From: Scott Wood Date: Wed, 1 Apr 2009 20:02:13 +0000 (-0500) Subject: Remove legacy NAND and disk on chip code. X-Git-Tag: v2025.01-rc5-pxa1908~21063^2~1 X-Git-Url: http://git.dujemihanovic.xyz/img/sics.gif?a=commitdiff_plain;h=be33b046b549ad88c204c209508cd7657232ffbd;p=u-boot.git Remove legacy NAND and disk on chip code. Legacy NAND had been scheduled for removal. Any boards that use this were already not building in the previous release due to an #error. The disk on chip code in common/cmd_doc.c relies on legacy NAND, and it has also been removed. There is newer disk on chip code in drivers/mtd/nand; someone with access to hardware and sufficient time and motivation can try to get that working, but for now disk on chip is not supported. Signed-off-by: Scott Wood --- diff --git a/Makefile b/Makefile index 090e64522b..7abca87c86 100644 --- a/Makefile +++ b/Makefile @@ -246,7 +246,6 @@ LIBS += drivers/misc/libmisc.a LIBS += drivers/mmc/libmmc.a LIBS += drivers/mtd/libmtd.a LIBS += drivers/mtd/nand/libnand.a -LIBS += drivers/mtd/nand_legacy/libnand_legacy.a LIBS += drivers/mtd/onenand/libonenand.a LIBS += drivers/mtd/ubi/libubi.a LIBS += drivers/mtd/spi/libspi_flash.a @@ -428,7 +427,6 @@ TAG_SUBDIRS += drivers/misc TAG_SUBDIRS += drivers/mmc TAG_SUBDIRS += drivers/mtd TAG_SUBDIRS += drivers/mtd/nand -TAG_SUBDIRS += drivers/mtd/nand_legacy TAG_SUBDIRS += drivers/mtd/onenand TAG_SUBDIRS += drivers/mtd/spi TAG_SUBDIRS += drivers/net diff --git a/README b/README index ca415d38b1..83752f665f 100644 --- a/README +++ b/README @@ -603,7 +603,6 @@ The following options need to be configured: CONFIG_CMD_DATE * support for RTC, date/time... CONFIG_CMD_DHCP * DHCP support CONFIG_CMD_DIAG * Diagnostics - CONFIG_CMD_DOC * Disk-On-Chip Support CONFIG_CMD_DS4510 * ds4510 I2C gpio commands CONFIG_CMD_DS4510_INFO * ds4510 I2C info command CONFIG_CMD_DS4510_MEM * ds4510 I2C eeprom/sram commansd diff --git a/common/Makefile b/common/Makefile index c8a997b0a4..dd6636b43f 100644 --- a/common/Makefile +++ b/common/Makefile @@ -83,7 +83,6 @@ ifdef CONFIG_POST COBJS-$(CONFIG_CMD_DIAG) += cmd_diag.o endif COBJS-$(CONFIG_CMD_DISPLAY) += cmd_display.o -COBJS-$(CONFIG_CMD_DOC) += cmd_doc.o COBJS-$(CONFIG_CMD_DTT) += cmd_dtt.o COBJS-$(CONFIG_ENV_IS_IN_EEPROM) += cmd_eeprom.o COBJS-$(CONFIG_CMD_EEPROM) += cmd_eeprom.o @@ -150,7 +149,6 @@ COBJS-$(CONFIG_VFD) += cmd_vfd.o # others COBJS-$(CONFIG_DDR_SPD) += ddr_spd.o -COBJS-$(CONFIG_CMD_DOC) += docecc.o COBJS-$(CONFIG_HWCONFIG) += hwconfig.o COBJS-$(CONFIG_CONSOLE_MUX) += iomux.o COBJS-y += flash.o diff --git a/common/cmd_doc.c b/common/cmd_doc.c deleted file mode 100644 index 5cc90f064d..0000000000 --- a/common/cmd_doc.c +++ /dev/null @@ -1,1644 +0,0 @@ -/* - * Driver for Disk-On-Chip 2000 and Millennium - * (c) 1999 Machine Vision Holdings, Inc. - * (c) 1999, 2000 David Woodhouse - * - * $Id: doc2000.c,v 1.46 2001/10/02 15:05:13 dwmw2 Exp $ - */ - -#include -#include -#include -#include -#include -#include -#include - -#error This code is broken and will be removed outright in the next release. -#error If you need diskonchip support, please update the Linux driver in -#error drivers/mtd/nand/diskonchip.c to work with u-boot. - -/* - * ! BROKEN ! - * - * TODO: must be implemented and tested by someone with HW - */ -#if 0 -#ifdef CONFIG_SYS_DOC_SUPPORT_2000 -#define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k) -#else -#define DoC_is_2000(doc) (0) -#endif - -#ifdef CONFIG_SYS_DOC_SUPPORT_MILLENNIUM -#define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil) -#else -#define DoC_is_Millennium(doc) (0) -#endif - -/* CONFIG_SYS_DOC_PASSIVE_PROBE: - In order to ensure that the BIOS checksum is correct at boot time, and - hence that the onboard BIOS extension gets executed, the DiskOnChip - goes into reset mode when it is read sequentially: all registers - return 0xff until the chip is woken up again by writing to the - DOCControl register. - - Unfortunately, this means that the probe for the DiskOnChip is unsafe, - because one of the first things it does is write to where it thinks - the DOCControl register should be - which may well be shared memory - for another device. I've had machines which lock up when this is - attempted. Hence the possibility to do a passive probe, which will fail - to detect a chip in reset mode, but is at least guaranteed not to lock - the machine. - - If you have this problem, uncomment the following line: -#define CONFIG_SYS_DOC_PASSIVE_PROBE -*/ - -#undef DOC_DEBUG -#undef ECC_DEBUG -#undef PSYCHO_DEBUG -#undef NFTL_DEBUG - -static struct DiskOnChip doc_dev_desc[CONFIG_SYS_MAX_DOC_DEVICE]; - -/* Current DOC Device */ -static int curr_device = -1; - -/* Supported NAND flash devices */ -static struct nand_flash_dev nand_flash_ids[] = { - {"Toshiba TC5816BDC", NAND_MFR_TOSHIBA, 0x64, 21, 1, 2, 0x1000, 0}, - {"Toshiba TC5832DC", NAND_MFR_TOSHIBA, 0x6b, 22, 0, 2, 0x2000, 0}, - {"Toshiba TH58V128DC", NAND_MFR_TOSHIBA, 0x73, 24, 0, 2, 0x4000, 0}, - {"Toshiba TC58256FT/DC", NAND_MFR_TOSHIBA, 0x75, 25, 0, 2, 0x4000, 0}, - {"Toshiba TH58512FT", NAND_MFR_TOSHIBA, 0x76, 26, 0, 3, 0x4000, 0}, - {"Toshiba TC58V32DC", NAND_MFR_TOSHIBA, 0xe5, 22, 0, 2, 0x2000, 0}, - {"Toshiba TC58V64AFT/DC", NAND_MFR_TOSHIBA, 0xe6, 23, 0, 2, 0x2000, 0}, - {"Toshiba TC58V16BDC", NAND_MFR_TOSHIBA, 0xea, 21, 1, 2, 0x1000, 0}, - {"Toshiba TH58100FT", NAND_MFR_TOSHIBA, 0x79, 27, 0, 3, 0x4000, 0}, - {"Samsung KM29N16000", NAND_MFR_SAMSUNG, 0x64, 21, 1, 2, 0x1000, 0}, - {"Samsung unknown 4Mb", NAND_MFR_SAMSUNG, 0x6b, 22, 0, 2, 0x2000, 0}, - {"Samsung KM29U128T", NAND_MFR_SAMSUNG, 0x73, 24, 0, 2, 0x4000, 0}, - {"Samsung KM29U256T", NAND_MFR_SAMSUNG, 0x75, 25, 0, 2, 0x4000, 0}, - {"Samsung unknown 64Mb", NAND_MFR_SAMSUNG, 0x76, 26, 0, 3, 0x4000, 0}, - {"Samsung KM29W32000", NAND_MFR_SAMSUNG, 0xe3, 22, 0, 2, 0x2000, 0}, - {"Samsung unknown 4Mb", NAND_MFR_SAMSUNG, 0xe5, 22, 0, 2, 0x2000, 0}, - {"Samsung KM29U64000", NAND_MFR_SAMSUNG, 0xe6, 23, 0, 2, 0x2000, 0}, - {"Samsung KM29W16000", NAND_MFR_SAMSUNG, 0xea, 21, 1, 2, 0x1000, 0}, - {"Samsung K9F5616Q0C", NAND_MFR_SAMSUNG, 0x45, 25, 0, 2, 0x4000, 1}, - {"Samsung K9K1216Q0C", NAND_MFR_SAMSUNG, 0x46, 26, 0, 3, 0x4000, 1}, - {"Samsung K9F1G08U0M", NAND_MFR_SAMSUNG, 0xf1, 27, 0, 2, 0, 0}, - {NULL,} -}; - -/* ------------------------------------------------------------------------- */ - -int do_doc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) -{ - int rcode = 0; - - switch (argc) { - case 0: - case 1: - cmd_usage(cmdtp); - return 1; - case 2: - if (strcmp(argv[1],"info") == 0) { - int i; - - putc ('\n'); - - for (i=0; i= CONFIG_SYS_MAX_DOC_DEVICE)) { - puts ("\nno devices available\n"); - return 1; - } - printf ("\nDevice %d: ", curr_device); - doc_print(&doc_dev_desc[curr_device]); - return 0; - } - cmd_usage(cmdtp); - return 1; - case 3: - if (strcmp(argv[1],"device") == 0) { - int dev = (int)simple_strtoul(argv[2], NULL, 10); - - printf ("\nDevice %d: ", dev); - if (dev >= CONFIG_SYS_MAX_DOC_DEVICE) { - puts ("unknown device\n"); - return 1; - } - doc_print(&doc_dev_desc[dev]); - /*doc_print (dev);*/ - - if (doc_dev_desc[dev].ChipID == DOC_ChipID_UNKNOWN) { - return 1; - } - - curr_device = dev; - - puts ("... is now current device\n"); - - return 0; - } - - cmd_usage(cmdtp); - return 1; - default: - /* at least 4 args */ - - if (strcmp(argv[1],"read") == 0 || strcmp(argv[1],"write") == 0) { - ulong addr = simple_strtoul(argv[2], NULL, 16); - ulong off = simple_strtoul(argv[3], NULL, 16); - ulong size = simple_strtoul(argv[4], NULL, 16); - int cmd = (strcmp(argv[1],"read") == 0); - int ret, total; - - printf ("\nDOC %s: device %d offset %ld, size %ld ... ", - cmd ? "read" : "write", curr_device, off, size); - - ret = doc_rw(doc_dev_desc + curr_device, cmd, off, size, - (size_t *)&total, (u_char*)addr); - - printf ("%d bytes %s: %s\n", total, cmd ? "read" : "write", - ret ? "ERROR" : "OK"); - - return ret; - } else if (strcmp(argv[1],"erase") == 0) { - ulong off = simple_strtoul(argv[2], NULL, 16); - ulong size = simple_strtoul(argv[3], NULL, 16); - int ret; - - printf ("\nDOC erase: device %d offset %ld, size %ld ... ", - curr_device, off, size); - - ret = doc_erase (doc_dev_desc + curr_device, off, size); - - printf("%s\n", ret ? "ERROR" : "OK"); - - return ret; - } else { - cmd_usage(cmdtp); - rcode = 1; - } - - return rcode; - } -} -U_BOOT_CMD( - doc, 5, 1, do_doc, - "Disk-On-Chip sub-system", - "info - show available DOC devices\n" - "doc device [dev] - show or set current device\n" - "doc read addr off size\n" - "doc write addr off size - read/write `size'" - " bytes starting at offset `off'\n" - " to/from memory address `addr'\n" - "doc erase off size - erase `size' bytes of DOC from offset `off'" -); - -int do_docboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) -{ - char *boot_device = NULL; - char *ep; - int dev; - ulong cnt; - ulong addr; - ulong offset = 0; - image_header_t *hdr; - int rcode = 0; -#if defined(CONFIG_FIT) - const void *fit_hdr = NULL; -#endif - - show_boot_progress (34); - switch (argc) { - case 1: - addr = CONFIG_SYS_LOAD_ADDR; - boot_device = getenv ("bootdevice"); - break; - case 2: - addr = simple_strtoul(argv[1], NULL, 16); - boot_device = getenv ("bootdevice"); - break; - case 3: - addr = simple_strtoul(argv[1], NULL, 16); - boot_device = argv[2]; - break; - case 4: - addr = simple_strtoul(argv[1], NULL, 16); - boot_device = argv[2]; - offset = simple_strtoul(argv[3], NULL, 16); - break; - default: - cmd_usage(cmdtp); - show_boot_progress (-35); - return 1; - } - - show_boot_progress (35); - if (!boot_device) { - puts ("\n** No boot device **\n"); - show_boot_progress (-36); - return 1; - } - show_boot_progress (36); - - dev = simple_strtoul(boot_device, &ep, 16); - - if ((dev >= CONFIG_SYS_MAX_DOC_DEVICE) || - (doc_dev_desc[dev].ChipID == DOC_ChipID_UNKNOWN)) { - printf ("\n** Device %d not available\n", dev); - show_boot_progress (-37); - return 1; - } - show_boot_progress (37); - - printf ("\nLoading from device %d: %s at 0x%lX (offset 0x%lX)\n", - dev, doc_dev_desc[dev].name, doc_dev_desc[dev].physadr, - offset); - - if (doc_rw (doc_dev_desc + dev, 1, offset, - SECTORSIZE, NULL, (u_char *)addr)) { - printf ("** Read error on %d\n", dev); - show_boot_progress (-38); - return 1; - } - show_boot_progress (38); - - switch (genimg_get_format ((void *)addr)) { - case IMAGE_FORMAT_LEGACY: - hdr = (image_header_t *)addr; - - image_print_contents (hdr); - - cnt = image_get_image_size (hdr); - break; -#if defined(CONFIG_FIT) - case IMAGE_FORMAT_FIT: - fit_hdr = (const void *)addr; - puts ("Fit image detected...\n"); - - cnt = fit_get_size (fit_hdr); - break; -#endif - default: - show_boot_progress (-39); - puts ("** Unknown image type\n"); - return 1; - } - show_boot_progress (39); - - cnt -= SECTORSIZE; - if (doc_rw (doc_dev_desc + dev, 1, offset + SECTORSIZE, cnt, - NULL, (u_char *)(addr+SECTORSIZE))) { - printf ("** Read error on %d\n", dev); - show_boot_progress (-40); - return 1; - } - show_boot_progress (40); - -#if defined(CONFIG_FIT) - /* This cannot be done earlier, we need complete FIT image in RAM first */ - if (genimg_get_format ((void *)addr) == IMAGE_FORMAT_FIT) { - if (!fit_check_format (fit_hdr)) { - show_boot_progress (-130); - puts ("** Bad FIT image format\n"); - return 1; - } - show_boot_progress (131); - fit_print_contents (fit_hdr); - } -#endif - - /* Loading ok, update default load address */ - - load_addr = addr; - - /* Check if we should attempt an auto-start */ - if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) { - char *local_args[2]; - extern int do_bootm (cmd_tbl_t *, int, int, char *[]); - - local_args[0] = argv[0]; - local_args[1] = NULL; - - printf ("Automatic boot of image at addr 0x%08lX ...\n", addr); - - do_bootm (cmdtp, 0, 1, local_args); - rcode = 1; - } - return rcode; -} - -U_BOOT_CMD( - docboot, 4, 1, do_docboot, - "boot from DOC device", - "loadAddr dev" -); - -int doc_rw (struct DiskOnChip* this, int cmd, - loff_t from, size_t len, - size_t * retlen, u_char * buf) -{ - int noecc, ret = 0, n, total = 0; - char eccbuf[6]; - - while(len) { - /* The ECC will not be calculated correctly if - less than 512 is written or read */ - noecc = (from != (from | 0x1ff) + 1) || (len < 0x200); - - if (cmd) - ret = doc_read_ecc(this, from, len, - (size_t *)&n, (u_char*)buf, - noecc ? (uchar *)NULL : (uchar *)eccbuf); - else - ret = doc_write_ecc(this, from, len, - (size_t *)&n, (u_char*)buf, - noecc ? (uchar *)NULL : (uchar *)eccbuf); - - if (ret) - break; - - from += n; - buf += n; - total += n; - len -= n; - } - - if (retlen) - *retlen = total; - - return ret; -} - -void doc_print(struct DiskOnChip *this) { - printf("%s at 0x%lX,\n" - "\t %d chip%s %s, size %d MB, \n" - "\t total size %ld MB, sector size %ld kB\n", - this->name, this->physadr, this->numchips, - this->numchips>1 ? "s" : "", this->chips_name, - 1 << (this->chipshift - 20), - this->totlen >> 20, this->erasesize >> 10); - - if (this->nftl_found) { - struct NFTLrecord *nftl = &this->nftl; - unsigned long bin_size, flash_size; - - bin_size = nftl->nb_boot_blocks * this->erasesize; - flash_size = (nftl->nb_blocks - nftl->nb_boot_blocks) * this->erasesize; - - printf("\t NFTL boot record:\n" - "\t Binary partition: size %ld%s\n" - "\t Flash disk partition: size %ld%s, offset 0x%lx\n", - bin_size > (1 << 20) ? bin_size >> 20 : bin_size >> 10, - bin_size > (1 << 20) ? "MB" : "kB", - flash_size > (1 << 20) ? flash_size >> 20 : flash_size >> 10, - flash_size > (1 << 20) ? "MB" : "kB", bin_size); - } else { - puts ("\t No NFTL boot record found.\n"); - } -} - -/* ------------------------------------------------------------------------- */ - -/* This function is needed to avoid calls of the __ashrdi3 function. */ -static int shr(int val, int shift) { - return val >> shift; -} - -/* Perform the required delay cycles by reading from the appropriate register */ -static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles) -{ - volatile char dummy; - int i; - - for (i = 0; i < cycles; i++) { - if (DoC_is_Millennium(doc)) - dummy = ReadDOC(doc->virtadr, NOP); - else - dummy = ReadDOC(doc->virtadr, DOCStatus); - } - -} - -/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ -static int _DoC_WaitReady(struct DiskOnChip *doc) -{ - unsigned long docptr = doc->virtadr; - unsigned long start = get_timer(0); - -#ifdef PSYCHO_DEBUG - puts ("_DoC_WaitReady called for out-of-line wait\n"); -#endif - - /* Out-of-line routine to wait for chip response */ - while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { -#ifdef CONFIG_SYS_DOC_SHORT_TIMEOUT - /* it seems that after a certain time the DoC deasserts - * the CDSN_CTRL_FR_B although it is not ready... - * using a short timout solve this (timer increments every ms) */ - if (get_timer(start) > 10) { - return DOC_ETIMEOUT; - } -#else - if (get_timer(start) > 10 * 1000) { - puts ("_DoC_WaitReady timed out.