From: Siva Durga Prasad Paladugu Date: Tue, 27 Sep 2016 05:25:46 +0000 (+0530) Subject: mtd: nand: zynq_nand: Add nand driver support for zynq X-Git-Tag: v2025.01-rc5-pxa1908~8191 X-Git-Url: http://git.dujemihanovic.xyz/html/static/git-favicon.png?a=commitdiff_plain;h=ae798d2e7de0f404eaa846505f01bd88c5e70761;p=u-boot.git mtd: nand: zynq_nand: Add nand driver support for zynq Add nand flash controller driver support for zynq SoC. Signed-off-by: Siva Durga Prasad Paladugu Signed-off-by: Michal Simek --- diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index df154bfd32..65bb040407 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -87,6 +87,13 @@ config NAND_MXS This enables NAND driver for the NAND flash controller on the MXS processors. +config NAND_ZYNQ + bool "Support for Zynq Nand controller" + select SYS_NAND_SELF_INIT + help + This enables Nand driver support for Nand flash controller + found on Zynq SoC. + comment "Generic NAND options" # Enhance depends when converting drivers to Kconfig which use this config diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index 1df9273cdd..fd4bb66f50 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -67,6 +67,7 @@ obj-$(CONFIG_NAND_OMAP_GPMC) += omap_gpmc.o obj-$(CONFIG_NAND_OMAP_ELM) += omap_elm.o obj-$(CONFIG_NAND_PLAT) += nand_plat.o obj-$(CONFIG_NAND_SUNXI) += sunxi_nand.o +obj-$(CONFIG_NAND_ZYNQ) += zynq_nand.o else # minimal SPL drivers diff --git a/drivers/mtd/nand/zynq_nand.c b/drivers/mtd/nand/zynq_nand.c new file mode 100644 index 0000000000..cb3340d9b0 --- /dev/null +++ b/drivers/mtd/nand/zynq_nand.c @@ -0,0 +1,1186 @@ +/* + * (C) Copyright 2016 Xilinx, Inc. + * + * Xilinx Zynq NAND Flash Controller Driver + * This driver is based on plat_nand.c and mxc_nand.c drivers + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/* The NAND flash driver defines */ +#define ZYNQ_NAND_CMD_PHASE 1 +#define ZYNQ_NAND_DATA_PHASE 2 +#define ZYNQ_NAND_ECC_SIZE 512 +#define ZYNQ_NAND_SET_OPMODE_8BIT (0 << 0) +#define ZYNQ_NAND_SET_OPMODE_16BIT (1 << 0) +#define ZYNQ_NAND_ECC_STATUS (1 << 6) +#define ZYNQ_MEMC_CLRCR_INT_CLR1 (1 << 4) +#define ZYNQ_MEMC_SR_RAW_INT_ST1 (1 << 6) +#define ZYNQ_MEMC_SR_INT_ST1 (1 << 4) +#define ZYNQ_MEMC_NAND_ECC_MODE_MASK 0xC + +/* Flash memory controller operating parameters */ +#define ZYNQ_NAND_CLR_CONFIG ((0x1 << 1) | /* Disable interrupt */ \ + (0x1 << 4) | /* Clear interrupt */ \ + (0x1 << 6)) /* Disable ECC interrupt */ + +/* Assuming 50MHz clock (20ns cycle time) and 3V operation */ +#define ZYNQ_NAND_SET_CYCLES ((0x2 << 20) | /* t_rr from nand_cycles */ \ + (0x2 << 17) | /* t_ar from nand_cycles */ \ + (0x1 << 14) | /* t_clr from nand_cycles */ \ + (0x3 << 11) | /* t_wp from nand_cycles */ \ + (0x2 << 8) | /* t_rea from nand_cycles */ \ + (0x5 << 4) | /* t_wc from nand_cycles */ \ + (0x5 << 0)) /* t_rc from nand_cycles */ + + +#define ZYNQ_NAND_DIRECT_CMD ((0x4 << 23) | /* Chip 0 from interface 1 */ \ + (0x2 << 21)) /* UpdateRegs operation */ + +#define ZYNQ_NAND_ECC_CONFIG ((0x1 << 2) | /* ECC available on APB */ \ + (0x1 << 4) | /* ECC read at end of page */ \ + (0x0 << 5)) /* No Jumping */ + +#define ZYNQ_NAND_ECC_CMD1 ((0x80) | /* Write command */ \ + (0x00 << 8) | /* Read command */ \ + (0x30 << 16) | /* Read End command */ \ + (0x1 << 24)) /* Read End command calid */ + +#define ZYNQ_NAND_ECC_CMD2 ((0x85) | /* Write col change cmd */ \ + (0x05 << 8) | /* Read col change cmd */ \ + (0xE0 << 16) | /* Read