From: Yifeng Zhao Date: Mon, 7 Jun 2021 08:40:29 +0000 (+0800) Subject: mtd: nand: NFC drivers for RK3308, RK2928 and others X-Git-Tag: v2025.01-rc5-pxa1908~1819^2~8^2 X-Git-Url: http://git.dujemihanovic.xyz/img/html/index.html?a=commitdiff_plain;h=b12dc5d6fa766b26f567a1f569d4a7effef3b49f;p=u-boot.git mtd: nand: NFC drivers for RK3308, RK2928 and others This driver supports Rockchip NFC (NAND Flash Controller) found on RK3308, RK2928, RKPX30, RV1108 and other SOCs. The driver has been tested using 8-bit NAND interface on the ARM based RK3308 platform. Support Rockchip SoCs and NFC versions: - PX30 and RK3326(NFCv900). ECC: 16/40/60/70 bits/1KB. CLOCK: ahb and nfc. - RK3308 and RV1108(NFCv800). ECC: 16 bits/1KB. CLOCK: ahb and nfc. - RK3036 and RK3128(NFCv622). ECC: 16/24/40/60 bits/1KB. CLOCK: ahb and nfc. - RK3066, RK3188 and RK2928(NFCv600). ECC: 16/24/40/60 bits/1KB. CLOCK: ahb. Supported features: - Read full page data by DMA. - Support HW ECC(one step is 1KB). - Support 2 - 32K page size. - Support 8 CS(depend on SoCs) Limitations: - No support for the ecc step size is 512. - Untested on some SoCs. - No support for subpages. - No support for the builtin randomizer. - The original bad block mask is not supported. It is recommended to use the BBT(bad block table). Signed-off-by: Yifeng Zhao Reviewed-by: Kever Yang --- diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig index ed151ee0a5..a901ce5511 100644 --- a/drivers/mtd/nand/raw/Kconfig +++ b/drivers/mtd/nand/raw/Kconfig @@ -333,6 +333,22 @@ config CORTINA_NAND The controller supports a maximum 8k page size and supports a maximum 40-bit error correction per sector of 1024 bytes. +config ROCKCHIP_NAND + bool "Support for NAND controller on Rockchip SoCs" + depends on ARCH_ROCKCHIP + select SYS_NAND_SELF_INIT + select DM_MTD + imply CMD_NAND + help + Enables support for NAND Flash chips on Rockchip SoCs platform. + This controller is found on Rockchip SoCs. + There are four different versions of NAND FLASH Controllers, + including: + NFC v600: RK2928, RK3066, RK3188 + NFC v622: RK3036, RK3128 + NFC v800: RK3308, RV1108 + NFC v900: PX30, RK3326 + comment "Generic NAND options" config SYS_NAND_BLOCK_SIZE diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile index f3f0e15a15..a5ed2c536f 100644 --- a/drivers/mtd/nand/raw/Makefile +++ b/drivers/mtd/nand/raw/Makefile @@ -70,6 +70,7 @@ obj-$(CONFIG_NAND_SUNXI) += sunxi_nand.o obj-$(CONFIG_NAND_ZYNQ) += zynq_nand.o obj-$(CONFIG_NAND_STM32_FMC2) += stm32_fmc2_nand.o obj-$(CONFIG_CORTINA_NAND) += cortina_nand.o +obj-$(CONFIG_ROCKCHIP_NAND) += rockchip_nfc.o else # minimal SPL drivers diff --git a/drivers/mtd/nand/raw/rockchip_nfc.c b/drivers/mtd/nand/raw/rockchip_nfc.c new file mode 100644 index 0000000000..21776f3b14 --- /dev/null +++ b/drivers/mtd/nand/raw/rockchip_nfc.c @@ -0,0 +1,1253 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Rockchip NAND Flash controller driver. + * Copyright (C) 2021 Rockchip Inc. + * Author: Yifeng Zhao + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/* + * NFC Page Data Layout: + * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data + + * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data + + * ...... + * NAND Page Data Layout: + * 1024 * n data + m Bytes oob + * Original Bad Block Mask Location: + * First byte of oob(spare). + * nand_chip->oob_poi data layout: + * 4Bytes sys data + .... + 4Bytes sys data + ECC data. + */ + +/* NAND controller register definition */ +#define NFC_READ (0) +#define NFC_WRITE (1) + +#define NFC_FMCTL (0x00) +#define FMCTL_CE_SEL_M 0xFF +#define FMCTL_CE_SEL(x) (1 << (x)) +#define FMCTL_WP BIT(8) +#define FMCTL_RDY BIT(9) + +#define NFC_FMWAIT (0x04) +#define FLCTL_RST BIT(0) +#define FLCTL_WR (1) /* 0: read, 1: write */ +#define FLCTL_XFER_ST BIT(2) +#define FLCTL_XFER_EN BIT(3) +#define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */ +#define FLCTL_XFER_READY BIT(20) +#define FLCTL_XFER_SECTOR (22) +#define FLCTL_TOG_FIX BIT(29) + +#define BCHCTL_BANK_M (7 << 5) +#define BCHCTL_BANK (5) + +#define DMA_ST BIT(0) +#define DMA_WR (1) /* 0: write, 1: read */ +#define DMA_EN