\n"); - return DOC_ETIMEOUT; - } -#endif - udelay(1); - } - - return 0; -} - -static int DoC_WaitReady(struct DiskOnChip *doc) -{ - unsigned long docptr = doc->virtadr; - /* This is inline, to optimise the common case, where it's ready instantly */ - int ret = 0; - - /* 4 read form NOP register should be issued in prior to the read from CDSNControl - see Software Requirement 11.4 item 2. */ - DoC_Delay(doc, 4); - - if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) - /* Call the out-of-line routine to wait */ - ret = _DoC_WaitReady(doc); - - /* issue 2 read from NOP register after reading from CDSNControl register - see Software Requirement 11.4 item 2. */ - DoC_Delay(doc, 2); - - return ret; -} - -/* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to - bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is - required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ - -static inline int DoC_Command(struct DiskOnChip *doc, unsigned char command, - unsigned char xtraflags) -{ - unsigned long docptr = doc->virtadr; - - if (DoC_is_2000(doc)) - xtraflags |= CDSN_CTRL_FLASH_IO; - - /* Assert the CLE (Command Latch Enable) line to the flash chip */ - WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl); - DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ - - if (DoC_is_Millennium(doc)) - WriteDOC(command, docptr, CDSNSlowIO); - - /* Send the command */ - WriteDOC_(command, docptr, doc->ioreg); - - /* Lower the CLE line */ - WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl); - DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ - - /* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */ - return DoC_WaitReady(doc); -} - -/* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to - bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is - required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ - -static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs, - unsigned char xtraflags1, unsigned char xtraflags2) -{ - unsigned long docptr; - int i; - - docptr = doc->virtadr; - - if (DoC_is_2000(doc)) - xtraflags1 |= CDSN_CTRL_FLASH_IO; - - /* Assert the ALE (Address Latch Enable) line to the flash chip */ - WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl); - - DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ - - /* Send the address */ - /* Devices with 256-byte page are addressed as: - Column (bits 0-7), Page (bits 8-15, 16-23, 24-31) - * there is no device on the market with page256 - and more than 24 bits. - Devices with 512-byte page are addressed as: - Column (bits 0-7), Page (bits 9-16, 17-24, 25-31) - * 25-31 is sent only if the chip support it. - * bit 8 changes the read command to be sent - (NAND_CMD_READ0 or NAND_CMD_READ1). - */ - - if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) { - if (DoC_is_Millennium(doc)) - WriteDOC(ofs & 0xff, docptr, CDSNSlowIO); - WriteDOC_(ofs & 0xff, docptr, doc->ioreg); - } - - if (doc->page256) { - ofs = ofs >> 8; - } else { - ofs = ofs >> 9; - } - - if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) { - for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) { - if (DoC_is_Millennium(doc)) - WriteDOC(ofs & 0xff, docptr, CDSNSlowIO); - WriteDOC_(ofs & 0xff, docptr, doc->ioreg); - } - } - - DoC_Delay(doc, 2); /* Needed for some slow flash chips. mf. */ - - /* FIXME: The SlowIO's for millennium could be replaced by - a single WritePipeTerm here. mf. */ - - /* Lower the ALE line */ - WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr, - CDSNControl); - - DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ - - /* Wait for the chip to respond - Software requirement 11.4.1 */ - return DoC_WaitReady(doc); -} - -/* Read a buffer from DoC, taking care of Millennium oddities */ -static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len) -{ - volatile int dummy; - int modulus = 0xffff; - unsigned long docptr; - int i; - - docptr = doc->virtadr; - - if (len <= 0) - return; - - if (DoC_is_Millennium(doc)) { - /* Read the data via the internal pipeline through CDSN IO register, - see Pipelined Read Operations 11.3 */ - dummy = ReadDOC(docptr, ReadPipeInit); - - /* Millennium should use the LastDataRead register - Pipeline Reads */ - len--; - - /* This is needed for correctly ECC calculation */ - modulus = 0xff; - } - - for (i = 0; i < len; i++) - buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus)); - - if (DoC_is_Millennium(doc)) { - buf[i] = ReadDOC(docptr, LastDataRead); - } -} - -/* Write a buffer to DoC, taking care of Millennium oddities */ -static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len) -{ - unsigned long docptr; - int i; - - docptr = doc->virtadr; - - if (len <= 0) - return; - - for (i = 0; i < len; i++) - WriteDOC_(buf[i], docptr, doc->ioreg + i); - - if (DoC_is_Millennium(doc)) { - WriteDOC(0x00, docptr, WritePipeTerm); - } -} - - -/* DoC_SelectChip: Select a given flash chip within the current floor */ - -static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip) -{ - unsigned long docptr = doc->virtadr; - - /* Software requirement 11.4.4 before writing DeviceSelect */ - /* Deassert the CE line to eliminate glitches on the FCE# outputs */ - WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl); - DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ - - /* Select the individual flash chip requested */ - WriteDOC(chip, docptr, CDSNDeviceSelect); - DoC_Delay(doc, 4); - - /* Reassert the CE line */ - WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr, - CDSNControl); - DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ - - /* Wait for it to be ready */ - return DoC_WaitReady(doc); -} - -/* DoC_SelectFloor: Select a given floor (bank of flash chips) */ - -static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor) -{ - unsigned long docptr = doc->virtadr; - - /* Select the floor (bank) of chips required */ - WriteDOC(floor, docptr, FloorSelect); - - /* Wait for the chip to be ready */ - return DoC_WaitReady(doc); -} - -/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */ - -static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip) -{ - int mfr, id, i; - volatile char dummy; - - /* Page in the required floor/chip */ - DoC_SelectFloor(doc, floor); - DoC_SelectChip(doc, chip); - - /* Reset the chip */ - if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) { -#ifdef DOC_DEBUG - printf("DoC_Command (reset) for %d,%d returned true\n", - floor, chip); -#endif - return 0; - } - - - /* Read the NAND chip ID: 1. Send ReadID command */ - if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) { -#ifdef DOC_DEBUG - printf("DoC_Command (ReadID) for %d,%d returned true\n", - floor, chip); -#endif - return 0; - } - - /* Read the NAND chip ID: 2. Send address byte zero */ - DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0); - - /* Read the manufacturer and device id codes from the device */ - - /* CDSN Slow IO register see Software Requirement 11.4 item 5. */ - dummy = ReadDOC(doc->virtadr, CDSNSlowIO); - DoC_Delay(doc, 2); - mfr = ReadDOC_(doc->virtadr, doc->ioreg); - - /* CDSN Slow IO register see Software Requirement 11.4 item 5. */ - dummy = ReadDOC(doc->virtadr, CDSNSlowIO); - DoC_Delay(doc, 2); - id = ReadDOC_(doc->virtadr, doc->ioreg); - - /* No response - return failure */ - if (mfr == 0xff || mfr == 0) - return 0; - - /* Check it's the same as the first chip we identified. - * M-Systems say that any given DiskOnChip device should only - * contain _one_ type of flash part, although that's not a - * hardware restriction. */ - if (doc->mfr) { - if (doc->mfr == mfr && doc->id == id) - return 1; /* This is another the same the first */ - else - printf("Flash chip at floor %d, chip %d is different:\n", - floor, chip); - } - - /* Print and store the manufacturer and ID codes. */ - for (i = 0; nand_flash_ids[i].name != NULL; i++) { - if (mfr == nand_flash_ids[i].manufacture_id && - id == nand_flash_ids[i].model_id) { -#ifdef DOC_DEBUG - printf("Flash chip found: Manufacturer ID: %2.2X, " - "Chip ID: %2.2X (%s)\n", mfr, id, - nand_flash_ids[i].name); -#endif - if (!doc->mfr) { - doc->mfr = mfr; - doc->id = id; - doc->chipshift = - nand_flash_ids[i].chipshift; - doc->page256 = nand_flash_ids[i].page256; - doc->pageadrlen = - nand_flash_ids[i].pageadrlen; - doc->erasesize = - nand_flash_ids[i].erasesize; - doc->chips_name = - nand_flash_ids[i].name; - return 1; - } - return 0; - } - } - - -#ifdef DOC_DEBUG - /* We haven't fully identified the chip. Print as much as we know. */ - printf("Unknown flash chip found: %2.2X %2.2X\n", - id, mfr); -#endif - - return 0; -} - -/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */ - -static void DoC_ScanChips(struct DiskOnChip *this) -{ - int floor, chip; - int numchips[MAX_FLOORS]; - int maxchips = MAX_CHIPS; - int ret = 1; - - this->numchips = 0; - this->mfr = 0; - this->id = 0; - - if (DoC_is_Millennium(this)) - maxchips = MAX_CHIPS_MIL; - - /* For each floor, find the number of valid chips it contains */ - for (floor = 0; floor < MAX_FLOORS; floor++) { - ret = 1; - numchips[floor] = 0; - for (chip = 0; chip < maxchips && ret != 0; chip++) { - - ret = DoC_IdentChip(this, floor, chip); - if (ret) { - numchips[floor]++; - this->numchips++; - } - } - } - - /* If there are none at all that we recognise, bail */ - if (!this->numchips) { - puts ("No flash chips recognised.\n"); - return; - } - - /* Allocate an array to hold the information for each chip */ - this->chips = malloc(sizeof(struct Nand) * this->numchips); - if (!this->chips) { - puts ("No memory for allocating chip info structures\n"); - return; - } - - ret = 0; - - /* Fill out the chip array with {floor, chipno} for each - * detected chip in the device. */ - for (floor = 0; floor < MAX_FLOORS; floor++) { - for (chip = 0; chip < numchips[floor]; chip++) { - this->chips[ret].floor = floor; - this->chips[ret].chip = chip; - this->chips[ret].curadr = 0; - this->chips[ret].curmode = 0x50; - ret++; - } - } - - /* Calculate and print the total size of the device */ - this->totlen = this->numchips * (1 << this->chipshift); - -#ifdef DOC_DEBUG - printf("%d flash chips found. Total DiskOnChip size: %ld MB\n", - this->numchips, this->totlen >> 20); -#endif -} - -/* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the - * various device information of the NFTL partition and Bad Unit Table. Update - * the ReplUnitTable[] table accroding to the Bad Unit Table. ReplUnitTable[] - * is used for management of Erase Unit in other routines in nftl.c and nftlmount.c - */ -static int find_boot_record(struct NFTLrecord *nftl) -{ - struct nftl_uci1 h1; - struct nftl_oob oob; - unsigned int block, boot_record_count = 0; - int retlen; - u8 buf[SECTORSIZE]; - struct NFTLMediaHeader *mh = &nftl->MediaHdr; - unsigned int i; - - nftl->MediaUnit = BLOCK_NIL; - nftl->SpareMediaUnit = BLOCK_NIL; - - /* search for a valid boot record */ - for (block = 0; block < nftl->nb_blocks; block++) { - int ret; - - /* Check for ANAND header first. Then can whinge if it's found but later - checks fail */ - if ((ret = doc_read_ecc(nftl->mtd, block * nftl->EraseSize, SECTORSIZE, - (size_t *)&retlen, buf, NULL))) { - static int warncount = 5; - - if (warncount) { - printf("Block read at 0x%x failed\n", block * nftl->EraseSize); - if (!--warncount) - puts ("Further failures for this block will not be printed\n"); - } - continue; - } - - if (retlen < 6 || memcmp(buf, "ANAND", 6)) { - /* ANAND\0 not found. Continue */ -#ifdef PSYCHO_DEBUG - printf("ANAND header not found at 0x%x\n", block * nftl->EraseSize); -#endif - continue; - } - -#ifdef NFTL_DEBUG - printf("ANAND header found at 0x%x\n", block * nftl->EraseSize); -#endif - - /* To be safer with BIOS, also use erase mark as discriminant */ - if ((ret = doc_read_oob(nftl->mtd, block * nftl->EraseSize + SECTORSIZE + 8, - 8, (size_t *)&retlen, (uchar *)&h1) < 0)) { -#ifdef NFTL_DEBUG - printf("ANAND header found at 0x%x, but OOB data read failed\n", - block * nftl->EraseSize); -#endif - continue; - } - - /* OK, we like it. */ - - if (boot_record_count) { - /* We've already processed one. So we just check if - this one is the same as the first one we found */ - if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) { -#ifdef NFTL_DEBUG - printf("NFTL Media Headers at 0x%x and 0x%x disagree.\n", - nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize); -#endif - /* if (debug) Print both side by side */ - return -1; - } - if (boot_record_count == 1) - nftl->SpareMediaUnit = block; - - boot_record_count++; - continue; - } - - /* This is the first we've seen. Copy the media header structure into place */ - memcpy(mh, buf, sizeof(struct NFTLMediaHeader)); - - /* Do some sanity checks on it */ - if (mh->UnitSizeFactor == 0) { -#ifdef NFTL_DEBUG - puts ("UnitSizeFactor 0x00 detected.\n" - "This violates the spec but we think we know what it means...\n"); -#endif - } else if (mh->UnitSizeFactor != 0xff) { - printf ("Sorry, we don't support UnitSizeFactor " - "of != 1 yet.\n"); - return -1; - } - - nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN); - if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) { - printf ("NFTL Media Header sanity check failed:\n" - "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n", - nftl->nb_boot_blocks, nftl->nb_blocks); - return -1; - } - - nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize; - if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) { - printf ("NFTL Media Header sanity check failed:\n" - "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n", - nftl->numvunits, - nftl->nb_blocks, - nftl->nb_boot_blocks); - return -1; - } - - nftl->nr_sects = nftl->numvunits * (nftl->EraseSize / SECTORSIZE); - - /* If we're not using the last sectors in the device for some reason, - reduce nb_blocks accordingly so we forget they're there */ - nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN); - - /* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */ - for (i = 0; i < nftl->nb_blocks; i++) { - if ((i & (SECTORSIZE - 1)) == 0) { - /* read one sector for every SECTORSIZE of blocks */ - if ((ret = doc_read_ecc(nftl->mtd, block * nftl->EraseSize + - i + SECTORSIZE, SECTORSIZE, - (size_t *)&retlen, buf, (uchar *)&oob)) < 0) { - puts ("Read of bad sector table failed\n"); - return -1; - } - } - /* mark the Bad Erase Unit as RESERVED in ReplUnitTable */ - if (buf[i & (SECTORSIZE - 1)] != 0xff) - nftl->ReplUnitTable[i] = BLOCK_RESERVED; - } - - nftl->MediaUnit = block; - boot_record_count++; - - } /* foreach (block) */ - - return boot_record_count?0:-1; -} - -/* This routine is made available to other mtd code via - * inter_module_register. It must only be accessed through - * inter_module_get which will bump the use count of this module. The - * addresses passed back in mtd are valid as long as the use count of - * this module is non-zero, i.e. between inter_module_get and - * inter_module_put. Keith Owens 29 Oct 2000. - */ -static void DoC2k_init(struct DiskOnChip* this) -{ - struct NFTLrecord *nftl; - - switch (this->ChipID) { - case DOC_ChipID_Doc2k: - this->name = "DiskOnChip 2000"; - this->ioreg = DoC_2k_CDSN_IO; - break; - case DOC_ChipID_DocMil: - this->name = "DiskOnChip Millennium"; - this->ioreg = DoC_Mil_CDSN_IO; - break; - } - -#ifdef DOC_DEBUG - printf("%s found at address 0x%lX\n", this->name, - this->physadr); -#endif - - this->totlen = 0; - this->numchips = 0; - - this->curfloor = -1; - this->curchip = -1; - - /* Ident all the chips present. */ - DoC_ScanChips(this); - if ((!this->numchips) || (!this->chips)) - return; - - nftl = &this->nftl; - - /* Get physical parameters */ - nftl->EraseSize = this->erasesize; - nftl->nb_blocks = this->totlen / this->erasesize; - nftl->mtd = this; - - if (find_boot_record(nftl) != 0) - this->nftl_found = 0; - else - this->nftl_found = 1; - - printf("%s @ 0x%lX, %ld MB\n", this->name, this->physadr, this->totlen >> 20); -} - -int doc_read_ecc(struct DiskOnChip* this, loff_t from, size_t len, - size_t * retlen, u_char * buf, u_char * eccbuf) -{ - unsigned long docptr; - struct Nand *mychip; - unsigned char syndrome[6]; - volatile char dummy; - int i, len256 = 0, ret=0; - - docptr = this->virtadr; - - /* Don't allow read past end of device */ - if (from >= this->totlen) { - puts ("Out of flash\n"); - return DOC_EINVAL; - } - - /* Don't allow a single read to cross a 512-byte block boundary */ - if (from + len > ((from | 0x1ff) + 1)) - len = ((from | 0x1ff) + 1) - from; - - /* The ECC will not be calculated correctly if less than 512 is read */ - if (len != 0x200 && eccbuf) - printf("ECC needs a full sector read (adr: %lx size %lx)\n", - (long) from, (long) len); - -#ifdef PSYCHO_DEBUG - printf("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len); -#endif - - /* Find the chip which is to be used and select it */ - mychip = &this->chips[shr(from, this->chipshift)]; - - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(this, mychip->floor); - DoC_SelectChip(this, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(this, mychip->chip); - } - - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - DoC_Command(this, - (!this->page256 - && (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0, - CDSN_CTRL_WP); - DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP, - CDSN_CTRL_ECC_IO); - - if (eccbuf) { - /* Prime the ECC engine */ - WriteDOC(DOC_ECC_RESET, docptr, ECCConf); - WriteDOC(DOC_ECC_EN, docptr, ECCConf); - } else { - /* disable the ECC engine */ - WriteDOC(DOC_ECC_RESET, docptr, ECCConf); - WriteDOC(DOC_ECC_DIS, docptr, ECCConf); - } - - /* treat crossing 256-byte sector for 2M x 8bits devices */ - if (this->page256 && from + len > (from | 0xff) + 1) { - len256 = (from | 0xff) + 1 - from; - DoC_ReadBuf(this, buf, len256); - - DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP); - DoC_Address(this, ADDR_COLUMN_PAGE, from + len256, - CDSN_CTRL_WP, CDSN_CTRL_ECC_IO); - } - - DoC_ReadBuf(this, &buf[len256], len - len256); - - /* Let the caller know we completed it */ - *retlen = len; - - if (eccbuf) { - /* Read the ECC data through the DiskOnChip ECC logic */ - /* Note: this will work even with 2M x 8bit devices as */ - /* they have 8 bytes of OOB per 256 page. mf. */ - DoC_ReadBuf(this, eccbuf, 6); - - /* Flush the pipeline */ - if (DoC_is_Millennium(this)) { - dummy = ReadDOC(docptr, ECCConf); - dummy = ReadDOC(docptr, ECCConf); - i = ReadDOC(docptr, ECCConf); - } else { - dummy = ReadDOC(docptr, 2k_ECCStatus); - dummy = ReadDOC(docptr, 2k_ECCStatus); - i = ReadDOC(docptr, 2k_ECCStatus); - } - - /* Check the ECC Status */ - if (i & 0x80) { - int nb_errors; - /* There was an ECC error */ -#ifdef ECC_DEBUG - printf("DiskOnChip ECC Error: Read at %lx\n", (long)from); -#endif - /* Read the ECC syndrom through the DiskOnChip ECC logic. - These syndrome will be all ZERO when there is no error */ - for (i = 0; i < 6; i++) { - syndrome[i] = - ReadDOC(docptr, ECCSyndrome0 + i); - } - nb_errors = doc_decode_ecc(buf, syndrome); - -#ifdef ECC_DEBUG - printf("Errors corrected: %x\n", nb_errors); -#endif - if (nb_errors < 0) { - /* We return error, but have actually done the read. Not that - this can be told to user-space, via sys_read(), but at least - MTD-aware stuff can know about it by checking *retlen */ - printf("ECC Errors at %lx\n", (long)from); - ret = DOC_EECC; - } - } - -#ifdef PSYCHO_DEBUG - printf("ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", - (long)from, eccbuf[0], eccbuf[1], eccbuf[2], - eccbuf[3], eccbuf[4], eccbuf[5]); -#endif - - /* disable the ECC engine */ - WriteDOC(DOC_ECC_DIS, docptr , ECCConf); - } - - /* according to 11.4.1, we need to wait for the busy line - * drop if we read to the end of the page. */ - if(0 == ((from + *retlen) & 0x1ff)) - { - DoC_WaitReady(this); - } - - return ret; -} - -int doc_write_ecc(struct DiskOnChip* this, loff_t to, size_t len, - size_t * retlen, const u_char * buf, - u_char * eccbuf) -{ - int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */ - unsigned long docptr; - volatile char dummy; - int len256 = 0; - struct Nand *mychip; - - docptr = this->virtadr; - - /* Don't allow write past end of device */ - if (to >= this->totlen) { - puts ("Out of flash\n"); - return DOC_EINVAL; - } - - /* Don't allow a single write to cross a 512-byte block boundary */ - if (to + len > ((to | 0x1ff) + 1)) - len = ((to | 0x1ff) + 1) - to; - - /* The ECC will not be calculated correctly if less than 512 is written */ - if (len != 0x200 && eccbuf) - printf("ECC needs a full sector write (adr: %lx size %lx)\n", - (long) to, (long) len); - - /* printf("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */ - - /* Find the chip which is to be used and select it */ - mychip = &this->chips[shr(to, this->chipshift)]; - - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(this, mychip->floor); - DoC_SelectChip(this, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(this, mychip->chip); - } - - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* Set device to main plane of flash */ - DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP); - DoC_Command(this, - (!this->page256 - && (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0, - CDSN_CTRL_WP); - - DoC_Command(this, NAND_CMD_SEQIN, 0); - DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO); - - if (eccbuf) { - /* Prime the ECC engine */ - WriteDOC(DOC_ECC_RESET, docptr, ECCConf); - WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); - } else { - /* disable the ECC engine */ - WriteDOC(DOC_ECC_RESET, docptr, ECCConf); - WriteDOC(DOC_ECC_DIS, docptr, ECCConf); - } - - /* treat crossing 256-byte sector for 2M x 8bits devices */ - if (this->page256 && to + len > (to | 0xff) + 1) { - len256 = (to | 0xff) + 1 - to; - DoC_WriteBuf(this, buf, len256); - - DoC_Command(this, NAND_CMD_PAGEPROG, 0); - - DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); - /* There's an implicit DoC_WaitReady() in DoC_Command */ - - dummy = ReadDOC(docptr, CDSNSlowIO); - DoC_Delay(this, 2); - - if (ReadDOC_(docptr, this->ioreg) & 1) { - puts ("Error programming flash\n"); - /* Error in programming */ - *retlen = 0; - return DOC_EIO; - } - - DoC_Command(this, NAND_CMD_SEQIN, 0); - DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0, - CDSN_CTRL_ECC_IO); - } - - DoC_WriteBuf(this, &buf[len256], len - len256); - - if (eccbuf) { - WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr, - CDSNControl); - - if (DoC_is_Millennium(this)) { - WriteDOC(0, docptr, NOP); - WriteDOC(0, docptr, NOP); - WriteDOC(0, docptr, NOP); - } else { - WriteDOC_(0, docptr, this->ioreg); - WriteDOC_(0, docptr, this->ioreg); - WriteDOC_(0, docptr, this->ioreg); - } - - /* Read the ECC data through the DiskOnChip ECC logic */ - for (di = 0; di < 6; di++) { - eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di); - } - - /* Reset the ECC engine */ - WriteDOC(DOC_ECC_DIS, docptr, ECCConf); - -#ifdef PSYCHO_DEBUG - printf - ("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", - (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], - eccbuf[4], eccbuf[5]); -#endif - } - - DoC_Command(this, NAND_CMD_PAGEPROG, 0); - - DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); - /* There's an implicit DoC_WaitReady() in DoC_Command */ - - dummy = ReadDOC(docptr, CDSNSlowIO); - DoC_Delay(this, 2); - - if (ReadDOC_(docptr, this->ioreg) & 1) { - puts ("Error programming flash\n"); - /* Error in programming */ - *retlen = 0; - return DOC_EIO; - } - - /* Let the caller know we completed it */ - *retlen = len; - - if (eccbuf) { - unsigned char x[8]; - size_t dummy; - int ret; - - /* Write the ECC data to flash */ - for (di=0; di<6; di++) - x[di] = eccbuf[di]; - - x[6]=0x55; - x[7]=0x55; - - ret = doc_write_oob(this, to, 8, &dummy, x); - return ret; - } - return 0; -} - -int doc_read_oob(struct DiskOnChip* this, loff_t ofs, size_t len, - size_t * retlen, u_char * buf) -{ - int len256 = 0, ret; - unsigned long docptr; - struct Nand *mychip; - - docptr = this->virtadr; - - mychip = &this->chips[shr(ofs, this->chipshift)]; - - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(this, mychip->floor); - DoC_SelectChip(this, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(this, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* update address for 2M x 8bit devices. OOB starts on the second */ - /* page to maintain compatibility with doc_read_ecc. */ - if (this->page256) { - if (!(ofs & 0x8)) - ofs += 0x100; - else - ofs -= 0x8; - } - - DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); - DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0); - - /* treat crossing 8-byte OOB data for 2M x 8bit devices */ - /* Note: datasheet says it should automaticaly wrap to the */ - /* next OOB block, but it didn't work here. mf. */ - if (this->page256 && ofs + len > (ofs | 0x7) + 1) { - len256 = (ofs | 0x7) + 1 - ofs; - DoC_ReadBuf(this, buf, len256); - - DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); - DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), - CDSN_CTRL_WP, 0); - } - - DoC_ReadBuf(this, &buf[len256], len - len256); - - *retlen = len; - /* Reading the full OOB data drops us off of the end of the page, - * causing the flash device to go into busy mode, so we need - * to wait until ready 11.4.1 and Toshiba TC58256FT docs */ - - ret = DoC_WaitReady(this); - - return ret; - -} - -int doc_write_oob(struct DiskOnChip* this, loff_t ofs, size_t len, - size_t * retlen, const u_char * buf) -{ - int len256 = 0; - unsigned long docptr = this->virtadr; - struct Nand *mychip = &this->chips[shr(ofs, this->chipshift)]; - volatile int dummy; - -#ifdef PSYCHO_DEBUG - printf("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n", - (long)ofs, len, buf[0], buf[1], buf[2], buf[3], - buf[8], buf[9], buf[14],buf[15]); -#endif - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(this, mychip->floor); - DoC_SelectChip(this, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(this, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* disable the ECC engine */ - WriteDOC (DOC_ECC_RESET, docptr, ECCConf); - WriteDOC (DOC_ECC_DIS, docptr, ECCConf); - - /* Reset the chip, see Software Requirement 11.4 item 1. */ - DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP); - - /* issue the Read2 command to set the pointer to the Spare Data Area. */ - DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); - - /* update address for 2M x 8bit devices. OOB starts on the second */ - /* page to maintain compatibility with doc_read_ecc. */ - if (this->page256) { - if (!(ofs & 0x8)) - ofs += 0x100; - else - ofs -= 0x8; - } - - /* issue the Serial Data In command to initial the Page Program process */ - DoC_Command(this, NAND_CMD_SEQIN, 0); - DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0); - - /* treat crossing 8-byte OOB data for 2M x 8bit devices */ - /* Note: datasheet says it should automaticaly wrap to the */ - /* next OOB block, but it didn't work here. mf. */ - if (this->page256 && ofs + len > (ofs | 0x7) + 1) { - len256 = (ofs | 0x7) + 1 - ofs; - DoC_WriteBuf(this, buf, len256); - - DoC_Command(this, NAND_CMD_PAGEPROG, 0); - DoC_Command(this, NAND_CMD_STATUS, 0); - /* DoC_WaitReady() is implicit in DoC_Command */ - - dummy = ReadDOC(docptr, CDSNSlowIO); - DoC_Delay(this, 2); - - if (ReadDOC_(docptr, this->ioreg) & 1) { - puts ("Error programming oob data\n"); - /* There was an error */ - *retlen = 0; - return DOC_EIO; - } - DoC_Command(this, NAND_CMD_SEQIN, 0); - DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0); - } - - DoC_WriteBuf(this, &buf[len256], len - len256); - - DoC_Command(this, NAND_CMD_PAGEPROG, 0); - DoC_Command(this, NAND_CMD_STATUS, 0); - /* DoC_WaitReady() is implicit in DoC_Command */ - - dummy = ReadDOC(docptr, CDSNSlowIO); - DoC_Delay(this, 2); - - if (ReadDOC_(docptr, this->ioreg) & 1) { - puts ("Error programming oob data\n"); - /* There was an error */ - *retlen = 0; - return DOC_EIO; - } - - *retlen = len; - return 0; - -} - -int doc_erase(struct DiskOnChip* this, loff_t ofs, size_t len) -{ - volatile int dummy; - unsigned long docptr; - struct Nand *mychip; - - if (ofs & (this->erasesize-1) || len & (this->erasesize-1)) { - puts ("Offset and size must be sector aligned\n"); - return DOC_EINVAL; - } - - docptr = this->virtadr; - - /* FIXME: Do this in the background. Use timers or schedule_task() */ - while(len) { - mychip = &this->chips[shr(ofs, this->chipshift)]; - - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(this, mychip->floor); - DoC_SelectChip(this, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(this, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - DoC_Command(this, NAND_CMD_ERASE1, 0); - DoC_Address(this, ADDR_PAGE, ofs, 0, 0); - DoC_Command(this, NAND_CMD_ERASE2, 0); - - DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); - - dummy = ReadDOC(docptr, CDSNSlowIO); - DoC_Delay(this, 2); - - if (ReadDOC_(docptr, this->ioreg) & 1) { - printf("Error erasing at 0x%lx\n", (long)ofs); - /* There was an error */ - goto callback; - } - ofs += this->erasesize; - len -= this->erasesize; - } - - callback: - return 0; -} - -static inline int doccheck(unsigned long potential, unsigned long physadr) -{ - unsigned long window=potential; - unsigned char tmp, ChipID; -#ifndef DOC_PASSIVE_PROBE - unsigned char tmp2; -#endif - - /* Routine copied from the Linux DOC driver */ - -#ifdef CONFIG_SYS_DOCPROBE_55AA - /* Check for 0x55 0xAA signature at beginning of window, - this is no longer true once we remove the IPL (for Millennium */ - if (ReadDOC(window, Sig1) != 0x55 || ReadDOC(window, Sig2) != 0xaa) - return 0; -#endif /* CONFIG_SYS_DOCPROBE_55AA */ - -#ifndef DOC_PASSIVE_PROBE - /* It's not possible to cleanly detect the DiskOnChip - the - * bootup procedure will put the device into reset mode, and - * it's not possible to talk to it without actually writing - * to the DOCControl register. So we store the current contents - * of the DOCControl register's location, in case we later decide - * that it's not a DiskOnChip, and want to put it back how we - * found it. - */ - tmp2 = ReadDOC(window, DOCControl); - - /* Reset the DiskOnChip ASIC */ - WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, - window, DOCControl); - WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, - window, DOCControl); - - /* Enable the DiskOnChip ASIC */ - WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, - window, DOCControl); - WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, - window, DOCControl); -#endif /* !DOC_PASSIVE_PROBE */ - - ChipID = ReadDOC(window, ChipID); - - switch (ChipID) { - case DOC_ChipID_Doc2k: - /* Check the TOGGLE bit in the ECC register */ - tmp = ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT; - if ((ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT) != tmp) - return ChipID; - break; - - case DOC_ChipID_DocMil: - /* Check the TOGGLE bit in the ECC register */ - tmp = ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT; - if ((ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT) != tmp) - return ChipID; - break; - - default: -#ifndef CONFIG_SYS_DOCPROBE_55AA -/* - * if the ID isn't the DoC2000 or DoCMillenium ID, so we can assume - * the DOC is missing - */ -# if 0 - printf("Possible DiskOnChip with unknown ChipID %2.2X found at 0x%lx\n", - ChipID, physadr); -# endif -#endif -#ifndef DOC_PASSIVE_PROBE - /* Put back the contents of the DOCControl register, in case it's not - * actually a DiskOnChip. - */ - WriteDOC(tmp2, window, DOCControl); -#endif - return 0; - } - - puts ("DiskOnChip failed TOGGLE test, dropping.