk_disable(&plat->clk);
if (ret < 0)
return ret;
- clk_free(&priv->clk);
+ clk_free(&plat->clk);
return ret;
};
.id = UCLASS_SPI,
.of_match = stm32_spi_ids,
.ops = &stm32_spi_ops,
- .priv_auto = sizeof(struct stm32_spi_priv),
+ .of_to_plat = stm32_spi_of_to_plat,
+ .plat_auto = sizeof(struct stm32_spi_plat),
+ .priv_auto = sizeof(struct stm32_spi_priv),
.probe = stm32_spi_probe,
.remove = stm32_spi_remove,
};