BIT(2) +#define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */ +#define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */ +#define DMA_INC_NUM (9) /* 1 - 16 */ + +#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\ + (((x) >> (e).high) & (e).high_mask) << (e).low_bn) +#define INT_DMA BIT(0) +#define NFC_BANK (0x800) +#define NFC_BANK_STEP (0x100) +#define BANK_DATA (0x00) +#define BANK_ADDR (0x04) +#define BANK_CMD (0x08) +#define NFC_SRAM0 (0x1000) +#define NFC_SRAM1 (0x1400) +#define NFC_SRAM_SIZE (0x400) +#define NFC_TIMEOUT_MS (500) +#define NFC_MAX_OOB_PER_STEP 128 +#define NFC_MIN_OOB_PER_STEP 64 +#define MAX_DATA_SIZE 0xFFFC +#define MAX_ADDRESS_CYC 6 +#define NFC_ECC_MAX_MODES 4 +#define NFC_RB_DELAY_US 50 +#define NFC_MAX_PAGE_SIZE (16 * 1024) +#define NFC_MAX_OOB_SIZE (16 * 128) +#define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */ +#define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data.*/ +#define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */ +#define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs)) + +enum nfc_type { + NFC_V6, + NFC_V8, + NFC_V9, +}; + +/** + * struct rk_ecc_cnt_status: represent a ecc status data. + * @err_flag_bit: error flag bit index at register. + * @low: ECC count low bit index at register. + * @low_mask: mask bit. + * @low_bn: ECC count low bit number. + * @high: ECC count high bit index at register. + * @high_mask: mask bit + */ +struct ecc_cnt_status { + u8 err_flag_bit; + u8 low; + u8 low_mask; + u8 low_bn; + u8 high; + u8 high_mask; +}; + +/** + * @type: NFC version + * @ecc_strengths: ECC strengths + * @ecc_cfgs: ECC config values + * @flctl_off: FLCTL register offset + * @bchctl_off: BCHCTL register offset + * @dma_data_buf_off: DMA_DATA_BUF register offset + * @dma_oob_buf_off: DMA_OOB_BUF register offset + * @dma_cfg_off: DMA_CFG register offset + * @dma_st_off: DMA_ST register offset + * @bch_st_off: BCG_ST register offset + * @randmz_off: RANDMZ register offset + * @int_en_off: interrupt enable register offset + * @int_clr_off: interrupt clean register offset + * @int_st_off: interrupt status register offset + * @oob0_off: oob0 register offset + * @oob1_off: oob1 register offset + * @ecc0: represent ECC0 status data + * @ecc1: represent ECC1 status data + */ +struct nfc_cfg { + enum nfc_type type; + u8 ecc_strengths[NFC_ECC_MAX_MODES]; + u32 ecc_cfgs[NFC_ECC_MAX_MODES]; + u32 flctl_off; + u32 bchctl_off; + u32 dma_cfg_off; + u32 dma_data_buf_off; + u32 dma_oob_buf_off; + u32 dma_st_off; + u32 bch_st_off; + u32 randmz_off; + u32 int_en_off; + u32 int_clr_off; + u32 int_st_off; + u32 oob0_off; + u32 oob1_off; + struct ecc_cnt_status ecc0; + struct ecc_cnt_status ecc1; +}; + +struct rk_nfc_nand_chip { + struct nand_chip chip; + + u16 boot_blks; + u16 metadata_size; + u32 boot_ecc; + u32 timing; + + u8 nsels; + u8 sels[0]; + /* Nothing after this field. */ +}; + +struct rk_nfc { + struct nand_hw_control controller; + const struct nfc_cfg *cfg; + struct udevice *dev; + + struct clk *nfc_clk; + struct clk *ahb_clk; + void __iomem *regs; + + int selected_bank; + u32 band_offset; + u32 cur_ecc; + u32 cur_timing; + + u8 *page_buf; + u32 *oob_buf; + + unsigned long assigned_cs; +}; + +static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip) +{ + return container_of(chip, struct rk_nfc_nand_chip, chip); +} + +static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i) +{ + return (u8 *)p + i * chip->ecc.size; +} + +static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i) +{ + u8 *poi; + + poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE; + + return poi; +} + +static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i) +{ + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + u8 *poi; + + poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i; + + return poi; +} + +static inline int rk_nfc_data_len(struct nand_chip *chip) +{ + return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE; +} + +static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + + return nfc->page_buf + i * rk_nfc_data_len(chip); +} + +static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + + return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size; +} + +static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + u32 reg, i; + + for (i = 0; i < NFC_ECC_MAX_MODES; i++) { + if (strength == nfc->cfg->ecc_strengths[i]) { + reg = nfc->cfg->ecc_cfgs[i]; + break; + } + } + + if (i >= NFC_ECC_MAX_MODES) + return -EINVAL; + + writel(reg, nfc->regs + nfc->cfg->bchctl_off); + + /* Save chip ECC setting */ + nfc->cur_ecc = strength; + + return 0; +} + +static void rk_nfc_select_chip(struct mtd_info *mtd, int cs) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + u32 val; + + if (cs < 0) { + nfc->selected_bank = -1; + /* Deselect the currently selected target. */ + val = readl(nfc->regs + NFC_FMCTL); + val &= ~FMCTL_CE_SEL_M; + writel(val, nfc->regs + NFC_FMCTL); + return; + } + + nfc->selected_bank = rknand->sels[cs]; + nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP; + + val = readl(nfc->regs + NFC_FMCTL); + val &= ~FMCTL_CE_SEL_M; + val |= FMCTL_CE_SEL(nfc->selected_bank); + + writel(val, nfc->regs + NFC_FMCTL); + + /* + * Compare current chip timing with selected chip timing and + * change if needed. + */ + if (nfc->cur_timing != rknand->timing) { + writel(rknand->timing, nfc->regs + NFC_FMWAIT); + nfc->cur_timing = rknand->timing; + } + + /* + * Compare current chip ECC setting with selected chip ECC setting and + * change if needed. + */ + if (nfc->cur_ecc != ecc->strength) + rk_nfc_hw_ecc_setup(chip, ecc->strength); +} + +static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc) +{ + u32 timeout = (CONFIG_SYS_HZ * NFC_TIMEOUT_MS) / 1000; + u32 time_start; + + time_start = get_timer(0); + do { + if (readl(nfc->regs + NFC_FMCTL) & FMCTL_RDY) + return 0; + } while (get_timer(time_start) < timeout); + + dev_err(nfc->dev, "wait for io ready timedout\n"); + return -ETIMEDOUT; +} + +static void rk_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct rk_nfc *nfc = nand_get_controller_data(chip); + void __iomem *bank_base; + int i = 0; + + bank_base = nfc->regs + nfc->band_offset + BANK_DATA; + + for (i = 0; i < len; i++) + buf[i] = readl(bank_base); +} + +static void rk_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct rk_nfc *nfc = nand_get_controller_data(chip); + void __iomem *bank_base; + int i = 0; + + bank_base = nfc->regs + nfc->band_offset + BANK_DATA; + + for (i = 0; i < len; i++) + writel(buf[i], bank_base); +} + +static void rk_nfc_cmd(struct mtd_info *mtd, int dat, unsigned int ctrl) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct rk_nfc *nfc = nand_get_controller_data(chip); + void __iomem *bank_base; + + bank_base = nfc->regs + nfc->band_offset; + + if (ctrl & NAND_CTRL_CHANGE) { + if (ctrl & NAND_ALE) + bank_base += BANK_ADDR; + else if (ctrl & NAND_CLE) + bank_base += BANK_CMD; + chip->IO_ADDR_W = bank_base; + } + + if (dat != NAND_CMD_NONE) + writel(dat & 0xFF, chip->IO_ADDR_W); +} + +static uint8_t rockchip_nand_read_byte(struct mtd_info *mtd) +{ + uint8_t ret; + + rk_nfc_read_buf(mtd, &ret, 1); + + return ret; +} + +static int rockchip_nand_dev_ready(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct rk_nfc *nfc = nand_get_controller_data(chip); + + if (readl(nfc->regs + NFC_FMCTL) & FMCTL_RDY) + return 1; + + return 0; +} + +static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB, + dma_addr_t dma_data, dma_addr_t dma_oob) +{ + u32 dma_reg, fl_reg, bch_reg; + + dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) | + (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM); + + fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT | + (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX; + + if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) { + bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off); + bch_reg = (bch_reg & (~BCHCTL_BANK_M)) | + (nfc->selected_bank << BCHCTL_BANK); + writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off); + } + + writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off); + writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off); + writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off); + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); + fl_reg |= FLCTL_XFER_ST; + writel(fl_reg, nfc->regs + nfc->cfg->flctl_off); +} + +static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc) +{ + unsigned long timeout = (CONFIG_SYS_HZ * NFC_TIMEOUT_MS) / 1000; + void __iomem *ptr = nfc->regs + nfc->cfg->flctl_off; + u32 time_start; + + time_start = get_timer(0); + + do { + if (readl(ptr) & FLCTL_XFER_READY) + return 0; + } while (get_timer(time_start) < timeout); + + dev_err(nfc->dev, "wait for io ready timedout\n"); + return -ETIMEDOUT; +} + +static int rk_nfc_write_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, + const u8 *buf, + int oob_required, + int page) +{ + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int i, pages_per_blk; + + pages_per_blk = mtd->erasesize / mtd->writesize; + if ((page < (pages_per_blk * rknand->boot_blks)) && + rknand->boot_ecc != ecc->strength) { + /* + * There's currently no method to notify the MTD framework that + * a different ECC strength is in use for the boot blocks. + */ + return -EIO; + } + + if (!buf) + memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize); + + for (i = 0; i < ecc->steps; i++) { + /* Copy data to the NFC buffer. */ + if (buf) + memcpy(rk_nfc_data_ptr(chip, i), + rk_nfc_buf_to_data_ptr(chip, buf, i), + ecc->size); + /* + * The first four bytes of OOB are reserved for the + * boot ROM. In some debugging cases, such as with a + * read, erase and write back test these 4 bytes stored + * in OOB also need to be written back. + * + * The function nand_block_bad detects bad blocks like: + * + * bad = chip->oob_poi[chip->badblockpos]; + * + * chip->badblockpos == 0 for a large page NAND Flash, + * so chip->oob_poi[0] is the bad block mask (BBM). + * + * The OOB data layout on the NFC is: + * + * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... + * + * or + * + * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... + * + * The code here just swaps the first 4 bytes with the last + * 4 bytes without losing any data. + * + * The chip->oob_poi data layout: + * + * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3 + * + * The rk_nfc_ooblayout_free() function already has reserved + * these 4 bytes with: + * + * oob_region->offset = NFC_SYS_DATA_SIZE + 2; + */ + if (!i) + memcpy(rk_nfc_oob_ptr(chip, i), + rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1), + NFC_SYS_DATA_SIZE); + else + memcpy(rk_nfc_oob_ptr(chip, i), + rk_nfc_buf_to_oob_ptr(chip, i - 1), + NFC_SYS_DATA_SIZE); + /* Copy ECC data to the NFC buffer. */ + memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, + rk_nfc_buf_to_oob_ecc_ptr(chip, i), + ecc->bytes); + } + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + rk_nfc_write_buf(mtd, buf, mtd->writesize + mtd->oobsize); + return nand_prog_page_end_op(chip); +} + +static int rk_nfc_write_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, + const u8 *buf, + int oob_required, + int page) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : + NFC_MIN_OOB_PER_STEP; + int pages_per_blk = mtd->erasesize / mtd->writesize; + int ret = 0, i, boot_rom_mode = 0; + dma_addr_t dma_data, dma_oob; + u32 reg; + u8 *oob; + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + if (buf) + memcpy(nfc->page_buf, buf, mtd->writesize); + else + memset(nfc->page_buf, 0xFF, mtd->writesize); + + /* + * The first blocks (4, 8 or 16 depending on the device) are used + * by the boot ROM and the first 32 bits of OOB need to link to + * the next page address in the same block. We can't directly copy + * OOB data from the MTD framework, because this page address + * conflicts for example with the bad block marker (BBM), + * so we shift all OOB data including the BBM with 4 byte positions. + * As a consequence the OOB size available to the MTD framework is + * also reduced with 4 bytes. + * + * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ... + * + * If a NAND is not a boot medium or the page is not a boot block, + * the first 4 bytes are left untouched by writing 0xFF to them. + * + * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ... + * + * Configure the ECC algorithm supported by the boot ROM. + */ + if (page < (pages_per_blk * rknand->boot_blks)) { + boot_rom_mode = 1; + if (rknand->boot_ecc != ecc->strength) + rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc); + } + + for (i = 0; i < ecc->steps; i++) { + if (!i) { + reg = 0xFFFFFFFF; + } else { + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; + reg = oob[0] | oob[1] << 8 | oob[2] << 16 | + oob[3] << 24; + } + + if (!i && boot_rom_mode) + reg = (page & (pages_per_blk - 1)) * 4; + + if (nfc->cfg->type == NFC_V9) + nfc->oob_buf[i] = reg; + else + nfc->oob_buf[i * (oob_step / 4)] = reg; + } + + dma_data = dma_map_single((void *)nfc->page_buf, + mtd->writesize, DMA_TO_DEVICE); + dma_oob = dma_map_single(nfc->oob_buf, + ecc->steps * oob_step, + DMA_TO_DEVICE); + + rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data, + dma_oob); + ret = rk_nfc_wait_for_xfer_done(nfc); + + dma_unmap_single(dma_data, mtd->writesize, + DMA_TO_DEVICE); + dma_unmap_single(dma_oob, ecc->steps * oob_step, + DMA_TO_DEVICE); + + if (boot_rom_mode && rknand->boot_ecc != ecc->strength) + rk_nfc_hw_ecc_setup(chip, ecc->strength); + + if (ret) { + dev_err(nfc->dev, "write: wait transfer done timeout.\n"); + return -ETIMEDOUT; + } + + return nand_prog_page_end_op(chip); +} + +static int rk_nfc_write_oob(struct mtd_info *mtd, + struct nand_chip *chip, int page) +{ + return rk_nfc_write_page_hwecc(mtd, chip, NULL, 1, page); +} + +static int rk_nfc_read_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, + u8 *buf, + int oob_required, + int page) +{ + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int i, pages_per_blk; + + pages_per_blk = mtd->erasesize / mtd->writesize; + if ((page < (pages_per_blk * rknand->boot_blks)) && + nfc->selected_bank == 0 && + rknand->boot_ecc != ecc->strength) { + /* + * There's currently no method to notify the MTD framework that + * a different ECC strength is in use for the boot blocks. + */ + return -EIO; + } + + nand_read_page_op(chip, page, 0, NULL, 0); + rk_nfc_read_buf(mtd, nfc->page_buf, mtd->writesize + mtd->oobsize); + for (i = 0; i < ecc->steps; i++) { + /* + * The first four bytes of OOB are reserved for the + * boot ROM. In some debugging cases, such as with a read, + * erase and write back test, these 4 bytes also must be + * saved somewhere, otherwise this information will be + * lost during a write back. + */ + if (!i) + memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1), + rk_nfc_oob_ptr(chip, i), + NFC_SYS_DATA_SIZE); + else + memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1), + rk_nfc_oob_ptr(chip, i), + NFC_SYS_DATA_SIZE); + + /* Copy ECC data from the NFC buffer. */ + memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i), + rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE, + ecc->bytes); + + /* Copy data from the NFC buffer. */ + if (buf) + memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i), + rk_nfc_data_ptr(chip, i), + ecc->size); + } + + return 0; +} + +static int rk_nfc_read_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, + u8 *buf, + int oob_required, + int page) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP : + NFC_MIN_OOB_PER_STEP; + int pages_per_blk = mtd->erasesize / mtd->writesize; + dma_addr_t dma_data, dma_oob; + int ret = 0, i, cnt, boot_rom_mode = 0; + int max_bitflips = 0, bch_st, ecc_fail = 0; + u8 *oob; + u32 tmp; + + nand_read_page_op(chip, page, 0, NULL, 0); + + dma_data = dma_map_single(nfc->page_buf, + mtd->writesize, + DMA_FROM_DEVICE); + dma_oob = dma_map_single(nfc->oob_buf, + ecc->steps * oob_step, + DMA_FROM_DEVICE); + + /* + * The first blocks (4, 8 or 16 depending on the device) + * are used by the boot ROM. + * Configure the ECC algorithm supported by the boot ROM. + */ + if (page < (pages_per_blk * rknand->boot_blks) && + nfc->selected_bank == 0) { + boot_rom_mode = 1; + if (rknand->boot_ecc != ecc->strength) + rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc); + } + + rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data, + dma_oob); + ret = rk_nfc_wait_for_xfer_done(nfc); + + dma_unmap_single(dma_data, mtd->writesize, + DMA_FROM_DEVICE); + dma_unmap_single(dma_oob, ecc->steps * oob_step, + DMA_FROM_DEVICE); + + if (ret) { + ret = -ETIMEDOUT; + dev_err(nfc->dev, "read: wait transfer done timeout.