col change end cmd */ \ + (0x1 << 24)) /* Read col change + end cmd valid */ +/* AXI Address definitions */ +#define START_CMD_SHIFT 3 +#define END_CMD_SHIFT 11 +#define END_CMD_VALID_SHIFT 20 +#define ADDR_CYCLES_SHIFT 21 +#define CLEAR_CS_SHIFT 21 +#define ECC_LAST_SHIFT 10 +#define COMMAND_PHASE (0 << 19) +#define DATA_PHASE (1 << 19) +#define ONDIE_ECC_FEATURE_ADDR 0x90 +#define ONDIE_ECC_FEATURE_ENABLE 0x08 + +#define ZYNQ_NAND_ECC_LAST (1 << ECC_LAST_SHIFT) /* Set ECC_Last */ +#define ZYNQ_NAND_CLEAR_CS (1 << CLEAR_CS_SHIFT) /* Clear chip select */ + +/* ECC block registers bit position and bit mask */ +#define ZYNQ_NAND_ECC_BUSY (1 << 6) /* ECC block is busy */ +#define ZYNQ_NAND_ECC_MASK 0x00FFFFFF /* ECC value mask */ + + +/* SMC register set */ +struct zynq_nand_smc_regs { + u32 csr; /* 0x00 */ + u32 reserved0[2]; + u32 cfr; /* 0x0C */ + u32 dcr; /* 0x10 */ + u32 scr; /* 0x14 */ + u32 sor; /* 0x18 */ + u32 reserved1[249]; + u32 esr; /* 0x400 */ + u32 emcr; /* 0x404 */ + u32 emcmd1r; /* 0x408 */ + u32 emcmd2r; /* 0x40C */ + u32 reserved2[2]; + u32 eval0r; /* 0x418 */ +}; +#define zynq_nand_smc_base ((struct zynq_nand_smc_regs __iomem *)\ + ZYNQ_SMC_BASEADDR) + +/* + * struct zynq_nand_info - Defines the NAND flash driver instance + * @parts: Pointer to the mtd_partition structure + * @nand_base: Virtual address of the NAND flash device + * @end_cmd_pending: End command is pending + * @end_cmd: End command + */ +struct zynq_nand_info { + void __iomem *nand_base; + u8 end_cmd_pending; + u8 end_cmd; +}; + +/* + * struct zynq_nand_command_format - Defines NAND flash command format + * @start_cmd: First cycle command (Start command) + * @end_cmd: Second cycle command (Last command) + * @addr_cycles: Number of address cycles required to send the address + * @end_cmd_valid: The second cycle command is valid for cmd or data phase + */ +struct zynq_nand_command_format { + u8 start_cmd; + u8 end_cmd; + u8 addr_cycles; + u8 end_cmd_valid; +}; + +/* The NAND flash operations command format */ +static const struct zynq_nand_command_format zynq_nand_commands[] = { + {NAND_CMD_READ0, NAND_CMD_READSTART, 5, ZYNQ_NAND_CMD_PHASE}, + {NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART, 2, ZYNQ_NAND_CMD_PHASE}, + {NAND_CMD_READID, NAND_CMD_NONE, 1, 0}, + {NAND_CMD_STATUS, NAND_CMD_NONE, 0, 0}, + {NAND_CMD_SEQIN, NAND_CMD_PAGEPROG, 5, ZYNQ_NAND_DATA_PHASE}, + {NAND_CMD_RNDIN, NAND_CMD_NONE, 2, 0}, + {NAND_CMD_ERASE1, NAND_CMD_ERASE2, 3, ZYNQ_NAND_CMD_PHASE}, + {NAND_CMD_RESET, NAND_CMD_NONE, 0, 0}, + {NAND_CMD_PARAM, NAND_CMD_NONE, 1, 0}, + {NAND_CMD_GET_FEATURES, NAND_CMD_NONE, 1, 0}, + {NAND_CMD_SET_FEATURES, NAND_CMD_NONE, 1, 0}, + {NAND_CMD_NONE, NAND_CMD_NONE, 0, 0}, + /* Add all the flash commands supported by the flash device */ +}; + +/* Define default oob placement schemes for large and small page devices */ +static struct nand_ecclayout nand_oob_16 = { + .eccbytes = 3, + .eccpos = {0, 1, 2}, + .oobfree = { + { .offset = 8, .length = 8 } + } +}; + +static struct nand_ecclayout nand_oob_64 = { + .eccbytes = 12, + .eccpos = { + 52, 53, 54, 55, 56, 57, + 58, 59, 60, 61, 62, 63}, + .oobfree = { + { .offset = 2, .length = 50 } + } +}; + +static struct nand_ecclayout ondie_nand_oob_64 = { + .eccbytes = 32, + + .eccpos = { + 8, 9, 10, 11, 12, 13, 14, 15, + 24, 25, 26, 27, 28, 29, 30, 31, + 40, 41, 42, 43, 44, 45, 46, 47, + 56, 57, 58, 59, 60, 61, 62, 63 + }, + + .oobfree = { + { .offset = 4, .length = 4 }, + { .offset = 20, .length = 4 }, + { .offset = 36, .length = 4 }, + { .offset = 52, .length = 4 } + } +}; + +/* bbt decriptors for chips with on-die ECC and + chips with 64-byte OOB */ +static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; +static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 4, + .len = 4, + .veroffs = 20, + .maxblocks = 4, + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 4, + .len = 4, + .veroffs = 20, + .maxblocks = 4, + .pattern = mirror_pattern +}; + +/* + * zynq_nand_waitfor_ecc_completion - Wait for ECC completion + * + * returns: status for command completion, -1 for Timeout + */ +static int zynq_nand_waitfor_ecc_completion(void) +{ + unsigned long timeout; + u32 status; + + /* Wait max 10us */ + timeout = 10; + status = readl(&zynq_nand_smc_base->esr); + while (status & ZYNQ_NAND_ECC_BUSY) { + status = readl(&zynq_nand_smc_base->esr); + if (timeout == 0) + return -1; + timeout--; + udelay(1); + } + + return status; +} + +/* + * zynq_nand_init_nand_flash - Initialize NAND controller + * @option: Device property flags + * + * This function initializes the NAND flash interface on the NAND controller. + * + * returns: 0 on success or error value on failure + */ +static int zynq_nand_init_nand_flash(int option) +{ + u32 status; + + /* disable interrupts */ + writel(ZYNQ_NAND_CLR_CONFIG, &zynq_nand_smc_base->cfr); + /* Initialize the NAND interface by setting cycles and operation mode */ + writel(ZYNQ_NAND_SET_CYCLES, &zynq_nand_smc_base->scr); + if (option & NAND_BUSWIDTH_16) + writel(ZYNQ_NAND_SET_OPMODE_16BIT, &zynq_nand_smc_base->sor); + else + writel(ZYNQ_NAND_SET_OPMODE_8BIT, &zynq_nand_smc_base->sor); + + writel(ZYNQ_NAND_DIRECT_CMD, &zynq_nand_smc_base->dcr); + + /* Wait till the ECC operation is complete */ + status = zynq_nand_waitfor_ecc_completion(); + if (status < 0) { + printf("%s: Timeout\n", __func__); + return status; + } + + /* Set the command1 and command2 register */ + writel(ZYNQ_NAND_ECC_CMD1, &zynq_nand_smc_base->emcmd1r); + writel(ZYNQ_NAND_ECC_CMD2, &zynq_nand_smc_base->emcmd2r); + + return 0; +} + +/* + * zynq_nand_calculate_hwecc - Calculate Hardware ECC + * @mtd: Pointer to the mtd_info structure + * @data: Pointer to the page data + * @ecc_code: Pointer to the ECC buffer where ECC data needs to be stored + * + * This function retrieves the Hardware ECC data from the controller and returns + * ECC data back to the MTD subsystem. + * + * returns: 0 on success or error value on failure + */ +static int zynq_nand_calculate_hwecc(struct mtd_info *mtd, const u8 *data, + u8 *ecc_code) +{ + u32 ecc_value = 0; + u8 ecc_reg, ecc_byte; + u32 ecc_status; + + /* Wait till the ECC operation is complete */ + ecc_status = zynq_nand_waitfor_ecc_completion(); + if (ecc_status < 0) { + printf("%s: Timeout\n", __func__); + return ecc_status; + } + + for (ecc_reg = 0; ecc_reg < 4; ecc_reg++) { + /* Read ECC value for each block */ + ecc_value = readl(&zynq_nand_smc_base->eval0r + ecc_reg); + + /* Get the ecc status from ecc read value */ + ecc_status = (ecc_value >> 24) & 0xFF; + + /* ECC value valid */ + if (ecc_status & ZYNQ_NAND_ECC_STATUS) { + for (ecc_byte = 0; ecc_byte < 3; ecc_byte++) { + /* Copy ECC bytes to MTD buffer */ + *ecc_code = ecc_value & 0xFF; + ecc_value = ecc_value >> 8; + ecc_code++; + } + } else { + debug("%s: ecc status failed\n", __func__); + } + } + + return 0; +} + +/* + * onehot - onehot function + * @value: value to check for onehot + * + * This function checks whether a value is onehot or not. + * onehot is if and only if one bit is set. + * + * FIXME: Try to move this in common.h + */ +static bool onehot(unsigned short value) +{ + bool onehot; + + onehot = value && !