\n"); - -#ifndef DOC_PASSIVE_PROBE - /* Put back the contents of the DOCControl register: it's not a DiskOnChip */ - WriteDOC(tmp2, window, DOCControl); -#endif - return 0; -} - -void doc_probe(unsigned long physadr) -{ - struct DiskOnChip *this = NULL; - int i=0, ChipID; - - if ((ChipID = doccheck(physadr, physadr))) { - - for (i=0; ivirtadr = physadr; - this->physadr = physadr; - this->ChipID = ChipID; - - DoC2k_init(this); - } else { - puts ("No DiskOnChip found\n"); - } -} -#else -void doc_probe(unsigned long physadr) {} -#endif diff --git a/common/cmd_jffs2.c b/common/cmd_jffs2.c index 4db4a83aa8..372ccb2aa3 100644 --- a/common/cmd_jffs2.c +++ b/common/cmd_jffs2.c @@ -96,12 +96,8 @@ #include #if defined(CONFIG_CMD_NAND) -#ifdef CONFIG_NAND_LEGACY -#include -#else /* !CONFIG_NAND_LEGACY */ #include #include -#endif /* !CONFIG_NAND_LEGACY */ #endif #if defined(CONFIG_CMD_ONENAND) @@ -187,12 +183,7 @@ static int mtd_device_validate(u8 type, u8 num, u32 *size) } else if (type == MTD_DEV_TYPE_NAND) { #if defined(CONFIG_JFFS2_NAND) && defined(CONFIG_CMD_NAND) if (num < CONFIG_SYS_MAX_NAND_DEVICE) { -#ifndef CONFIG_NAND_LEGACY *size = nand_info[num].size; -#else - extern struct nand_chip nand_dev_desc[CONFIG_SYS_MAX_NAND_DEVICE]; - *size = nand_dev_desc[num].totlen; -#endif return 0; } @@ -267,17 +258,11 @@ static int mtd_id_parse(const char *id, const char **ret_id, u8 *dev_type, u8 *d static inline u32 get_part_sector_size_nand(struct mtdids *id) { #if defined(CONFIG_JFFS2_NAND) && defined(CONFIG_CMD_NAND) -#if defined(CONFIG_NAND_LEGACY) - extern struct nand_chip nand_dev_desc[CONFIG_SYS_MAX_NAND_DEVICE]; - - return nand_dev_desc[id->num].erasesize; -#else nand_info_t *nand; nand = &nand_info[id->num]; return nand->erasesize; -#endif #else BUG(); return 0; diff --git a/common/cmd_mtdparts.c b/common/cmd_mtdparts.c index 2d1446ecb8..665995d16b 100644 --- a/common/cmd_mtdparts.c +++ b/common/cmd_mtdparts.c @@ -94,12 +94,8 @@ #include #if defined(CONFIG_CMD_NAND) -#ifdef CONFIG_NAND_LEGACY -#include -#else /* !CONFIG_NAND_LEGACY */ #include #include -#endif /* !CONFIG_NAND_LEGACY */ #endif #if defined(CONFIG_CMD_ONENAND) @@ -462,9 +458,6 @@ static int part_del(struct mtd_device *dev, struct part_info *part) } } -#ifdef CONFIG_NAND_LEGACY - jffs2_free_cache(part); -#endif list_del(&part->link); free(part); dev->num_parts--; @@ -491,9 +484,6 @@ static void part_delall(struct list_head *head) list_for_each_safe(entry, n, head) { part_tmp = list_entry(entry, struct part_info, link); -#ifdef CONFIG_NAND_LEGACY - jffs2_free_cache(part_tmp); -#endif list_del(entry); free(part_tmp); } diff --git a/common/cmd_nand.c b/common/cmd_nand.c index 2f70521226..158a55fa70 100644 --- a/common/cmd_nand.c +++ b/common/cmd_nand.c @@ -11,7 +11,6 @@ #include -#ifndef CONFIG_NAND_LEGACY /* * * New NAND support @@ -688,414 +687,3 @@ U_BOOT_CMD(nboot, 4, 1, do_nandboot, "[partition] | [[[loadAddr] dev] offset]" ); #endif - -#else /* CONFIG_NAND_LEGACY */ -/* - * - * Legacy NAND support - to be phased out - * - */ -#include -#include -#include -#include - -#ifdef CONFIG_show_boot_progress -# include -# define show_boot_progress(arg) show_boot_progress(arg) -#else -# define show_boot_progress(arg) -#endif - -#if defined(CONFIG_CMD_NAND) -#include -#if 0 -#include -#include -#endif - -#ifdef CONFIG_OMAP1510 -void archflashwp(void *archdata, int wp); -#endif - -#define ROUND_DOWN(value,boundary) ((value) & (~((boundary)-1))) - -#undef NAND_DEBUG -#undef PSYCHO_DEBUG - -/* ****************** WARNING ********************* - * When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will - * erase (or at least attempt to erase) blocks that are marked - * bad. This can be very handy if you are _sure_ that the block - * is OK, say because you marked a good block bad to test bad - * block handling and you are done testing, or if you have - * accidentally marked blocks bad. - * - * Erasing factory marked bad blocks is a _bad_ idea. If the - * erase succeeds there is no reliable way to find them again, - * and attempting to program or erase bad blocks can affect - * the data in _other_ (good) blocks. - */ -#define ALLOW_ERASE_BAD_DEBUG 0 - -#define CONFIG_MTD_NAND_ECC /* enable ECC */ -#define CONFIG_MTD_NAND_ECC_JFFS2 - -/* bits for nand_legacy_rw() `cmd'; or together as needed */ -#define NANDRW_READ 0x01 -#define NANDRW_WRITE 0x00 -#define NANDRW_JFFS2 0x02 -#define NANDRW_JFFS2_SKIP 0x04 - -/* - * Imports from nand_legacy.c - */ -extern struct nand_chip nand_dev_desc[CONFIG_SYS_MAX_NAND_DEVICE]; -extern int curr_device; -extern int nand_legacy_erase(struct nand_chip *nand, size_t ofs, - size_t len, int clean); -extern int nand_legacy_rw(struct nand_chip *nand, int cmd, size_t start, - size_t len, size_t *retlen, u_char *buf); -extern void nand_print(struct nand_chip *nand); -extern void nand_print_bad(struct nand_chip *nand); -extern int nand_read_oob(struct nand_chip *nand, size_t ofs, - size_t len, size_t *retlen, u_char *buf); -extern int nand_write_oob(struct nand_chip *nand, size_t ofs, - size_t len, size_t *retlen, const u_char *buf); - - -int do_nand (cmd_tbl_t * cmdtp, int flag, int argc, char *argv[]) -{ - int rcode = 0; - - switch (argc) { - case 0: - case 1: - cmd_usage(cmdtp); - return 1; - case 2: - if (strcmp (argv[1], "info") == 0) { - int i; - - putc ('\n'); - - for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; ++i) { - if (nand_dev_desc[i].ChipID == - NAND_ChipID_UNKNOWN) - continue; /* list only known devices */ - printf ("Device %d: ", i); - nand_print (&nand_dev_desc[i]); - } - return 0; - - } else if (strcmp (argv[1], "device") == 0) { - if ((curr_device < 0) - || (curr_device >= CONFIG_SYS_MAX_NAND_DEVICE)) { - puts ("\nno devices available\n"); - return 1; - } - printf ("\nDevice %d: ", curr_device); - nand_print (&nand_dev_desc[curr_device]); - return 0; - - } else if (strcmp (argv[1], "bad") == 0) { - if ((curr_device < 0) - || (curr_device >= CONFIG_SYS_MAX_NAND_DEVICE)) { - puts ("\nno devices available\n"); - return 1; - } - printf ("\nDevice %d bad blocks:\n", curr_device); - nand_print_bad (&nand_dev_desc[curr_device]); - return 0; - - } - cmd_usage(cmdtp); - return 1; - case 3: - if (strcmp (argv[1], "device") == 0) { - int dev = (int) simple_strtoul (argv[2], NULL, 10); - - printf ("\nDevice %d: ", dev); - if (dev >= CONFIG_SYS_MAX_NAND_DEVICE) { - puts ("unknown device\n"); - return 1; - } - nand_print (&nand_dev_desc[dev]); - /*nand_print (dev); */ - - if (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN) { - return 1; - } - - curr_device = dev; - - puts ("... is now current device\n"); - - return 0; - } else if (strcmp (argv[1], "erase") == 0 - && strcmp (argv[2], "clean") == 0) { - struct nand_chip *nand = &nand_dev_desc[curr_device]; - ulong off = 0; - ulong size = nand->totlen; - int ret; - - printf ("\nNAND erase: device %d offset %ld, size %ld ... ", curr_device, off, size); - - ret = nand_legacy_erase (nand, off, size, 1); - - printf ("%s\n", ret ? "ERROR" : "OK"); - - return ret; - } - - cmd_usage(cmdtp); - return 1; - default: - /* at least 4 args */ - - if (strncmp (argv[1], "read", 4) == 0 || - strncmp (argv[1], "write", 5) == 0) { - ulong addr = simple_strtoul (argv[2], NULL, 16); - off_t off = simple_strtoul (argv[3], NULL, 16); - size_t size = simple_strtoul (argv[4], NULL, 16); - int cmd = (strncmp (argv[1], "read", 4) == 0) ? - NANDRW_READ : NANDRW_WRITE; - size_t total; - int ret; - char *cmdtail = strchr (argv[1], '.'); - - if (cmdtail && !strncmp (cmdtail, ".oob", 2)) { - /* read out-of-band data */ - if (cmd & NANDRW_READ) { - ret = nand_read_oob (nand_dev_desc + curr_device, - off, size, &total, - (u_char *) addr); - } else { - ret = nand_write_oob (nand_dev_desc + curr_device, - off, size, &total, - (u_char *) addr); - } - return ret; - } else if (cmdtail && !strncmp (cmdtail, ".jffs2s", 7)) { - cmd |= NANDRW_JFFS2; /* skip bad blocks (on read too) */ - if (cmd & NANDRW_READ) - cmd |= NANDRW_JFFS2_SKIP; /* skip bad blocks (on read too) */ - } else if (cmdtail && !strncmp (cmdtail, ".jffs2", 2)) - cmd |= NANDRW_JFFS2; /* skip bad blocks */ -#ifdef SXNI855T - /* need ".e" same as ".j" for compatibility with older units */ - else if (cmdtail && !strcmp (cmdtail, ".e")) - cmd |= NANDRW_JFFS2; /* skip bad blocks */ -#endif -#ifdef CONFIG_SYS_NAND_SKIP_BAD_DOT_I - /* need ".i" same as ".jffs2s" for compatibility with older units (esd) */ - /* ".i" for image -> read skips bad block (no 0xff) */ - else if (cmdtail && !strcmp (cmdtail, ".i")) { - cmd |= NANDRW_JFFS2; /* skip bad blocks (on read too) */ - if (cmd & NANDRW_READ) - cmd |= NANDRW_JFFS2_SKIP; /* skip bad blocks (on read too) */ - } -#endif /* CONFIG_SYS_NAND_SKIP_BAD_DOT_I */ - else if (cmdtail) { - cmd_usage(cmdtp); - return 1; - } - - printf ("\nNAND %s: device %d offset %ld, size %lu ...\n", - (cmd & NANDRW_READ) ? "read" : "write", - curr_device, off, (ulong)size); - - ret = nand_legacy_rw (nand_dev_desc + curr_device, - cmd, off, size, - &total, (u_char *) addr); - - printf (" %d bytes %s: %s\n", total, - (cmd & NANDRW_READ) ? "read" : "written", - ret ? "ERROR" : "OK"); - - return ret; - } else if (strcmp (argv[1], "erase") == 0 && - (argc == 4 || strcmp ("clean", argv[2]) == 0)) { - int clean = argc == 5; - ulong off = - simple_strtoul (argv[2 + clean], NULL, 16); - ulong size = - simple_strtoul (argv[3 + clean], NULL, 16); - int ret; - - printf ("\nNAND erase: device %d offset %ld, size %ld ...\n", - curr_device, off, size); - - ret = nand_legacy_erase (nand_dev_desc + curr_device, - off, size, clean); - - printf ("%s\n", ret ? "ERROR" : "OK"); - - return ret; - } else { - cmd_usage(cmdtp); - rcode = 1; - } - - return rcode; - } -} - -U_BOOT_CMD( - nand, 5, 1, do_nand, - "legacy NAND sub-system", - "info - show available NAND devices\n" - "nand device [dev] - show or set current device\n" - "nand read[.jffs2[s]] addr off size\n" - "nand write[.jffs2] addr off size - read/write `size' bytes starting\n" - " at offset `off' to/from memory address `addr'\n" - "nand erase [clean] [off size] - erase `size' bytes from\n" - " offset `off' (entire device if not specified)\n" - "nand bad - show bad blocks\n" - "nand read.oob addr off size - read out-of-band data\n" - "nand write.oob addr off size - read out-of-band data" -); - -int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) -{ - char *boot_device = NULL; - char *ep; - int dev; - ulong cnt; - ulong addr; - ulong offset = 0; - image_header_t *hdr; - int rcode = 0; -#if defined(CONFIG_FIT) - const void *fit_hdr = NULL; -#endif - - show_boot_progress (52); - switch (argc) { - case 1: - addr = CONFIG_SYS_LOAD_ADDR; - boot_device = getenv ("bootdevice"); - break; - case 2: - addr = simple_strtoul(argv[1], NULL, 16); - boot_device = getenv ("bootdevice"); - break; - case 3: - addr = simple_strtoul(argv[1], NULL, 16); - boot_device = argv[2]; - break; - case 4: - addr = simple_strtoul(argv[1], NULL, 16); - boot_device = argv[2]; - offset = simple_strtoul(argv[3], NULL, 16); - break; - default: - cmd_usage(cmdtp); - show_boot_progress (-53); - return 1; - } - - show_boot_progress (53); - if (!boot_device) { - puts ("\n** No boot device **\n"); - show_boot_progress (-54); - return 1; - } - show_boot_progress (54); - - dev = simple_strtoul(boot_device, &ep, 16); - - if ((dev >= CONFIG_SYS_MAX_NAND_DEVICE) || - (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN)) { - printf ("\n** Device %d not available\n", dev); - show_boot_progress (-55); - return 1; - } - show_boot_progress (55); - - printf ("\nLoading from device %d: %s at 0x%lx (offset 0x%lx)\n", - dev, nand_dev_desc[dev].name, nand_dev_desc[dev].IO_ADDR, - offset); - - if (nand_legacy_rw (nand_dev_desc + dev, NANDRW_READ, offset, - SECTORSIZE, NULL, (u_char *)addr)) { - printf ("** Read error on %d\n", dev); - show_boot_progress (-56); - return 1; - } - show_boot_progress (56); - - switch (genimg_get_format ((void *)addr)) { - case IMAGE_FORMAT_LEGACY: - hdr = (image_header_t *)addr; - image_print_contents (hdr); - - cnt = image_get_image_size (hdr); - cnt -= SECTORSIZE; - break; -#if defined(CONFIG_FIT) - case IMAGE_FORMAT_FIT: - fit_hdr = (const void *)addr; - puts ("Fit image detected...\n"); - - cnt = fit_get_size (fit_hdr); - break; -#endif - default: - show_boot_progress (-57); - puts ("** Unknown image type\n"); - return 1; - } - show_boot_progress (57); - - if (nand_legacy_rw (nand_dev_desc + dev, NANDRW_READ, - offset + SECTORSIZE, cnt, NULL, - (u_char *)(addr+SECTORSIZE))) { - printf ("** Read error on %d\n", dev); - show_boot_progress (-58); - return 1; - } - show_boot_progress (58); - -#if defined(CONFIG_FIT) - /* This cannot be done earlier, we need complete FIT image in RAM first */ - if (genimg_get_format ((void *)addr) == IMAGE_FORMAT_FIT) { - if (!fit_check_format (fit_hdr)) { - show_boot_progress (-150); - puts ("** Bad FIT image format\n"); - return 1; - } - show_boot_progress (151); - fit_print_contents (fit_hdr); - } -#endif - - /* Loading ok, update default load address */ - - load_addr = addr; - - /* Check if we should attempt an auto-start */ - if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) { - char *local_args[2]; - extern int do_bootm (cmd_tbl_t *, int, int, char *[]); - - local_args[0] = argv[0]; - local_args[1] = NULL; - - printf ("Automatic boot of image at addr 0x%08lx ...\n", addr); - - do_bootm (cmdtp, 0, 1, local_args); - rcode = 1; - } - return rcode; -} - -U_BOOT_CMD( - nboot, 4, 1, do_nandboot, - "boot from NAND device", - "loadAddr dev" -); - -#endif - -#endif /* CONFIG_NAND_LEGACY */ diff --git a/common/docecc.c b/common/docecc.c deleted file mode 100644 index 3412affc79..0000000000 --- a/common/docecc.c +++ /dev/null @@ -1,513 +0,0 @@ -/* - * ECC algorithm for M-systems disk on chip. We use the excellent Reed - * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the - * GNU GPL License. The rest is simply to convert the disk on chip - * syndrom into a standard syndom. - * - * Author: Fabrice Bellard (fabrice.bellard@netgem.com) - * Copyright (C) 2000 Netgem S.A. - * - * $Id: docecc.c,v 1.4 2001/10/02 15:05:13 dwmw2 Exp $ - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - */ - -#include -#include -#include - -#undef ECC_DEBUG -#undef PSYCHO_DEBUG - -#include - -/* need to undef it (from asm/termbits.h) */ -#undef B0 - -#define MM 10 /* Symbol size in bits */ -#define KK (1023-4) /* Number of data symbols per block */ -#define B0 510 /* First root of generator polynomial, alpha form */ -#define PRIM 1 /* power of alpha used to generate roots of generator poly */ -#define NN ((1 << MM) - 1) - -typedef unsigned short dtype; - -/* 1+x^3+x^10 */ -static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 }; - -/* This defines the type used to store an element of the Galois Field - * used by the code. Make sure this is something larger than a char if - * if anything larger than GF(256) is used. - * - * Note: unsigned char will work up to GF(256) but int seems to run - * faster on the Pentium. - */ -typedef int gf; - -/* No legal value in index form represents zero, so - * we need a special value for this purpose - */ -#define A0 (NN) - -/* Compute x % NN, where NN is 2**MM - 1, - * without a slow divide - */ -static inline gf -modnn(int x) -{ - while (x >= NN) { - x -= NN; - x = (x >> MM) + (x & NN); - } - return x; -} - -#define CLEAR(a,n) {\ -int ci;\ -for(ci=(n)-1;ci >=0;ci--)\ -(a)[ci] = 0;\ -} - -#define COPY(a,b,n) {\ -int ci;\ -for(ci=(n)-1;ci >=0;ci--)\ -(a)[ci] = (b)[ci];\ -} - -#define COPYDOWN(a,b,n) {\ -int ci;\ -for(ci=(n)-1;ci >=0;ci--)\ -(a)[ci] = (b)[ci];\ -} - -#define Ldec 1 - -/* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m] - lookup tables: index->polynomial form alpha_to[] contains j=alpha**i; - polynomial form -> index form index_of[j=alpha**i] = i - alpha=2 is the primitive element of GF(2**m) - HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows: - Let @ represent the primitive element commonly called "alpha" that - is the root of the primitive polynomial p(x). Then in GF(2^m), for any - 0 <= i <= 2^m-2, - @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) - where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation - of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for - example the polynomial representation of @^5 would be given by the binary - representation of the integer "alpha_to[5]". - Similarily, index_of[] can be used as follows: - As above, let @ represent the primitive element of GF(2^m) that is - the root of the primitive polynomial p(x). In order to find the power - of @ (alpha) that has the polynomial representation - a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) - we consider the integer "i" whose binary representation with a(0) being LSB - and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry - "index_of[i]". Now, @^index_of[i] is that element whose polynomial - representation is (a(0),a(1),a(2),...,a(m-1)). - NOTE: - The element alpha_to[2^m-1] = 0 always signifying that the - representation of "@^infinity" = 0 is (0,0,0,...,0). - Similarily, the element index_of[0] = A0 always signifying - that the power of alpha which has the polynomial representation - (0,0,...,0) is "infinity". - -*/ - -static void -generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1]) -{ - register int i, mask; - - mask = 1; - Alpha_to[MM] = 0; - for (i = 0; i < MM; i++) { - Alpha_to[i] = mask; - Index_of[Alpha_to[i]] = i; - /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */ - if (Pp[i] != 0) - Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */ - mask <<= 1; /* single left-shift */ - } - Index_of[Alpha_to[MM]] = MM; - /* - * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by - * poly-repr of @^i shifted left one-bit and accounting for any @^MM - * term that may occur when poly-repr of @^i is shifted. - */ - mask >>= 1; - for (i = MM + 1; i < NN; i++) { - if (Alpha_to[i - 1] >= mask) - Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1); - else - Alpha_to[i] = Alpha_to[i - 1] << 1; - Index_of[Alpha_to[i]] = i; - } - Index_of[0] = A0; - Alpha_to[NN] = 0; -} - -/* - * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content - * of the feedback shift register after having processed the data and - * the ECC. - * - * Return number of symbols corrected, or -1 if codeword is illegal - * or uncorrectable. If eras_pos is non-null, the detected error locations - * are written back. NOTE! This array must be at least NN-KK elements long. - * The corrected data are written in eras_val[]. They must be xor with the data - * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] . - * - * First "no_eras" erasures are declared by the calling program. Then, the - * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2). - * If the number of channel errors is not greater than "t_after_eras" the - * transmitted codeword will be recovered. Details of algorithm can be found - * in R. Blahut's "Theory ... of Error-Correcting Codes". - - * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure - * will result. The decoder *could* check for this condition, but it would involve - * extra time on every decoding operation. - * */ -static int -eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1], - gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK], - int no_eras) -{ - int deg_lambda, el, deg_omega; - int i, j, r,k; - gf u,q,tmp,num1,num2,den,discr_r; - gf lambda[NN-KK + 1], s[NN-KK + 1]; /* Err+Eras Locator poly - * and syndrome poly */ - gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1]; - gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK]; - int syn_error, count; - - syn_error = 0; - for(i=0;i 0) { - /* Init lambda to be the erasure locator polynomial */ - lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])]; - for (i = 1; i < no_eras; i++) { - u = modnn(PRIM*eras_pos[i]); - for (j = i+1; j > 0; j--) { - tmp = Index_of[lambda[j - 1]]; - if(tmp != A0) - lambda[j] ^= Alpha_to[modnn(u + tmp)]; - } - } -#ifdef ECC_DEBUG - /* Test code that verifies the erasure locator polynomial just constructed - Needed only for decoder debugging. */ - - /* find roots of the erasure location polynomial */ - for(i=1;i<=no_eras;i++) - reg[i] = Index_of[lambda[i]]; - count = 0; - for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { - q = 1; - for (j = 1; j <= no_eras; j++) - if (reg[j] != A0) { - reg[j] = modnn(reg[j] + j); - q ^= Alpha_to[reg[j]]; - } - if (q != 0) - continue; - /* store root and error location number indices */ - root[count] = i; - loc[count] = k; - count++; - } - if (count != no_eras) { - printf("\n lambda(x) is WRONG\n"); - count = -1; - goto finish; - } -#ifdef PSYCHO_DEBUG - printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n"); - for (i = 0; i < count; i++) - printf("%d ", loc[i]); - printf("\n"); -#endif -#endif - } - for(i=0;i 0; j--){ - if (reg[j] != A0) { - reg[j] = modnn(reg[j] + j); - q ^= Alpha_to[reg[j]]; - } - } - if (q != 0) - continue; - /* store root (index-form) and error location number */ - root[count] = i; - loc[count] = k; - /* If we've already found max possible roots, - * abort the search to save time - */ - if(++count == deg_lambda) - break; - } - if (deg_lambda != count) { - /* - * deg(lambda) unequal to number of roots => uncorrectable - * error detected - */ - count = -1; - goto finish; - } - /* - * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo - * x**(NN-KK)). in index form. Also find deg(omega). - */ - deg_omega = 0; - for (i = 0; i < NN-KK;i++){ - tmp = 0; - j = (deg_lambda < i) ? deg_lambda : i; - for(;j >= 0; j--){ - if ((s[i + 1 - j] != A0) && (lambda[j] != A0)) - tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])]; - } - if(tmp != 0) - deg_omega = i; - omega[i] = Index_of[tmp]; - } - omega[NN-KK] = A0; - - /* - * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = - * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form - */ - for (j = count-1; j >=0; j--) { - num1 = 0; - for (i = deg_omega; i >= 0; i--) { - if (omega[i] != A0) - num1 ^= Alpha_to[modnn(omega[i] + i * root[j])]; - } - num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)]; - den = 0; - - /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ - for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) { - if(lambda[i+1] != A0) - den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])]; - } - if (den == 0) { -#ifdef ECC_DEBUG - printf("\n ERROR: denominator = 0\n"); -#endif - /* Convert to dual- basis */ - count = -1; - goto finish; - } - /* Apply error to data */ - if (num1 != 0) { - eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])]; - } else { - eras_val[j] = 0; - } - } - finish: - for(i=0;i> 2) | ((ecc1[2] & 0x0f) << 6); - bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4); - bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2); - - nb_errors = eras_dec_rs(Alpha_to, Index_of, bb, - error_val, error_pos, 0); - if (nb_errors <= 0) - goto the_end; - - /* correct the errors */ - for(i=0;i= NB_DATA && pos < KK) { - nb_errors = -1; - goto the_end; - } - if (pos < NB_DATA) { - /* extract bit position (MSB first) */ - pos = 10 * (NB_DATA - 1 - pos) - 6; - /* now correct the following 10 bits. At most two bytes - can be modified since pos is even */ - index = (pos >> 3) ^ 1; - bitpos = pos & 7; - if ((index >= 0 && index < SECTOR_SIZE) || - index == (SECTOR_SIZE + 1)) { - val = error_val[i] >> (2 + bitpos); - parity ^= val; - if (index < SECTOR_SIZE) - sector[index] ^= val; - } - index = ((pos >> 3) + 1) ^ 1; - bitpos = (bitpos + 10) & 7; - if (bitpos == 0) - bitpos = 8; - if ((index >= 0 && index < SECTOR_SIZE) || - index == (SECTOR_SIZE + 1)) { - val = error_val[i] << (8 - bitpos); - parity ^= val; - if (index < SECTOR_SIZE) - sector[index] ^= val; - } - } - } - - /* use parity to test extra errors */ - if ((parity & 0xff) != 0) - nb_errors = -1; - - the_end: - free(Alpha_to); - free(Index_of); - return nb_errors; -} diff --git a/common/env_nand.c b/common/env_nand.c index 90a1c45472..8052fb79e5 100644 --- a/common/env_nand.c +++ b/common/env_nand.c @@ -57,10 +57,6 @@ #define CONFIG_ENV_RANGE CONFIG_ENV_SIZE #endif -int nand_legacy_rw (struct nand_chip* nand, int cmd, - size_t start, size_t len, - size_t * retlen, u_char * buf); - /* references to names in env_common.c */ extern uchar default_environment[]; extern int default_environment_size; diff --git a/doc/README.nand b/doc/README.nand index b077d9ab3b..8eedb6c4d7 100644 --- a/doc/README.nand +++ b/doc/README.nand @@ -105,8 +105,7 @@ NOTE: ===== The current NAND implementation is based on what is in recent -Linux kernels. The old legacy implementation has been disabled, -and will be removed soon. +Linux kernels. The old legacy implementation has been removed. If you have board code which used CONFIG_NAND_LEGACY, you'll need to convert to the current NAND interface for it to continue to work. diff --git a/doc/feature-removal-schedule.txt b/doc/feature-removal-schedule.txt index 9bbdc0a832..0238d97d2f 100644 --- a/doc/feature-removal-schedule.txt +++ b/doc/feature-removal-schedule.txt @@ -56,11 +56,3 @@ Why: Over time, a couple of files have sneaked in into the U-Boot for an old and probably incomplete list of such files. Who: Wolfgang Denk and board maintainers - ---------------------------- - -What: Legacy NAND code -When: April 2009 -Why: Legacy NAND code is deprecated. Similar functionality exists in - more recent NAND code ported from the Linux kernel. -Who: Scott Wood diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index 945a954457..89ccec2802 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -26,14 +26,12 @@ include $(TOPDIR)/config.mk LIB := $(obj)libnand.a ifdef CONFIG_CMD_NAND -ifndef CONFIG_NAND_LEGACY COBJS-y += nand.o COBJS-y += nand_base.o COBJS-y += nand_bbt.o COBJS-y += nand_ecc.o COBJS-y += nand_ids.o COBJS-y += nand_util.o -endif COBJS-$(CONFIG_NAND_ATMEL) += atmel_nand.o COBJS-$(CONFIG_DRIVER_NAND_BFIN) += bfin_nand.o diff --git a/drivers/mtd/nand/diskonchip.c b/drivers/mtd/nand/diskonchip.c index e9dc4d1fd5..edf3a099ba 100644 --- a/drivers/mtd/nand/diskonchip.c +++ b/drivers/mtd/nand/diskonchip.c @@ -19,8 +19,6 @@ #include -#if !defined(CONFIG_NAND_LEGACY) - #include #include #include @@ -1779,4 +1777,3 @@ module_exit(cleanup_nanddoc); MODULE_LICENSE("GPL"); MODULE_AUTHOR("David Woodhouse "); MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n"); -#endif diff --git a/drivers/mtd/nand_legacy/Makefile b/drivers/mtd/nand_legacy/Makefile deleted file mode 100644 index a1a9cc92b5..0000000000 --- a/drivers/mtd/nand_legacy/Makefile +++ /dev/null @@ -1,48 +0,0 @@ -# -# (C) Copyright 2006 -# Wolfgang Denk, DENX Software Engineering, wd@denx.de. -# -# See file CREDITS for list of people who contributed to this -# project. -# -# This program is free software; you can redistribute it and/or -# modify it under the terms of the GNU General Public License as -# published by the Free Software Foundation; either version 2 of -# the License, or (at your option) any later version. -# -# This program is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# GNU General Public License for more details. -# -# You should have received a copy of the GNU General Public License -# along with this program; if not, write to the Free Software -# Foundation, Inc., 59 Temple Place, Suite 330, Boston, -# MA 02111-1307 USA -# - -include $(TOPDIR)/config.mk - -LIB := $(obj)libnand_legacy.a - -ifdef CONFIG_CMD_NAND -COBJS-$(CONFIG_NAND_LEGACY) := nand_legacy.o -endif - -COBJS := $(COBJS-y) -SRCS := $(COBJS:.o=.c) -OBJS := $(addprefix $(obj),$(COBJS)) - -all: $(LIB) - -$(LIB): $(obj).depend $(OBJS) - $(AR) $(ARFLAGS) $@ $(OBJS) - -######################################################################### - -# defines $(obj).depend target -include $(SRCTREE)/rules.mk - -sinclude $(obj).depend - -######################################################################### diff --git a/drivers/mtd/nand_legacy/nand_legacy.c b/drivers/mtd/nand_legacy/nand_legacy.c deleted file mode 100644 index d9ae9c78ba..0000000000 --- a/drivers/mtd/nand_legacy/nand_legacy.c +++ /dev/null @@ -1,1610 +0,0 @@ -/* - * (C) 2006 Denx - * Driver for NAND support, Rick Bronson - * borrowed heavily from: - * (c) 1999 Machine Vision Holdings, Inc. - * (c) 1999, 2000 David Woodhouse - * - * Added 16-bit nand support - * (C) 2004 Texas Instruments - */ - -#include -#include -#include -#include -#include -#include -#include -#include - -#error Legacy NAND is deprecated. Please convert to the current NAND interface. -#error This code will be removed outright in the next release. - -#ifdef CONFIG_OMAP1510 -void archflashwp(void *archdata, int wp); -#endif - -#define ROUND_DOWN(value,boundary) ((value) & (~((boundary)-1))) - -#undef PSYCHO_DEBUG -#undef NAND_DEBUG - -/* ****************** WARNING ********************* - * When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will - * erase (or at least attempt to erase) blocks that are marked - * bad. This can be very handy if you are _sure_ that the block - * is OK, say because you marked a good block bad to test bad - * block handling and you are done testing, or if you have - * accidentally marked blocks bad. - * - * Erasing factory marked bad blocks is a _bad_ idea. If the - * erase succeeds there is no reliable way to find them again, - * and attempting to program or erase bad blocks can affect - * the data in _other_ (good) blocks. - */ -#define ALLOW_ERASE_BAD_DEBUG 0 - -#define CONFIG_MTD_NAND_ECC /* enable ECC */ -#define CONFIG_MTD_NAND_ECC_JFFS2 - -/* bits for nand_legacy_rw() `cmd'; or together as needed */ -#define NANDRW_READ 0x01 -#define NANDRW_WRITE 0x00 -#define NANDRW_JFFS2 0x02 -#define NANDRW_JFFS2_SKIP 0x04 - - -/* - * Exported variables etc. - */ - -/* Definition of the out of band configuration structure */ -struct nand_oob_config { - /* position of ECC bytes inside oob */ - int ecc_pos[6]; - /* position of bad blk flag inside oob -1 = inactive */ - int badblock_pos; - /* position of ECC valid flag inside oob -1 = inactive */ - int eccvalid_pos; -} oob_config = { {0}, 0, 0}; - -struct nand_chip nand_dev_desc[CONFIG_SYS_MAX_NAND_DEVICE] = {{0}}; - -int curr_device = -1; /* Current NAND Device */ - - -/* - * Exported functionss - */ -int nand_legacy_erase(struct nand_chip* nand, size_t ofs, - size_t len, int clean); -int nand_legacy_rw(struct nand_chip* nand, int cmd, - size_t start, size_t len, - size_t * retlen, u_char * buf); -void nand_print(struct nand_chip *nand); -void nand_print_bad(struct nand_chip *nand); -int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len, - size_t * retlen, u_char * buf); -int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len, - size_t * retlen, const u_char * buf); - -/* - * Internals - */ -static int NanD_WaitReady(struct nand_chip *nand, int ale_wait); -static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len, - size_t * retlen, u_char *buf, u_char *ecc_code); -static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len, - size_t * retlen, const u_char * buf, - u_char * ecc_code); -#ifdef CONFIG_MTD_NAND_ECC -static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc); -static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code); -#endif - - -/* - * - * Function definitions - * - */ - -/* returns 0 if block containing pos is OK: - * valid erase block and - * not marked bad, or no bad mark position is specified - * returns 1 if marked bad or otherwise invalid - */ -static int check_block (struct nand_chip *nand, unsigned long pos) -{ - size_t retlen; - uint8_t oob_data; - uint16_t oob_data16[6]; - int page0 = pos & (-nand->erasesize); - int page1 = page0 + nand->oobblock; - int badpos = oob_config.badblock_pos; - - if (pos >= nand->totlen) - return 1; - - if (badpos < 0) - return 0; /* no way to check, assume OK */ - - if (nand->bus16) { - if (nand_read_oob(nand, (page0 + 0), 12, &retlen, (uint8_t *)oob_data16) - || (oob_data16[2] & 0xff00) != 0xff00) - return 1; - if (nand_read_oob(nand, (page1 + 0), 12, &retlen, (uint8_t *)oob_data16) - || (oob_data16[2] & 0xff00) != 0xff00) - return 1; - } else { - /* Note - bad block marker can be on first or second page */ - if (nand_read_oob(nand, page0 + badpos, 1, &retlen, (unsigned char *)&oob_data) - || oob_data != 0xff - || nand_read_oob (nand, page1 + badpos, 1, &retlen, (unsigned char *)&oob_data) - || oob_data != 0xff) - return 1; - } - - return 0; -} - -/* print bad blocks in NAND flash */ -void nand_print_bad(struct nand_chip* nand) -{ - unsigned long pos; - - for (pos = 0; pos < nand->totlen; pos += nand->erasesize) { - if (check_block(nand, pos)) - printf(" 0x%8.8lx\n", pos); - } - puts("\n"); -} - -/* cmd: 0: NANDRW_WRITE write, fail on bad block - * 1: NANDRW_READ read, fail on bad block - * 2: NANDRW_WRITE | NANDRW_JFFS2 write, skip bad blocks - * 3: NANDRW_READ | NANDRW_JFFS2 read, data all 0xff for bad blocks - * 7: NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP read, skip bad blocks - */ -int nand_legacy_rw (struct nand_chip* nand, int cmd, - size_t start, size_t len, - size_t * retlen, u_char * buf) -{ - int ret = 0, n, total = 0; - char eccbuf[6]; - /* eblk (once set) is the start of the erase block containing the - * data being processed. - */ - unsigned long eblk = ~0; /* force mismatch on first pass */ - unsigned long erasesize = nand->erasesize; - - while (len) { - if ((start & (-erasesize)) != eblk) { - /* have crossed into new erase block, deal with - * it if it is sure marked bad. - */ - eblk = start & (-erasesize); /* start of block */ - if (check_block(nand, eblk)) { - if (cmd == (NANDRW_READ | NANDRW_JFFS2)) { - while (len > 0 && - start - eblk < erasesize) { - *(buf++) = 0xff; - ++start; - ++total; - --len; - } - continue; - } else if (cmd == (NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP)) { - start += erasesize; - continue; - } else if (cmd == (NANDRW_WRITE | NANDRW_JFFS2)) { - /* skip bad block */ - start += erasesize; - continue; - } else { - ret = 1; - break; - } - } - } - /* The ECC will not be calculated correctly if - less than 512 is written or read */ - /* Is request at least 512 bytes AND it starts on a proper boundry */ - if((start != ROUND_DOWN(start, 0x200)) || (len < 0x200)) - printf("Warning block writes should be at least 512 bytes and start on a 512 byte boundry\n"); - - if (cmd & NANDRW_READ) { - ret = nand_read_ecc(nand, start, - min(len, eblk + erasesize - start), - (size_t *)&n, (u_char*)buf, (u_char *)eccbuf); - } else { - ret = nand_write_ecc(nand, start, - min(len, eblk + erasesize - start), - (size_t *)&n, (u_char*)buf, (u_char *)eccbuf); - } - - if (ret) - break; - - start += n; - buf += n; - total += n; - len -= n; - } - if (retlen) - *retlen = total; - - return ret; -} - -void nand_print(struct nand_chip *nand) -{ - if (nand->numchips > 1) { - printf("%s at 0x%lx,\n" - "\t %d chips %s, size %d MB, \n" - "\t total size %ld MB, sector size %ld kB\n", - nand->name, nand->IO_ADDR, nand->numchips, - nand->chips_name, 1 << (nand->chipshift - 20), - nand->totlen >> 20, nand->erasesize >> 10); - } - else { - printf("%s at 0x%lx (", nand->chips_name, nand->IO_ADDR); - print_size(nand->totlen, ", "); - print_size(nand->erasesize, " sector)\n"); - } -} - -/* ------------------------------------------------------------------------- */ - -static int NanD_WaitReady(struct nand_chip *nand, int ale_wait) -{ - /* This is inline, to optimise the common case, where it's ready instantly */ - int ret = 0; - -#ifdef NAND_NO_RB /* in config file, shorter delays currently wrap accesses */ - if(ale_wait) - NAND_WAIT_READY(nand); /* do the worst case 25us wait */ - else - udelay(10); -#else /* has functional r/b signal */ - NAND_WAIT_READY(nand); -#endif - return ret; -} - -/* NanD_Command: Send a flash command to the flash chip */ - -static inline int NanD_Command(struct nand_chip *nand, unsigned char command) -{ - unsigned long nandptr = nand->IO_ADDR; - - /* Assert the CLE (Command Latch Enable) line to the flash chip */ - NAND_CTL_SETCLE(nandptr); - - /* Send the command */ - WRITE_NAND_COMMAND(command, nandptr); - - /* Lower the CLE line */ - NAND_CTL_CLRCLE(nandptr); - -#ifdef NAND_NO_RB - if(command == NAND_CMD_RESET){ - u_char ret_val; - NanD_Command(nand, NAND_CMD_STATUS); - do { - ret_val = READ_NAND(nandptr);/* wait till ready */ - } while((ret_val & 0x40) != 0x40); - } -#endif - return NanD_WaitReady(nand, 0); -} - -/* NanD_Address: Set the current address for the flash chip */ - -static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs) -{ - unsigned long nandptr; - int i; - - nandptr = nand->IO_ADDR; - - /* Assert the ALE (Address Latch Enable) line to the flash chip */ - NAND_CTL_SETALE(nandptr); - - /* Send the address */ - /* Devices with 256-byte page are addressed as: - * Column (bits 0-7), Page (bits 8-15, 16-23, 24-31) - * there is no device on the market with page256 - * and more than 24 bits. - * Devices with 512-byte page are addressed as: - * Column (bits 0-7), Page (bits 9-16, 17-24, 25-31) - * 25-31 is sent only if the chip support it. - * bit 8 changes the read command to be sent - * (NAND_CMD_READ0 or NAND_CMD_READ1). - */ - - if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) - WRITE_NAND_ADDRESS(ofs, nandptr); - - ofs = ofs >> nand->page_shift; - - if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) { - for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8) { - WRITE_NAND_ADDRESS(ofs, nandptr); - } - } - - /* Lower the ALE line */ - NAND_CTL_CLRALE(nandptr); - - /* Wait for the chip to respond */ - return NanD_WaitReady(nand, 1); -} - -/* NanD_SelectChip: Select a given flash chip within the current floor */ - -static inline int NanD_SelectChip(struct nand_chip *nand, int chip) -{ - /* Wait for it to be ready */ - return NanD_WaitReady(nand, 0); -} - -/* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */ - -static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip) -{ - int mfr, id, i; - - NAND_ENABLE_CE(nand); /* set pin low */ - /* Reset the chip */ - if (NanD_Command(nand, NAND_CMD_RESET)) { -#ifdef NAND_DEBUG - printf("NanD_Command (reset) for %d,%d returned true\n", - floor, chip); -#endif - NAND_DISABLE_CE(nand); /* set pin high */ - return 0; - } - - /* Read the NAND chip ID: 1. Send ReadID command */ - if (NanD_Command(nand, NAND_CMD_READID)) { -#ifdef NAND_DEBUG - printf("NanD_Command (ReadID) for %d,%d returned true\n", - floor, chip); -#endif - NAND_DISABLE_CE(nand); /* set pin high */ - return 0; - } - - /* Read the NAND chip ID: 2. Send address byte zero */ - NanD_Address(nand, ADDR_COLUMN, 0); - - /* Read the manufacturer and device id codes from the device */ - - mfr = READ_NAND(nand->IO_ADDR); - - id = READ_NAND(nand->IO_ADDR); - - NAND_DISABLE_CE(nand); /* set pin high */ - -#ifdef NAND_DEBUG - printf("NanD_Command (ReadID) got %x %x\n", mfr, id); -#endif - if (mfr == 0xff || mfr == 0) { - /* No response - return failure */ - return 0; - } - - /* Check it's the same as the first chip we identified. - * M-Systems say that any given nand_chip device should only - * contain _one_ type of flash part, although that's not a - * hardware restriction. */ - if (nand->mfr) { - if (nand->mfr == mfr && nand->id == id) { - return 1; /* This is another the same the first */ - } else { - printf("Flash chip at floor %d, chip %d is different:\n", - floor, chip); - } - } - - /* Print and store the manufacturer and ID codes. */ - for (i = 0; nand_flash_ids[i].name != NULL; i++) { - if (mfr == nand_flash_ids[i].manufacture_id && - id == nand_flash_ids[i].model_id) { -#ifdef NAND_DEBUG - printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, " - "Chip ID: 0x%2.2X (%s)\n", mfr, id, - nand_flash_ids[i].name); -#endif - if (!nand->mfr) { - nand->mfr = mfr; - nand->id = id; - nand->chipshift = - nand_flash_ids[i].chipshift; - nand->page256 = nand_flash_ids[i].page256; - nand->eccsize = 256; - if (nand->page256) { - nand->oobblock = 256; - nand->oobsize = 8; - nand->page_shift = 8; - } else { - nand->oobblock = 512; - nand->oobsize = 16; - nand->page_shift = 9; - } - nand->pageadrlen = nand_flash_ids[i].pageadrlen; - nand->erasesize = nand_flash_ids[i].erasesize; - nand->chips_name = nand_flash_ids[i].name; - nand->bus16 = nand_flash_ids[i].bus16; - return 1; - } - return 0; - } - } - - -#ifdef NAND_DEBUG - /* We haven't fully identified the chip. Print as much as we know. */ - printf("Unknown flash chip found: %2.2X %2.2X\n", - id, mfr); -#endif - - return 0; -} - -/* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */ - -static void NanD_ScanChips(struct nand_chip *nand) -{ - int floor, chip; - int numchips[NAND_MAX_FLOORS]; - int maxchips = CONFIG_SYS_NAND_MAX_CHIPS; - int ret = 1; - - nand->numchips = 0; - nand->mfr = 0; - nand->id = 0; - - - /* For each floor, find the number of valid chips it contains */ - for (floor = 0; floor < NAND_MAX_FLOORS; floor++) { - ret = 1; - numchips[floor] = 0; - for (chip = 0; chip < maxchips && ret != 0; chip++) { - - ret = NanD_IdentChip(nand, floor, chip); - if (ret) { - numchips[floor]++; - nand->numchips++; - } - } - } - - /* If there are none at all that we recognise, bail */ - if (!nand->numchips) { -#ifdef NAND_DEBUG - puts ("No NAND flash chips recognised.\n"); -#endif - return; - } - - /* Allocate an array to hold the information for each chip */ - nand->chips = malloc(sizeof(struct Nand) * nand->numchips); - if (!nand->chips) { - puts ("No memory for allocating chip info structures\n"); - return; - } - - ret = 0; - - /* Fill out the chip array with {floor, chipno} for each - * detected chip in the device. */ - for (floor = 0; floor < NAND_MAX_FLOORS; floor++) { - for (chip = 0; chip < numchips[floor]; chip++) { - nand->chips[ret].floor = floor; - nand->chips[ret].chip = chip; - nand->chips[ret].curadr = 0; - nand->chips[ret].curmode = 0x50; - ret++; - } - } - - /* Calculate and print the total size of the device */ - nand->totlen = nand->numchips * (1 << nand->chipshift); - -#ifdef NAND_DEBUG - printf("%d flash chips found. Total nand_chip size: %ld MB\n", - nand->numchips, nand->totlen >> 20); -#endif -} - -/* we need to be fast here, 1 us per read translates to 1 second per meg */ -static void NanD_ReadBuf (struct nand_chip *nand, u_char * data_buf, int cntr) -{ - unsigned long nandptr = nand->IO_ADDR; - - NanD_Command (nand, NAND_CMD_READ0); - - if (nand->bus16) { - u16 val; - - while (cntr >= 16) { - val = READ_NAND (nandptr); - *data_buf++ = val & 0xff; - *data_buf++ = val >> 8; - val = READ_NAND (nandptr); - *data_buf++ = val & 0xff; - *data_buf++ = val >> 8; - val = READ_NAND (nandptr); - *data_buf++ = val & 0xff; - *data_buf++ = val >> 8; - val = READ_NAND (nandptr); - *data_buf++ = val & 0xff; - *data_buf++ = val >> 8; - val = READ_NAND (nandptr); - *data_buf++ = val & 0xff; - *data_buf++ = val >> 8; - val = READ_NAND (nandptr); - *data_buf++ = val & 0xff; - *data_buf++ = val >> 8; - val = READ_NAND (nandptr); - *data_buf++ = val & 0xff; - *data_buf++ = val >> 8; - val = READ_NAND (nandptr); - *data_buf++ = val & 0xff; - *data_buf++ = val >> 8; - cntr -= 16; - } - - while (cntr > 0) { - val = READ_NAND (nandptr); - *data_buf++ = val & 0xff; - *data_buf++ = val >> 8; - cntr -= 2; - } - } else { - while (cntr >= 16) { - *data_buf++ = READ_NAND (nandptr); - *data_buf++ = READ_NAND (nandptr); - *data_buf++ = READ_NAND (nandptr); - *data_buf++ = READ_NAND (nandptr); - *data_buf++ = READ_NAND (nandptr); - *data_buf++ = READ_NAND (nandptr); - *data_buf++ = READ_NAND (nandptr); - *data_buf++ = READ_NAND (nandptr); - *data_buf++ = READ_NAND (nandptr); - *data_buf++ = READ_NAND (nandptr); - *data_buf++ = READ_NAND (nandptr); - *data_buf++ = READ_NAND (nandptr); - *data_buf++ = READ_NAND (nandptr); - *data_buf++ = READ_NAND (nandptr); - *data_buf++ = READ_NAND (nandptr); - *data_buf++ = READ_NAND (nandptr); - cntr -= 16; - } - - while (cntr > 0) { - *data_buf++ = READ_NAND (nandptr); - cntr--; - } - } -} - -/* - * NAND read with ECC - */ -static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len, - size_t * retlen, u_char *buf, u_char *ecc_code) -{ - int col, page; - int ecc_status = 0; -#ifdef CONFIG_MTD_NAND_ECC - int j; - int ecc_failed = 0; - u_char *data_poi; - u_char ecc_calc[6]; -#endif - - /* Do not allow reads past end of device */ - if ((start + len) > nand->totlen) { - printf ("%s: Attempt read beyond end of device %x %x %x\n", - __FUNCTION__, (uint) start, (uint) len, (uint) nand->totlen); - *retlen = 0; - return -1; - } - - /* First we calculate the starting page */ - /*page = shr(start, nand->page_shift);*/ - page = start >> nand->page_shift; - - /* Get raw starting column */ - col = start & (nand->oobblock - 1); - - /* Initialize return value */ - *retlen = 0; - - /* Select the NAND device */ - NAND_ENABLE_CE(nand); /* set pin low */ - - /* Loop until all data read */ - while (*retlen < len) { - -#ifdef CONFIG_MTD_NAND_ECC - /* Do we have this page in cache ? */ - if (nand->cache_page == page) - goto readdata; - /* Send the read command */ - NanD_Command(nand, NAND_CMD_READ0); - if (nand->bus16) { - NanD_Address(nand, ADDR_COLUMN_PAGE, - (page << nand->page_shift) + (col >> 1)); - } else { - NanD_Address(nand, ADDR_COLUMN_PAGE, - (page << nand->page_shift) + col); - } - - /* Read in a page + oob data */ - NanD_ReadBuf(nand, nand->data_buf, nand->oobblock + nand->oobsize); - - /* copy data into cache, for read out of cache and if ecc fails */ - if (nand->data_cache) { - memcpy (nand->data_cache, nand->data_buf, - nand->oobblock + nand->oobsize); - } - - /* Pick the ECC bytes out of the oob data */ - for (j = 0; j < 6; j++) { - ecc_code[j] = nand->data_buf[(nand->oobblock + oob_config.ecc_pos[j])]; - } - - /* Calculate the ECC and verify it */ - /* If block was not written with ECC, skip ECC */ - if (oob_config.eccvalid_pos != -1 && - (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0x0f) != 0x0f) { - - nand_calculate_ecc (&nand->data_buf[0], &ecc_calc[0]); - switch (nand_correct_data (&nand->data_buf[0], &ecc_code[0], &ecc_calc[0])) { - case -1: - printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page); - ecc_failed++; - break; - case 1: - case 2: /* transfer ECC corrected data to cache */ - if (nand->data_cache) - memcpy (nand->data_cache, nand->data_buf, 256); - break; - } - } - - if (oob_config.eccvalid_pos != -1 && - nand->oobblock == 512 && (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0xf0) != 0xf0) { - - nand_calculate_ecc (&nand->data_buf[256], &ecc_calc[3]); - switch (nand_correct_data (&nand->data_buf[256], &ecc_code[3], &ecc_calc[3])) { - case -1: - printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page); - ecc_failed++; - break; - case 1: - case 2: /* transfer ECC corrected data to cache */ - if (nand->data_cache) - memcpy (&nand->data_cache[256], &nand->data_buf[256], 256); - break; - } - } -readdata: - /* Read the data from ECC data buffer into return buffer */ - data_poi = (nand->data_cache) ? nand->data_cache : nand->data_buf; - data_poi += col; - if ((*retlen + (nand->oobblock - col)) >= len) { - memcpy (buf + *retlen, data_poi, len - *retlen); - *retlen = len; - } else { - memcpy (buf + *retlen, data_poi, nand->oobblock - col); - *retlen += nand->oobblock - col; - } - /* Set cache page address, invalidate, if ecc_failed */ - nand->cache_page = (nand->data_cache && !ecc_failed) ? page : -1; - - ecc_status += ecc_failed; - ecc_failed = 0; - -#else - /* Send the read command */ - NanD_Command(nand, NAND_CMD_READ0); - if (nand->bus16) { - NanD_Address(nand, ADDR_COLUMN_PAGE, - (page << nand->page_shift) + (col >> 1)); - } else { - NanD_Address(nand, ADDR_COLUMN_PAGE, - (page << nand->page_shift) + col); - } - - /* Read the data directly into the return buffer */ - if ((*retlen + (nand->oobblock - col)) >= len) { - NanD_ReadBuf(nand, buf + *retlen, len - *retlen); - *retlen = len; - /* We're done */ - continue; - } else { - NanD_ReadBuf(nand, buf + *retlen, nand->oobblock - col); - *retlen += nand->oobblock - col; - } -#endif - /* For subsequent reads align to page boundary. */ - col = 0; - /* Increment page address */ - page++; - } - - /* De-select the NAND device */ - NAND_DISABLE_CE(nand); /* set pin high */ - - /* - * Return success, if no ECC failures, else -EIO - * fs driver will take care of that, because - * retlen == desired len and result == -EIO - */ - return ecc_status ? -1 : 0; -} - -/* - * Nand_page_program function is used for write and writev ! - */ -static int nand_write_page (struct nand_chip *nand, - int page, int col, int last, u_char * ecc_code) -{ - - int i; - unsigned long nandptr = nand->IO_ADDR; - -#ifdef CONFIG_MTD_NAND_ECC -#ifdef CONFIG_MTD_NAND_VERIFY_WRITE - int ecc_bytes = (nand->oobblock == 512) ? 