\n"); + goto timeout_err; + } + + for (i = 1; i < ecc->steps; i++) { + oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE; + if (nfc->cfg->type == NFC_V9) + tmp = nfc->oob_buf[i]; + else + tmp = nfc->oob_buf[i * (oob_step / 4)]; + *oob++ = (u8)tmp; + *oob++ = (u8)(tmp >> 8); + *oob++ = (u8)(tmp >> 16); + *oob++ = (u8)(tmp >> 24); + } + + for (i = 0; i < (ecc->steps / 2); i++) { + bch_st = readl_relaxed(nfc->regs + + nfc->cfg->bch_st_off + i * 4); + if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) || + bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) { + mtd->ecc_stats.failed++; + ecc_fail = 1; + } else { + cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0); + mtd->ecc_stats.corrected += cnt; + max_bitflips = max_t(u32, max_bitflips, cnt); + + cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1); + mtd->ecc_stats.corrected += cnt; + max_bitflips = max_t(u32, max_bitflips, cnt); + } + } + + if (buf) + memcpy(buf, nfc->page_buf, mtd->writesize); + +timeout_err: + if (boot_rom_mode && rknand->boot_ecc != ecc->strength) + rk_nfc_hw_ecc_setup(chip, ecc->strength); + + if (ret) + return ret; + + if (ecc_fail) { + dev_err(nfc->dev, "read page: %x ecc error!\n", page); + return 0; + } + + return max_bitflips; +} + +static int rk_nfc_read_oob(struct mtd_info *mtd, + struct nand_chip *chip, int page) +{ + return rk_nfc_read_page_hwecc(mtd, chip, NULL, 1, page); +} + +static inline void rk_nfc_hw_init(struct rk_nfc *nfc) +{ + /* Disable flash wp. */ + writel(FMCTL_WP, nfc->regs + NFC_FMCTL); + /* Config default timing 40ns at 150 Mhz NFC clock. */ + writel(0x1081, nfc->regs + NFC_FMWAIT); + nfc->cur_timing = 0x1081; + /* Disable randomizer and DMA. */ + writel(0, nfc->regs + nfc->cfg->randmz_off); + writel(0, nfc->regs + nfc->cfg->dma_cfg_off); + writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off); +} + +static int rk_nfc_enable_clks(struct udevice *dev, struct rk_nfc *nfc) +{ + int ret; + + if (!IS_ERR(nfc->nfc_clk)) { + ret = clk_prepare_enable(nfc->nfc_clk); + if (ret) + dev_err(dev, "failed to enable NFC clk\n"); + } + + ret = clk_prepare_enable(nfc->ahb_clk); + if (ret) { + dev_err(dev, "failed to enable ahb clk\n"); + if (!IS_ERR(nfc->nfc_clk)) + clk_disable_unprepare(nfc->nfc_clk); + } + + return 0; +} + +static void rk_nfc_disable_clks(struct rk_nfc *nfc) +{ + if (!IS_ERR(nfc->nfc_clk)) + clk_disable_unprepare(nfc->nfc_clk); + clk_disable_unprepare(nfc->ahb_clk); +} + +static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oob_region) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + + if (section) + return -ERANGE; + + /* + * The beginning of the OOB area stores the reserved data for the NFC, + * the size of the reserved data is NFC_SYS_DATA_SIZE bytes. + */ + oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2; + oob_region->offset = NFC_SYS_DATA_SIZE + 2; + + return 0; +} + +static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oob_region) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip); + + if (section) + return -ERANGE; + + oob_region->length = mtd->oobsize - rknand->metadata_size; + oob_region->offset = rknand->metadata_size; + + return 0; +} + +static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = { + .rfree = rk_nfc_ooblayout_free, + .ecc = rk_nfc_ooblayout_ecc, +}; + +static int rk_nfc_ecc_init(struct rk_nfc *nfc, struct nand_chip *chip) +{ + const u8 *strengths = nfc->cfg->ecc_strengths; + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + u8 max_strength, nfc_max_strength; + int i; + + nfc_max_strength = nfc->cfg->ecc_strengths[0]; + /* If optional dt settings not present. */ + if (!ecc->size || !ecc->strength || + ecc->strength > nfc_max_strength) { + chip->ecc.size = 1024; + ecc->steps = mtd->writesize / ecc->size; + + /* + * HW ECC always requests the number of ECC bytes per 1024 byte + * blocks. The first 4 OOB bytes are reserved for sys data. + */ + max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 / + fls(8 * 1024); + if (max_strength > nfc_max_strength) + max_strength = nfc_max_strength; + + for (i = 0; i < 4; i++) { + if (max_strength >= strengths[i]) + break; + } + + if (i >= 4) { + dev_err(nfc->dev, "unsupported ECC strength\n"); + return -EOPNOTSUPP; + } + + ecc->strength = strengths[i]; + } + ecc->steps = mtd->writesize / ecc->size; + ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8); + + return 0; +} + +static int rk_nfc_nand_chip_init(ofnode node, struct rk_nfc *nfc, int devnum) +{ + struct rk_nfc_nand_chip *rknand; + struct udevice *dev = nfc->dev; + struct nand_ecc_ctrl *ecc; + struct nand_chip *chip; + struct mtd_info *mtd; + u32 cs[NFC_MAX_NSELS]; + int nsels, i, ret; + u32 tmp; + + if (!ofnode_get_property(node, "reg", &nsels)) + return -ENODEV; + nsels /= sizeof(u32); + if (!nsels || nsels > NFC_MAX_NSELS) { + dev_err(dev, "invalid reg property size %d\n", nsels); + return -EINVAL; + } + + rknand = kzalloc(sizeof(*rknand) + nsels * sizeof(u8), GFP_KERNEL); + if (!rknand) + return -ENOMEM; + + rknand->nsels = nsels; + rknand->timing = nfc->cur_timing; + + ret = ofnode_read_u32_array(node, "reg", cs, nsels); + if (ret < 0) { + dev_err(dev, "Could not retrieve reg property\n"); + return -EINVAL; + } + + for (i = 0; i < nsels; i++) { + if (cs[i] >= NFC_MAX_NSELS) { + dev_err(dev, "invalid CS: %u\n", cs[i]); + return -EINVAL; + } + + if (test_and_set_bit(cs[i], &nfc->assigned_cs)) { + dev_err(dev, "CS %u already assigned\n", cs[i]); + return -EINVAL; + } + + rknand->sels[i] = cs[i]; + } + + chip = &rknand->chip; + ecc = &chip->ecc; + ecc->mode = NAND_ECC_HW_SYNDROME; + + ret = ofnode_read_u32(node, "nand-ecc-strength", &tmp); + ecc->strength = ret ? 0 : tmp; + + ret = ofnode_read_u32(node, "nand-ecc-step-size", &tmp); + ecc->size = ret ? 0 : tmp; + + mtd = nand_to_mtd(chip); + mtd->owner = THIS_MODULE; + mtd->dev->parent = dev; + + nand_set_controller_data(chip, nfc); + + chip->chip_delay = NFC_RB_DELAY_US; + chip->select_chip = rk_nfc_select_chip; + chip->cmd_ctrl = rk_nfc_cmd; + chip->read_buf = rk_nfc_read_buf; + chip->write_buf = rk_nfc_write_buf; + chip->read_byte = rockchip_nand_read_byte; + chip->dev_ready = rockchip_nand_dev_ready; + chip->controller = &nfc->controller; + + chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; + chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER; + + mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops); + rk_nfc_hw_init(nfc); + ret = nand_scan_ident(mtd, nsels, NULL); + if (ret) + return ret; + + ret = rk_nfc_ecc_init(nfc, chip); + if (ret) { + dev_err(dev, "rk_nfc_ecc_init failed: %d\n", ret); + return ret; + } + + ret = ofnode_read_u32(node, "rockchip,boot-blks", &tmp); + rknand->boot_blks = ret ? 0 : tmp; + + ret = ofnode_read_u32(node, "rockchip,boot-ecc-strength", &tmp); + rknand->boot_ecc = ret ? ecc->strength : tmp; + + rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps; + + if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) { + dev_err(dev, + "driver needs at least %d bytes of meta data\n", + NFC_SYS_DATA_SIZE + 2); + return -EIO; + } + + if (!nfc->page_buf) { + nfc->page_buf = kzalloc(NFC_MAX_PAGE_SIZE, GFP_KERNEL); + if (!nfc->page_buf) + return -ENOMEM; + } + + if (!nfc->oob_buf) { + nfc->oob_buf = kzalloc(NFC_MAX_OOB_SIZE, GFP_KERNEL); + if (!nfc->oob_buf) { + kfree(nfc->page_buf); + nfc->page_buf = NULL; + return -ENOMEM; + } + } + + ecc->read_page = rk_nfc_read_page_hwecc; + ecc->read_page_raw = rk_nfc_read_page_raw; + ecc->read_oob = rk_nfc_read_oob; + ecc->write_page = rk_nfc_write_page_hwecc; + ecc->write_page_raw = rk_nfc_write_page_raw; + ecc->write_oob = rk_nfc_write_oob; + + ret = nand_scan_tail(mtd); + if (ret) { + dev_err(dev, "nand_scan_tail failed: %d\n", ret); + return ret; + } + + return nand_register(devnum, mtd); +} + +static int rk_nfc_nand_chips_init(struct udevice *dev, struct rk_nfc *nfc) +{ + int ret, i = 0; + ofnode child; + + ofnode_for_each_subnode(child, dev_ofnode(dev)) { + ret = rk_nfc_nand_chip_init(child, nfc, i++); + if (ret) + return ret; + } + + return 0; +} + +static struct nfc_cfg nfc_v6_cfg = { + .type = NFC_V6, + .ecc_strengths = {60, 40, 24, 16}, + .ecc_cfgs = { + 0x00040011, 0x00040001, 