6 : 3; -#endif -#endif - /* pad oob area */ - for (i = nand->oobblock; i < nand->oobblock + nand->oobsize; i++) - nand->data_buf[i] = 0xff; - -#ifdef CONFIG_MTD_NAND_ECC - /* Zero out the ECC array */ - for (i = 0; i < 6; i++) - ecc_code[i] = 0x00; - - /* Read back previous written data, if col > 0 */ - if (col) { - NanD_Command (nand, NAND_CMD_READ0); - if (nand->bus16) { - NanD_Address (nand, ADDR_COLUMN_PAGE, - (page << nand->page_shift) + (col >> 1)); - } else { - NanD_Address (nand, ADDR_COLUMN_PAGE, - (page << nand->page_shift) + col); - } - - if (nand->bus16) { - u16 val; - - for (i = 0; i < col; i += 2) { - val = READ_NAND (nandptr); - nand->data_buf[i] = val & 0xff; - nand->data_buf[i + 1] = val >> 8; - } - } else { - for (i = 0; i < col; i++) - nand->data_buf[i] = READ_NAND (nandptr); - } - } - - /* Calculate and write the ECC if we have enough data */ - if ((col < nand->eccsize) && (last >= nand->eccsize)) { - nand_calculate_ecc (&nand->data_buf[0], &(ecc_code[0])); - for (i = 0; i < 3; i++) { - nand->data_buf[(nand->oobblock + - oob_config.ecc_pos[i])] = ecc_code[i]; - } - if (oob_config.eccvalid_pos != -1) { - nand->data_buf[nand->oobblock + - oob_config.eccvalid_pos] = 0xf0; - } - } - - /* Calculate and write the second ECC if we have enough data */ - if ((nand->oobblock == 512) && (last == nand->oobblock)) { - nand_calculate_ecc (&nand->data_buf[256], &(ecc_code[3])); - for (i = 3; i < 6; i++) { - nand->data_buf[(nand->oobblock + - oob_config.ecc_pos[i])] = ecc_code[i]; - } - if (oob_config.eccvalid_pos != -1) { - nand->data_buf[nand->oobblock + - oob_config.eccvalid_pos] &= 0x0f; - } - } -#endif - /* Prepad for partial page programming !!! */ - for (i = 0; i < col; i++) - nand->data_buf[i] = 0xff; - - /* Postpad for partial page programming !!! oob is already padded */ - for (i = last; i < nand->oobblock; i++) - nand->data_buf[i] = 0xff; - - /* Send command to begin auto page programming */ - NanD_Command (nand, NAND_CMD_READ0); - NanD_Command (nand, NAND_CMD_SEQIN); - if (nand->bus16) { - NanD_Address (nand, ADDR_COLUMN_PAGE, - (page << nand->page_shift) + (col >> 1)); - } else { - NanD_Address (nand, ADDR_COLUMN_PAGE, - (page << nand->page_shift) + col); - } - - /* Write out complete page of data */ - if (nand->bus16) { - for (i = 0; i < (nand->oobblock + nand->oobsize); i += 2) { - WRITE_NAND (nand->data_buf[i] + - (nand->data_buf[i + 1] << 8), - nand->IO_ADDR); - } - } else { - for (i = 0; i < (nand->oobblock + nand->oobsize); i++) - WRITE_NAND (nand->data_buf[i], nand->IO_ADDR); - } - - /* Send command to actually program the data */ - NanD_Command (nand, NAND_CMD_PAGEPROG); - NanD_Command (nand, NAND_CMD_STATUS); -#ifdef NAND_NO_RB - { - u_char ret_val; - - do { - ret_val = READ_NAND (nandptr); /* wait till ready */ - } while ((ret_val & 0x40) != 0x40); - } -#endif - /* See if device thinks it succeeded */ - if (READ_NAND (nand->IO_ADDR) & 0x01) { - printf ("%s: Failed write, page 0x%08x, ", __FUNCTION__, - page); - return -1; - } -#ifdef CONFIG_MTD_NAND_VERIFY_WRITE - /* - * The NAND device assumes that it is always writing to - * a cleanly erased page. Hence, it performs its internal - * write verification only on bits that transitioned from - * 1 to 0. The device does NOT verify the whole page on a - * byte by byte basis. It is possible that the page was - * not completely erased or the page is becoming unusable - * due to wear. The read with ECC would catch the error - * later when the ECC page check fails, but we would rather - * catch it early in the page write stage. Better to write - * no data than invalid data. - */ - - /* Send command to read back the page */ - if (col < nand->eccsize) - NanD_Command (nand, NAND_CMD_READ0); - else - NanD_Command (nand, NAND_CMD_READ1); - if (nand->bus16) { - NanD_Address (nand, ADDR_COLUMN_PAGE, - (page << nand->page_shift) + (col >> 1)); - } else { - NanD_Address (nand, ADDR_COLUMN_PAGE, - (page << nand->page_shift) + col); - } - - /* Loop through and verify the data */ - if (nand->bus16) { - for (i = col; i < last; i = +2) { - if ((nand->data_buf[i] + - (nand->data_buf[i + 1] << 8)) != READ_NAND (nand->IO_ADDR)) { - printf ("%s: Failed write verify, page 0x%08x ", - __FUNCTION__, page); - return -1; - } - } - } else { - for (i = col; i < last; i++) { - if (nand->data_buf[i] != READ_NAND (nand->IO_ADDR)) { - printf ("%s: Failed write verify, page 0x%08x ", - __FUNCTION__, page); - return -1; - } - } - } - -#ifdef CONFIG_MTD_NAND_ECC - /* - * We also want to check that the ECC bytes wrote - * correctly for the same reasons stated above. - */ - NanD_Command (nand, NAND_CMD_READOOB); - if (nand->bus16) { - NanD_Address (nand, ADDR_COLUMN_PAGE, - (page << nand->page_shift) + (col >> 1)); - } else { - NanD_Address (nand, ADDR_COLUMN_PAGE, - (page << nand->page_shift) + col); - } - if (nand->bus16) { - for (i = 0; i < nand->oobsize; i += 2) { - u16 val; - - val = READ_NAND (nand->IO_ADDR); - nand->data_buf[i] = val & 0xff; - nand->data_buf[i + 1] = val >> 8; - } - } else { - for (i = 0; i < nand->oobsize; i++) { - nand->data_buf[i] = READ_NAND (nand->IO_ADDR); - } - } - for (i = 0; i < ecc_bytes; i++) { - if ((nand->data_buf[(oob_config.ecc_pos[i])] != ecc_code[i]) && ecc_code[i]) { - printf ("%s: Failed ECC write " - "verify, page 0x%08x, " - "%6i bytes were succesful\n", - __FUNCTION__, page, i); - return -1; - } - } -#endif /* CONFIG_MTD_NAND_ECC */ -#endif /* CONFIG_MTD_NAND_VERIFY_WRITE */ - return 0; -} - -static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len, - size_t * retlen, const u_char * buf, u_char * ecc_code) -{ - int i, page, col, cnt, ret = 0; - - /* Do not allow write past end of device */ - if ((to + len) > nand->totlen) { - printf ("%s: Attempt to write past end of page\n", __FUNCTION__); - return -1; - } - - /* Shift to get page */ - page = ((int) to) >> nand->page_shift; - - /* Get the starting column */ - col = to & (nand->oobblock - 1); - - /* Initialize return length value */ - *retlen = 0; - - /* Select the NAND device */ -#ifdef CONFIG_OMAP1510 - archflashwp(0,0); -#endif -#ifdef CONFIG_SYS_NAND_WP - NAND_WP_OFF(); -#endif - - NAND_ENABLE_CE(nand); /* set pin low */ - - /* Check the WP bit */ - NanD_Command(nand, NAND_CMD_STATUS); - if (!(READ_NAND(nand->IO_ADDR) & 0x80)) { - printf ("%s: Device is write protected!!!\n", __FUNCTION__); - ret = -1; - goto out; - } - - /* Loop until all data is written */ - while (*retlen < len) { - /* Invalidate cache, if we write to this page */ - if (nand->cache_page == page) - nand->cache_page = -1; - - /* Write data into buffer */ - if ((col + len) >= nand->oobblock) { - for (i = col, cnt = 0; i < nand->oobblock; i++, cnt++) { - nand->data_buf[i] = buf[(*retlen + cnt)]; - } - } else { - for (i = col, cnt = 0; cnt < (len - *retlen); i++, cnt++) { - nand->data_buf[i] = buf[(*retlen + cnt)]; - } - } - /* We use the same function for write and writev !) */ - ret = nand_write_page (nand, page, col, i, ecc_code); - if (ret) - goto out; - - /* Next data start at page boundary */ - col = 0; - - /* Update written bytes count */ - *retlen += cnt; - - /* Increment page address */ - page++; - } - - /* Return happy */ - *retlen = len; - -out: - /* De-select the NAND device */ - NAND_DISABLE_CE(nand); /* set pin high */ -#ifdef CONFIG_OMAP1510 - archflashwp(0,1); -#endif -#ifdef CONFIG_SYS_NAND_WP - NAND_WP_ON(); -#endif - - return ret; -} - -/* read from the 16 bytes of oob data that correspond to a 512 byte - * page or 2 256-byte pages. - */ -int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len, - size_t * retlen, u_char * buf) -{ - int len256 = 0; - struct Nand *mychip; - int ret = 0; - - mychip = &nand->chips[ofs >> nand->chipshift]; - - /* update address for 2M x 8bit devices. OOB starts on the second */ - /* page to maintain compatibility with nand_read_ecc. */ - if (nand->page256) { - if (!(ofs & 0x8)) - ofs += 0x100; - else - ofs -= 0x8; - } - - NAND_ENABLE_CE(nand); /* set pin low */ - NanD_Command(nand, NAND_CMD_READOOB); - if (nand->bus16) { - NanD_Address(nand, ADDR_COLUMN_PAGE, - ((ofs >> nand->page_shift) << nand->page_shift) + - ((ofs & (nand->oobblock - 1)) >> 1)); - } else { - NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); - } - - /* treat crossing 8-byte OOB data for 2M x 8bit devices */ - /* Note: datasheet says it should automaticaly wrap to the */ - /* next OOB block, but it didn't work here. mf. */ - if (nand->page256 && ofs + len > (ofs | 0x7) + 1) { - len256 = (ofs | 0x7) + 1 - ofs; - NanD_ReadBuf(nand, buf, len256); - - NanD_Command(nand, NAND_CMD_READOOB); - NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff)); - } - - NanD_ReadBuf(nand, &buf[len256], len - len256); - - *retlen = len; - /* Reading the full OOB data drops us off of the end of the page, - * causing the flash device to go into busy mode, so we need - * to wait until ready 11.4.1 and Toshiba TC58256FT nands */ - - ret = NanD_WaitReady(nand, 1); - NAND_DISABLE_CE(nand); /* set pin high */ - - return ret; - -} - -/* write to the 16 bytes of oob data that correspond to a 512 byte - * page or 2 256-byte pages. - */ -int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len, - size_t * retlen, const u_char * buf) -{ - int len256 = 0; - int i; - unsigned long nandptr = nand->IO_ADDR; - -#ifdef PSYCHO_DEBUG - printf("nand_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n", - (long)ofs, len, buf[0], buf[1], buf[2], buf[3], - buf[8], buf[9], buf[14],buf[15]); -#endif - - NAND_ENABLE_CE(nand); /* set pin low to enable chip */ - - /* Reset the chip */ - NanD_Command(nand, NAND_CMD_RESET); - - /* issue the Read2 command to set the pointer to the Spare Data Area. */ - NanD_Command(nand, NAND_CMD_READOOB); - if (nand->bus16) { - NanD_Address(nand, ADDR_COLUMN_PAGE, - ((ofs >> nand->page_shift) << nand->page_shift) + - ((ofs & (nand->oobblock - 1)) >> 1)); - } else { - NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); - } - - /* update address for 2M x 8bit devices. OOB starts on the second */ - /* page to maintain compatibility with nand_read_ecc. */ - if (nand->page256) { - if (!(ofs & 0x8)) - ofs += 0x100; - else - ofs -= 0x8; - } - - /* issue the Serial Data In command to initial the Page Program process */ - NanD_Command(nand, NAND_CMD_SEQIN); - if (nand->bus16) { - NanD_Address(nand, ADDR_COLUMN_PAGE, - ((ofs >> nand->page_shift) << nand->page_shift) + - ((ofs & (nand->oobblock - 1)) >> 1)); - } else { - NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); - } - - /* treat crossing 8-byte OOB data for 2M x 8bit devices */ - /* Note: datasheet says it should automaticaly wrap to the */ - /* next OOB block, but it didn't work here. mf. */ - if (nand->page256 && ofs + len > (ofs | 0x7) + 1) { - len256 = (ofs | 0x7) + 1 - ofs; - for (i = 0; i < len256; i++) - WRITE_NAND(buf[i], nandptr); - - NanD_Command(nand, NAND_CMD_PAGEPROG); - NanD_Command(nand, NAND_CMD_STATUS); -#ifdef NAND_NO_RB - { u_char ret_val; - do { - ret_val = READ_NAND(nandptr); /* wait till ready */ - } while ((ret_val & 0x40) != 0x40); - } -#endif - if (READ_NAND(nandptr) & 1) { - puts ("Error programming oob data\n"); - /* There was an error */ - NAND_DISABLE_CE(nand); /* set pin high */ - *retlen = 0; - return -1; - } - NanD_Command(nand, NAND_CMD_SEQIN); - NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff)); - } - - if (nand->bus16) { - for (i = len256; i < len; i += 2) { - WRITE_NAND(buf[i] + (buf[i+1] << 8), nandptr); - } - } else { - for (i = len256; i < len; i++) - WRITE_NAND(buf[i], nandptr); - } - - NanD_Command(nand, NAND_CMD_PAGEPROG); - NanD_Command(nand, NAND_CMD_STATUS); -#ifdef NAND_NO_RB - { u_char ret_val; - do { - ret_val = READ_NAND(nandptr); /* wait till ready */ - } while ((ret_val & 0x40) != 0x40); - } -#endif - if (READ_NAND(nandptr) & 1) { - puts ("Error programming oob data\n"); - /* There was an error */ - NAND_DISABLE_CE(nand); /* set pin high */ - *retlen = 0; - return -1; - } - - NAND_DISABLE_CE(nand); /* set pin high */ - *retlen = len; - return 0; - -} - -int nand_legacy_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean) -{ - /* This is defined as a structure so it will work on any system - * using native endian jffs2 (the default). - */ - static struct jffs2_unknown_node clean_marker = { - JFFS2_MAGIC_BITMASK, - JFFS2_NODETYPE_CLEANMARKER, - 8 /* 8 bytes in this node */ - }; - unsigned long nandptr; - struct Nand *mychip; - int ret = 0; - - if (ofs & (nand->erasesize-1) || len & (nand->erasesize-1)) { - printf ("Offset and size must be sector aligned, erasesize = %d\n", - (int) nand->erasesize); - return -1; - } - - nandptr = nand->IO_ADDR; - - /* Select the NAND device */ -#ifdef CONFIG_OMAP1510 - archflashwp(0,0); -#endif -#ifdef CONFIG_SYS_NAND_WP - NAND_WP_OFF(); -#endif - NAND_ENABLE_CE(nand); /* set pin low */ - - /* Check the WP bit */ - NanD_Command(nand, NAND_CMD_STATUS); - if (!(READ_NAND(nand->IO_ADDR) & 0x80)) { - printf ("nand_write_ecc: Device is write protected!!!\n"); - ret = -1; - goto out; - } - - /* Check the WP bit */ - NanD_Command(nand, NAND_CMD_STATUS); - if (!(READ_NAND(nand->IO_ADDR) & 0x80)) { - printf ("%s: Device is write protected!!!\n", __FUNCTION__); - ret = -1; - goto out; - } - - /* FIXME: Do nand in the background. Use timers or schedule_task() */ - while(len) { - /*mychip = &nand->chips[shr(ofs, nand->chipshift)];*/ - mychip = &nand->chips[ofs >> nand->chipshift]; - - /* always check for bad block first, genuine bad blocks - * should _never_ be erased. - */ - if (ALLOW_ERASE_BAD_DEBUG || !check_block(nand, ofs)) { - /* Select the NAND device */ - NAND_ENABLE_CE(nand); /* set pin low */ - - NanD_Command(nand, NAND_CMD_ERASE1); - NanD_Address(nand, ADDR_PAGE, ofs); - NanD_Command(nand, NAND_CMD_ERASE2); - - NanD_Command(nand, NAND_CMD_STATUS); - -#ifdef NAND_NO_RB - { u_char ret_val; - do { - ret_val = READ_NAND(nandptr); /* wait till ready */ - } while ((ret_val & 0x40) != 0x40); - } -#endif - if (READ_NAND(nandptr) & 1) { - printf ("%s: Error erasing at 0x%lx\n", - __FUNCTION__, (long)ofs); - /* There was an error */ - ret = -1; - goto out; - } - if (clean) { - int n; /* return value not used */ - int p, l; - - /* clean marker position and size depend - * on the page size, since 256 byte pages - * only have 8 bytes of oob data - */ - if (nand->page256) { - p = NAND_JFFS2_OOB8_FSDAPOS; - l = NAND_JFFS2_OOB8_FSDALEN; - } else { - p = NAND_JFFS2_OOB16_FSDAPOS; - l = NAND_JFFS2_OOB16_FSDALEN; - } - - ret = nand_write_oob(nand, ofs + p, l, (size_t *)&n, - (u_char *)&clean_marker); - /* quit here if write failed */ - if (ret) - goto out; - } - } - ofs += nand->erasesize; - len -= nand->erasesize; - } - -out: - /* De-select the NAND device */ - NAND_DISABLE_CE(nand); /* set pin high */ -#ifdef CONFIG_OMAP1510 - archflashwp(0,1); -#endif -#ifdef CONFIG_SYS_NAND_WP - NAND_WP_ON(); -#endif - - return ret; -} - - -static inline int nandcheck(unsigned long potential, unsigned long physadr) -{ - return 0; -} - -unsigned long nand_probe(unsigned long physadr) -{ - struct nand_chip *nand = NULL; - int i = 0, ChipID = 1; - -#ifdef CONFIG_MTD_NAND_ECC_JFFS2 - oob_config.ecc_pos[0] = NAND_JFFS2_OOB_ECCPOS0; - oob_config.ecc_pos[1] = NAND_JFFS2_OOB_ECCPOS1; - oob_config.ecc_pos[2] = NAND_JFFS2_OOB_ECCPOS2; - oob_config.ecc_pos[3] = NAND_JFFS2_OOB_ECCPOS3; - oob_config.ecc_pos[4] = NAND_JFFS2_OOB_ECCPOS4; - oob_config.ecc_pos[5] = NAND_JFFS2_OOB_ECCPOS5; - oob_config.eccvalid_pos = 4; -#else - oob_config.ecc_pos[0] = NAND_NOOB_ECCPOS0; - oob_config.ecc_pos[1] = NAND_NOOB_ECCPOS1; - oob_config.ecc_pos[2] = NAND_NOOB_ECCPOS2; - oob_config.ecc_pos[3] = NAND_NOOB_ECCPOS3; - oob_config.ecc_pos[4] = NAND_NOOB_ECCPOS4; - oob_config.ecc_pos[5] = NAND_NOOB_ECCPOS5; - oob_config.eccvalid_pos = NAND_NOOB_ECCVPOS; -#endif - oob_config.badblock_pos = 5; - - for (i=0; iIO_ADDR = physadr; - nand->cache_page = -1; /* init the cache page */ - NanD_ScanChips(nand); - - if (nand->totlen == 0) { - /* no chips found, clean up and quit */ - memset((char *)nand, 0, sizeof(struct nand_chip)); - nand->ChipID = NAND_ChipID_UNKNOWN; - return (0); - } - - nand->ChipID = ChipID; - if (curr_device == -1) - curr_device = i; - - nand->data_buf = malloc (nand->oobblock + nand->oobsize); - if (!nand->data_buf) { - puts ("Cannot allocate memory for data structures.