0x00000011, 0x00000001, + }, + .flctl_off = 0x08, + .bchctl_off = 0x0C, + .dma_cfg_off = 0x10, + .dma_data_buf_off = 0x14, + .dma_oob_buf_off = 0x18, + .dma_st_off = 0x1C, + .bch_st_off = 0x20, + .randmz_off = 0x150, + .int_en_off = 0x16C, + .int_clr_off = 0x170, + .int_st_off = 0x174, + .oob0_off = 0x200, + .oob1_off = 0x230, + .ecc0 = { + .err_flag_bit = 2, + .low = 3, + .low_mask = 0x1F, + .low_bn = 5, + .high = 27, + .high_mask = 0x1, + }, + .ecc1 = { + .err_flag_bit = 15, + .low = 16, + .low_mask = 0x1F, + .low_bn = 5, + .high = 29, + .high_mask = 0x1, + }, +}; + +static struct nfc_cfg nfc_v8_cfg = { + .type = NFC_V8, + .ecc_strengths = {16, 16, 16, 16}, + .ecc_cfgs = { + 0x00000001, 0x00000001, 0x00000001, 0x00000001, + }, + .flctl_off = 0x08, + .bchctl_off = 0x0C, + .dma_cfg_off = 0x10, + .dma_data_buf_off = 0x14, + .dma_oob_buf_off = 0x18, + .dma_st_off = 0x1C, + .bch_st_off = 0x20, + .randmz_off = 0x150, + .int_en_off = 0x16C, + .int_clr_off = 0x170, + .int_st_off = 0x174, + .oob0_off = 0x200, + .oob1_off = 0x230, + .ecc0 = { + .err_flag_bit = 2, + .low = 3, + .low_mask = 0x1F, + .low_bn = 5, + .high = 27, + .high_mask = 0x1, + }, + .ecc1 = { + .err_flag_bit = 15, + .low = 16, + .low_mask = 0x1F, + .low_bn = 5, + .high = 29, + .high_mask = 0x1, + }, +}; + +static struct nfc_cfg nfc_v9_cfg = { + .type = NFC_V9, + .ecc_strengths = {70, 60, 40, 16}, + .ecc_cfgs = { + 0x00000001, 0x06000001, 0x04000001, 0x02000001, + }, + .flctl_off = 0x10, + .bchctl_off = 0x20, + .dma_cfg_off = 0x30, + .dma_data_buf_off = 0x34, + .dma_oob_buf_off = 0x38, + .dma_st_off = 0x3C, + .bch_st_off = 0x150, + .randmz_off = 0x208, + .int_en_off = 0x120, + .int_clr_off = 0x124, + .int_st_off = 0x128, + .oob0_off = 0x200, + .oob1_off = 0x204, + .ecc0 = { + .err_flag_bit = 2, + .low = 3, + .low_mask = 0x7F, + .low_bn = 7, + .high = 0, + .high_mask = 0x0, + }, + .ecc1 = { + .err_flag_bit = 18, + .low = 19, + .low_mask = 0x7F, + .low_bn = 7, + .high = 0, + .high_mask = 0x0, + }, +}; + +static const struct udevice_id rk_nfc_id_table[] = { + { + .compatible = "rockchip,px30-nfc", + .data = (unsigned long)&nfc_v9_cfg + }, + { + .compatible = "rockchip,rk2928-nfc", + .data = (unsigned long)&nfc_v6_cfg + }, + { + .compatible = "rockchip,rv1108-nfc", + .data = (unsigned long)&nfc_v8_cfg + }, + { + .compatible = "rockchip,rk3308-nfc", + .data = (unsigned long)&nfc_v8_cfg + }, + { /* sentinel */ } +}; + +static int rk_nfc_probe(struct udevice *dev) +{ + struct rk_nfc *nfc = dev_get_priv(dev); + int ret = 0; + + nfc->cfg = (void *)dev_get_driver_data(dev); + nfc->dev = dev; + + nfc->regs = (void *)dev_read_addr(dev); + if (IS_ERR(nfc->regs)) { + ret = PTR_ERR(nfc->regs); + goto release_nfc; + } + + nfc->nfc_clk = devm_clk_get(dev, "nfc"); + if (IS_ERR(nfc->nfc_clk)) { + dev_dbg(dev, "no NFC clk\n"); + /* Some earlier models, such as rk3066, have no NFC clk. */ + } + + nfc->ahb_clk = devm_clk_get(dev, "ahb"); + if (IS_ERR(nfc->ahb_clk)) { + dev_err(dev, "no ahb clk\n"); + ret = PTR_ERR(nfc->ahb_clk); + goto release_nfc; + } + + ret = rk_nfc_enable_clks(dev, nfc); + if (ret) + goto release_nfc; + + spin_lock_init(&nfc->controller.lock); + init_waitqueue_head(&nfc->controller.wq); + + rk_nfc_hw_init(nfc); + + ret = rk_nfc_nand_chips_init(dev, nfc); + if (ret) { + dev_err(dev, "failed to init NAND chips\n"); + goto clk_disable; + } + return 0; + +clk_disable: + rk_nfc_disable_clks(nfc); +release_nfc: + return ret; +} + +U_BOOT_DRIVER(rockchip_nfc) = { + .name = "rockchip_nfc", + .id = UCLASS_MTD, + .of_match = rk_nfc_id_table, + .probe = rk_nfc_probe, + .priv_auto = sizeof(struct rk_nfc), +}; + +void board_nand_init(void) +{ + struct udevice *dev; + int ret; + + ret = uclass_get_device_by_driver(UCLASS_MTD, + DM_DRIVER_GET(rockchip_nfc), + &dev); + if (ret && ret != -ENODEV) + log_err("Failed to initialize ROCKCHIP NAND controller. (error %d)\n", + ret); +} + +int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst) +{ + struct mtd_info *mtd; + size_t length = size; + + mtd = get_nand_dev_by_index(0); + return nand_read_skip_bad(mtd, offs, &length, NULL, size, (u_char *)dst); +} + +void nand_deselect(void) {}