\n"); - return (0); - } - - return (nand->totlen); -} - -#ifdef CONFIG_MTD_NAND_ECC -/* - * Pre-calculated 256-way 1 byte column parity - */ -static const u_char nand_ecc_precalc_table[] = { - 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, - 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00, - 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, - 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, - 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, - 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, - 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, - 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, - 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, - 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, - 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, - 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, - 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, - 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, - 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, - 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, - 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, - 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, - 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, - 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, - 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, - 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, - 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, - 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, - 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, - 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, - 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, - 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, - 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, - 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, - 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, - 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00 -}; - - -/* - * Creates non-inverted ECC code from line parity - */ -static void nand_trans_result(u_char reg2, u_char reg3, - u_char *ecc_code) -{ - u_char a, b, i, tmp1, tmp2; - - /* Initialize variables */ - a = b = 0x80; - tmp1 = tmp2 = 0; - - /* Calculate first ECC byte */ - for (i = 0; i < 4; i++) { - if (reg3 & a) /* LP15,13,11,9 --> ecc_code[0] */ - tmp1 |= b; - b >>= 1; - if (reg2 & a) /* LP14,12,10,8 --> ecc_code[0] */ - tmp1 |= b; - b >>= 1; - a >>= 1; - } - - /* Calculate second ECC byte */ - b = 0x80; - for (i = 0; i < 4; i++) { - if (reg3 & a) /* LP7,5,3,1 --> ecc_code[1] */ - tmp2 |= b; - b >>= 1; - if (reg2 & a) /* LP6,4,2,0 --> ecc_code[1] */ - tmp2 |= b; - b >>= 1; - a >>= 1; - } - - /* Store two of the ECC bytes */ - ecc_code[0] = tmp1; - ecc_code[1] = tmp2; -} - -/* - * Calculate 3 byte ECC code for 256 byte block - */ -static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code) -{ - u_char idx, reg1, reg3; - int j; - - /* Initialize variables */ - reg1 = reg3 = 0; - ecc_code[0] = ecc_code[1] = ecc_code[2] = 0; - - /* Build up column parity */ - for(j = 0; j < 256; j++) { - - /* Get CP0 - CP5 from table */ - idx = nand_ecc_precalc_table[dat[j]]; - reg1 ^= idx; - - /* All bit XOR = 1 ? */ - if (idx & 0x40) { - reg3 ^= (u_char) j; - } - } - - /* Create non-inverted ECC code from line parity */ - nand_trans_result((reg1 & 0x40) ? ~reg3 : reg3, reg3, ecc_code); - - /* Calculate final ECC code */ - ecc_code[0] = ~ecc_code[0]; - ecc_code[1] = ~ecc_code[1]; - ecc_code[2] = ((~reg1) << 2) | 0x03; -} - -/* - * Detect and correct a 1 bit error for 256 byte block - */ -static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc) -{ - u_char a, b, c, d1, d2, d3, add, bit, i; - - /* Do error detection */ - d1 = calc_ecc[0] ^ read_ecc[0]; - d2 = calc_ecc[1] ^ read_ecc[1]; - d3 = calc_ecc[2] ^ read_ecc[2]; - - if ((d1 | d2 | d3) == 0) { - /* No errors */ - return 0; - } else { - a = (d1 ^ (d1 >> 1)) & 0x55; - b = (d2 ^ (d2 >> 1)) & 0x55; - c = (d3 ^ (d3 >> 1)) & 0x54; - - /* Found and will correct single bit error in the data */ - if ((a == 0x55) && (b == 0x55) && (c == 0x54)) { - c = 0x80; - add = 0; - a = 0x80; - for (i=0; i<4; i++) { - if (d1 & c) - add |= a; - c >>= 2; - a >>= 1; - } - c = 0x80; - for (i=0; i<4; i++) { - if (d2 & c) - add |= a; - c >>= 2; - a >>= 1; - } - bit = 0; - b = 0x04; - c = 0x80; - for (i=0; i<3; i++) { - if (d3 & c) - bit |= b; - c >>= 2; - b >>= 1; - } - b = 0x01; - a = dat[add]; - a ^= (b << bit); - dat[add] = a; - return 1; - } - else { - i = 0; - while (d1) { - if (d1 & 0x01) - ++i; - d1 >>= 1; - } - while (d2) { - if (d2 & 0x01) - ++i; - d2 >>= 1; - } - while (d3) { - if (d3 & 0x01) - ++i; - d3 >>= 1; - } - if (i == 1) { - /* ECC Code Error Correction */ - read_ecc[0] = calc_ecc[0]; - read_ecc[1] = calc_ecc[1]; - read_ecc[2] = calc_ecc[2]; - return 2; - } - else { - /* Uncorrectable Error */ - return -1; - } - } - } - - /* Should never happen */ - return -1; -} - -#endif - -#ifdef CONFIG_JFFS2_NAND -int read_jffs2_nand(size_t start, size_t len, - size_t * retlen, u_char * buf, int nanddev) -{ - return nand_legacy_rw(nand_dev_desc + nanddev, NANDRW_READ | NANDRW_JFFS2, - start, len, retlen, buf); -} -#endif /* CONFIG_JFFS2_NAND */ diff --git a/fs/jffs2/jffs2_1pass.c b/fs/jffs2/jffs2_1pass.c index 11b66ab4b3..8c9e2eb426 100644 --- a/fs/jffs2/jffs2_1pass.c +++ b/fs/jffs2/jffs2_1pass.c @@ -146,11 +146,7 @@ static struct part_info *current_part; #if (defined(CONFIG_JFFS2_NAND) && \ defined(CONFIG_CMD_NAND) ) -#if defined(CONFIG_NAND_LEGACY) -#include -#else #include -#endif /* * Support for jffs2 on top of NAND-flash * @@ -161,12 +157,6 @@ static struct part_info *current_part; * */ -#if defined(CONFIG_NAND_LEGACY) -/* this one defined in nand_legacy.c */ -int read_jffs2_nand(size_t start, size_t len, - size_t * retlen, u_char * buf, int nanddev); -#endif - #define NAND_PAGE_SIZE 512 #define NAND_PAGE_SHIFT 9 #define NAND_PAGE_MASK (~(NAND_PAGE_SIZE-1)) @@ -201,15 +191,6 @@ static int read_nand_cached(u32 off, u32 size, u_char *buf) } } -#if defined(CONFIG_NAND_LEGACY) - if (read_jffs2_nand(nand_cache_off, NAND_CACHE_SIZE, - &retlen, nand_cache, id->num) < 0 || - retlen != NAND_CACHE_SIZE) { - printf("read_nand_cached: error reading nand off %#x size %d bytes\n", - nand_cache_off, NAND_CACHE_SIZE); - return -1; - } -#else retlen = NAND_CACHE_SIZE; if (nand_read(&nand_info[id->num], nand_cache_off, &retlen, nand_cache) != 0 || @@ -218,7 +199,6 @@ static int read_nand_cached(u32 off, u32 size, u_char *buf) nand_cache_off, NAND_CACHE_SIZE); return -1; } -#endif } cpy_bytes = nand_cache_off + NAND_CACHE_SIZE - (off + bytes_read); if (cpy_bytes > size - bytes_read) diff --git a/fs/jffs2/jffs2_nand_1pass.c b/fs/jffs2/jffs2_nand_1pass.c index 6eb674550a..fe8c70d91d 100644 --- a/fs/jffs2/jffs2_nand_1pass.c +++ b/fs/jffs2/jffs2_nand_1pass.c @@ -1,7 +1,5 @@ #include -#if !defined(CONFIG_NAND_LEGACY) - #include #include #include @@ -1034,5 +1032,3 @@ jffs2_1pass_info(struct part_info * part) } return 1; } - -#endif diff --git a/include/linux/mtd/nand_ids.h b/include/linux/mtd/nand_ids.h deleted file mode 100644 index e7aa26df04..0000000000 --- a/include/linux/mtd/nand_ids.h +++ /dev/null @@ -1,60 +0,0 @@ -/* - * u-boot/include/linux/mtd/nand_ids.h - * - * Copyright (c) 2000 David Woodhouse - * Steven J. Hill - * - * $Id: nand_ids.h,v 1.1 2000/10/13 16:16:26 mdeans Exp $ - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * Info: - * Contains standard defines and IDs for NAND flash devices - * - * Changelog: - * 01-31-2000 DMW Created - * 09-18-2000 SJH Moved structure out of the Disk-On-Chip drivers - * so it can be used by other NAND flash device - * drivers. I also changed the copyright since none - * of the original contents of this file are specific - * to DoC devices. David can whack me with a baseball - * bat later if I did something naughty. - * 10-11-2000 SJH Added private NAND flash structure for driver - * 2000-10-13 BE Moved out of 'nand.h' - avoids duplication. - */ - -#ifndef __LINUX_MTD_NAND_IDS_H -#define __LINUX_MTD_NAND_IDS_H - -#ifndef CONFIG_NAND_LEGACY -#error This module is for the legacy NAND support -#endif - -static struct nand_flash_dev nand_flash_ids[] = { - {"Toshiba TC5816BDC", NAND_MFR_TOSHIBA, 0x64, 21, 1, 2, 0x1000, 0}, - {"Toshiba TC5832DC", NAND_MFR_TOSHIBA, 0x6b, 22, 0, 2, 0x2000, 0}, - {"Toshiba TH58V128DC", NAND_MFR_TOSHIBA, 0x73, 24, 0, 2, 0x4000, 0}, - {"Toshiba TC58256FT/DC", NAND_MFR_TOSHIBA, 0x75, 25, 0, 2, 0x4000, 0}, - {"Toshiba TH58512FT", NAND_MFR_TOSHIBA, 0x76, 26, 0, 3, 0x4000, 0}, - {"Toshiba TC58V32DC", NAND_MFR_TOSHIBA, 0xe5, 22, 0, 2, 0x2000, 0}, - {"Toshiba TC58V64AFT/DC", NAND_MFR_TOSHIBA, 0xe6, 23, 0, 2, 0x2000, 0}, - {"Toshiba TC58V16BDC", NAND_MFR_TOSHIBA, 0xea, 21, 1, 2, 0x1000, 0}, - {"Toshiba TH58100FT", NAND_MFR_TOSHIBA, 0x79, 27, 0, 3, 0x4000, 0}, - {"Samsung KM29N16000", NAND_MFR_SAMSUNG, 0x64, 21, 1, 2, 0x1000, 0}, - {"Samsung unknown 4Mb", NAND_MFR_SAMSUNG, 0x6b, 22, 0, 2, 0x2000, 0}, - {"Samsung KM29U128T", NAND_MFR_SAMSUNG, 0x73, 24, 0, 2, 0x4000, 0}, - {"Samsung KM29U256T", NAND_MFR_SAMSUNG, 0x75, 25, 0, 2, 0x4000, 0}, - {"Samsung unknown 64Mb", NAND_MFR_SAMSUNG, 0x76, 26, 0, 3, 0x4000, 0}, - {"Samsung KM29W32000", NAND_MFR_SAMSUNG, 0xe3, 22, 0, 2, 0x2000, 0}, - {"Samsung unknown 4Mb", NAND_MFR_SAMSUNG, 0xe5, 22, 0, 2, 0x2000, 0}, - {"Samsung KM29U64000", NAND_MFR_SAMSUNG, 0xe6, 23, 0, 2, 0x2000, 0}, - {"Samsung KM29W16000", NAND_MFR_SAMSUNG, 0xea, 21, 1, 2, 0x1000, 0}, - {"Samsung K9F5616Q0C", NAND_MFR_SAMSUNG, 0x45, 25, 0, 2, 0x4000, 1}, - {"Samsung K9K1216Q0C", NAND_MFR_SAMSUNG, 0x46, 26, 0, 3, 0x4000, 1}, - {"Samsung K9F1G08U0M", NAND_MFR_SAMSUNG, 0xf1, 27, 0, 2, 0, 0}, - {NULL,} -}; - -#endif /* __LINUX_MTD_NAND_IDS_H */ diff --git a/include/linux/mtd/nand_legacy.h b/include/linux/mtd/nand_legacy.h deleted file mode 100644 index 4334448146..0000000000 --- a/include/linux/mtd/nand_legacy.h +++ /dev/null @@ -1,196 +0,0 @@ -/* - * linux/include/linux/mtd/nand.h - * - * Copyright (c) 2000 David Woodhouse - * Steven J. Hill - * Thomas Gleixner - * - * $Id: nand.h,v 1.7 2003/07/24 23:30:46 a0384864 Exp $ - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * Info: - * Contains standard defines and IDs for NAND flash devices - * - * Changelog: - * 01-31-2000 DMW Created - * 09-18-2000 SJH Moved structure out of the Disk-On-Chip drivers - * so it can be used by other NAND flash device - * drivers. I also changed the copyright since none - * of the original contents of this file are specific - * to DoC devices. David can whack me with a baseball - * bat later if I did something naughty. - * 10-11-2000 SJH Added private NAND flash structure for driver - * 10-24-2000 SJH Added prototype for 'nand_scan' function - * 10-29-2001 TG changed nand_chip structure to support - * hardwarespecific function for accessing control lines - * 02-21-2002 TG added support for different read/write adress and - * ready/busy line access function - * 02-26-2002 TG added chip_delay to nand_chip structure to optimize - * command delay times for different chips - * 04-28-2002 TG OOB config defines moved from nand.c to avoid duplicate - * defines in jffs2/wbuf.c - */ -#ifndef __LINUX_MTD_NAND_LEGACY_H -#define __LINUX_MTD_NAND_LEGACY_H - -#ifndef CONFIG_NAND_LEGACY -#error This module is for the legacy NAND support -#endif - -/* The maximum number of NAND chips in an array */ -#ifndef CONFIG_SYS_NAND_MAX_CHIPS -#define CONFIG_SYS_NAND_MAX_CHIPS 1 -#endif - -/* - * Standard NAND flash commands - */ -#define NAND_CMD_READ0 0 -#define NAND_CMD_READ1 1 -#define NAND_CMD_PAGEPROG 0x10 -#define NAND_CMD_READOOB 0x50 -#define NAND_CMD_ERASE1 0x60 -#define NAND_CMD_STATUS 0x70 -#define NAND_CMD_SEQIN 0x80 -#define NAND_CMD_READID 0x90 -#define NAND_CMD_ERASE2 0xd0 -#define NAND_CMD_RESET 0xff - -/* - * NAND Private Flash Chip Data - * - * Structure overview: - * - * IO_ADDR - address to access the 8 I/O lines of the flash device - * - * hwcontrol - hardwarespecific function for accesing control-lines - * - * dev_ready - hardwarespecific function for accesing device ready/busy line - * - * chip_lock - spinlock used to protect access to this structure - * - * wq - wait queue to sleep on if a NAND operation is in progress - * - * state - give the current state of the NAND device - * - * page_shift - number of address bits in a page (column address bits) - * - * data_buf - data buffer passed to/from MTD user modules - * - * data_cache - data cache for redundant page access and shadow for - * ECC failure - * - * ecc_code_buf - used only for holding calculated or read ECCs for - * a page read or written when ECC is in use - * - * reserved - padding to make structure fall on word boundary if - * when ECC is in use - */ -struct Nand { - char floor, chip; - unsigned long curadr; - unsigned char curmode; - /* Also some erase/write/pipeline info when we get that far */ -}; - -struct nand_chip { - int page_shift; - u_char *data_buf; - u_char *data_cache; - int cache_page; - u_char ecc_code_buf[6]; - u_char reserved[2]; - char ChipID; /* Type of DiskOnChip */ - struct Nand *chips; - int chipshift; - char* chips_name; - unsigned long erasesize; - unsigned long mfr; /* Flash IDs - only one type of flash per device */ - unsigned long id; - char* name; - int numchips; - char page256; - char pageadrlen; - unsigned long IO_ADDR; /* address to access the 8 I/O lines to the flash device */ - unsigned long totlen; - uint oobblock; /* Size of OOB blocks (e.g. 512) */ - uint oobsize; /* Amount of OOB data per block (e.g. 16) */ - uint eccsize; - int bus16; -}; - -/* - * NAND Flash Manufacturer ID Codes - */ -#define NAND_MFR_TOSHIBA 0x98 -#define NAND_MFR_SAMSUNG 0xec - -/* - * NAND Flash Device ID Structure - * - * Structure overview: - * - * name - Complete name of device - * - * manufacture_id - manufacturer ID code of device. - * - * model_id - model ID code of device. - * - * chipshift - total number of address bits for the device which - * is used to calculate address offsets and the total - * number of bytes the device is capable of. - * - * page256 - denotes if flash device has 256 byte pages or not. - * - * pageadrlen - number of bytes minus one needed to hold the - * complete address into the flash array. Keep in - * mind that when a read or write is done to a - * specific address, the address is input serially - * 8 bits at a time. This structure member is used - * by the read/write routines as a loop index for - * shifting the address out 8 bits at a time. - * - * erasesize - size of an erase block in the flash device. - */ -struct nand_flash_dev { - char * name; - int manufacture_id; - int model_id; - int chipshift; - char page256; - char pageadrlen; - unsigned long erasesize; - int bus16; -}; - -/* -* Constants for oob configuration -*/ -#define NAND_NOOB_ECCPOS0 0 -#define NAND_NOOB_ECCPOS1 1 -#define NAND_NOOB_ECCPOS2 2 -#define NAND_NOOB_ECCPOS3 3 -#define NAND_NOOB_ECCPOS4 6 -#define NAND_NOOB_ECCPOS5 7 -#define NAND_NOOB_BADBPOS -1 -#define NAND_NOOB_ECCVPOS -1 - -#define NAND_JFFS2_OOB_ECCPOS0 0 -#define NAND_JFFS2_OOB_ECCPOS1 1 -#define NAND_JFFS2_OOB_ECCPOS2 2 -#define NAND_JFFS2_OOB_ECCPOS3 3 -#define NAND_JFFS2_OOB_ECCPOS4 6 -#define NAND_JFFS2_OOB_ECCPOS5 7 -#define NAND_JFFS2_OOB_BADBPOS 5 -#define NAND_JFFS2_OOB_ECCVPOS 4 - -#define NAND_JFFS2_OOB8_FSDAPOS 6 -#define NAND_JFFS2_OOB16_FSDAPOS 8 -#define NAND_JFFS2_OOB8_FSDALEN 2 -#define NAND_JFFS2_OOB16_FSDALEN 8 - -unsigned long nand_probe(unsigned long physadr); -#endif /* __LINUX_MTD_NAND_LEGACY_H */ diff --git a/include/nand.h b/include/nand.h index 23f3ca1db8..2a81597a65 100644 --- a/include/nand.h +++ b/include/nand.h @@ -26,7 +26,6 @@ extern void nand_init(void); -#ifndef CONFIG_NAND_LEGACY #include #include #include @@ -130,5 +129,4 @@ void board_nand_select_device(struct nand_chip *nand, int chip); __attribute__((noreturn)) void nand_boot(void); -#endif /* !CONFIG_NAND_LEGACY */ #endif diff --git a/lib_generic/crc32.c b/lib_generic/crc32.c index 3927ce13c2..b27048ceeb 100644 --- a/lib_generic/crc32.c +++ b/lib_generic/crc32.c @@ -172,9 +172,7 @@ uint32_t ZEXPORT crc32 (uint32_t crc, const Bytef *buf, uInt len) return crc ^ 0xffffffffL; } -#if defined(CONFIG_CMD_JFFS2) || \ - (defined(CONFIG_CMD_NAND) \ - && !defined(CONFIG_NAND_LEGACY)) +#if defined(CONFIG_CMD_JFFS2) || defined(CONFIG_CMD_NAND) /* No ones complement version. JFFS2 (and other things ?) * don't use ones compliment in their CRC calculations.