(value & (value - 1)); + return onehot; +} + +/* + * zynq_nand_correct_data - ECC correction function + * @mtd: Pointer to the mtd_info structure + * @buf: Pointer to the page data + * @read_ecc: Pointer to the ECC value read from spare data area + * @calc_ecc: Pointer to the calculated ECC value + * + * This function corrects the ECC single bit errors & detects 2-bit errors. + * + * returns: 0 if no ECC errors found + * 1 if single bit error found and corrected. + * -1 if multiple ECC errors found. + */ +static int zynq_nand_correct_data(struct mtd_info *mtd, unsigned char *buf, + unsigned char *read_ecc, unsigned char *calc_ecc) +{ + unsigned char bit_addr; + unsigned int byte_addr; + unsigned short ecc_odd, ecc_even; + unsigned short read_ecc_lower, read_ecc_upper; + unsigned short calc_ecc_lower, calc_ecc_upper; + + read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & 0xfff; + read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & 0xfff; + + calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & 0xfff; + calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & 0xfff; + + ecc_odd = read_ecc_lower ^ calc_ecc_lower; + ecc_even = read_ecc_upper ^ calc_ecc_upper; + + if ((ecc_odd == 0) && (ecc_even == 0)) + return 0; /* no error */ + + if (ecc_odd == (~ecc_even & 0xfff)) { + /* bits [11:3] of error code is byte offset */ + byte_addr = (ecc_odd >> 3) & 0x1ff; + /* bits [2:0] of error code is bit offset */ + bit_addr = ecc_odd & 0x7; + /* Toggling error bit */ + buf[byte_addr] ^= (1 << bit_addr); + return 1; + } + + if (onehot(ecc_odd | ecc_even)) + return 1; /* one error in parity */ + + return -1; /* Uncorrectable error */ +} + +/* + * zynq_nand_read_oob - [REPLACABLE] the most common OOB data read function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @page: page number to read + * @sndcmd: flag whether to issue read command or not + */ +static int zynq_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + unsigned long data_phase_addr = 0; + int data_width = 4; + u8 *p; + + chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); + + p = chip->oob_poi; + chip->read_buf(mtd, p, (mtd->oobsize - data_width)); + p += mtd->oobsize - data_width; + + data_phase_addr = (unsigned long)chip->IO_ADDR_R; + data_phase_addr |= ZYNQ_NAND_CLEAR_CS; + chip->IO_ADDR_R = (void __iomem *)data_phase_addr; + chip->read_buf(mtd, p, data_width); + + return 0; +} + +/* + * zynq_nand_write_oob - [REPLACABLE] the most common OOB data write function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @page: page number to write + */ +static int zynq_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + int status = 0, data_width = 4; + const u8 *buf = chip->oob_poi; + unsigned long data_phase_addr = 0; + + chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); + + chip->write_buf(mtd, buf, (mtd->oobsize - data_width)); + buf += mtd->oobsize - data_width; + + data_phase_addr = (unsigned long)chip->IO_ADDR_W; + data_phase_addr |= ZYNQ_NAND_CLEAR_CS; + data_phase_addr |= (1 << END_CMD_VALID_SHIFT); + chip->IO_ADDR_W = (void __iomem *)data_phase_addr; + chip->write_buf(mtd, buf, data_width); + + /* Send command to program the OOB data */ + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + status = chip->waitfunc(mtd, chip); + + return status & NAND_STATUS_FAIL ? -EIO : 0; +} + +/* + * zynq_nand_read_page_raw - [Intern] read raw page data without ecc + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: must write chip->oob_poi to OOB + * @page: page number to read + */ +static int zynq_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + u8 *buf, int oob_required, int page) +{ + unsigned long data_width = 4; + unsigned long data_phase_addr = 0; + u8 *p; + + chip->read_buf(mtd, buf, mtd->writesize); + + p = chip->oob_poi; + chip->read_buf(mtd, p, (mtd->oobsize - data_width)); + p += (mtd->oobsize - data_width); + + data_phase_addr = (unsigned long)chip->IO_ADDR_R; + data_phase_addr |= ZYNQ_NAND_CLEAR_CS; + chip->IO_ADDR_R = (void __iomem *)data_phase_addr; + + chip->read_buf(mtd, p, data_width); + return 0; +} + +static int zynq_nand_read_page_raw_nooob(struct mtd_info *mtd, + struct nand_chip *chip, u8 *buf, int oob_required, int page) +{ + chip->read_buf(mtd, buf, mtd->writesize); + return 0; +} + +static int zynq_nand_read_subpage_raw(struct mtd_info *mtd, + struct nand_chip *chip, u32 data_offs, + u32 readlen, u8 *buf, int page) +{ + if (data_offs != 0) { + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_offs, -1); + buf += data_offs; + } + chip->read_buf(mtd, buf, readlen); + + return 0; +} + +/* + * zynq_nand_write_page_raw - [Intern] raw page write function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + */ +static int zynq_nand_write_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, const u8 *buf, int oob_required, int page) +{ + unsigned long data_width = 4; + unsigned long data_phase_addr = 0; + u8 *p; + + chip->write_buf(mtd, buf, mtd->writesize); + + p = chip->oob_poi; + chip->write_buf(mtd, p, (mtd->oobsize - data_width)); + p += (mtd->oobsize - data_width); + + data_phase_addr = (unsigned long)chip->IO_ADDR_W; + data_phase_addr |= ZYNQ_NAND_CLEAR_CS; + data_phase_addr |= (1 << END_CMD_VALID_SHIFT); + chip->IO_ADDR_W = (void __iomem *)data_phase_addr; + + chip->write_buf(mtd, p, data_width); + + return 0; +} + +/* + * nand_write_page_hwecc - Hardware ECC based page write function + * @mtd: Pointer to the mtd info structure + * @chip: Pointer to the NAND chip info structure + * @buf: Pointer to the data buffer + * @oob_required: must write chip->oob_poi to OOB + * + * This functions writes data and hardware generated ECC values in to the page. + */ +static int zynq_nand_write_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, const u8 *buf, int oob_required, int page) +{ + int i, eccsteps, eccsize = chip->ecc.size; + u8 *ecc_calc = chip->buffers->ecccalc; + const u8 *p = buf; + u32 *eccpos = chip->ecc.layout->eccpos; + unsigned long data_phase_addr = 0; + unsigned long data_width = 4; + u8 *oob_ptr; + + for (eccsteps = chip->ecc.steps; (eccsteps - 1); eccsteps--) { + chip->write_buf(mtd, p, eccsize); + p += eccsize; + } + chip->write_buf(mtd, p, (eccsize - data_width)); + p += eccsize - data_width; + + /* Set ECC Last bit to 1 */ + data_phase_addr = (unsigned long) chip->IO_ADDR_W; + data_phase_addr |= ZYNQ_NAND_ECC_LAST; + chip->IO_ADDR_W = (void __iomem *)data_phase_addr; + chip->write_buf(mtd, p, data_width); + + /* Wait for ECC to be calculated and read the error values */ + p = buf; + chip->ecc.calculate(mtd, p, &ecc_calc[0]); + + for (i = 0; i < chip->ecc.total; i++) + chip->oob_poi[eccpos[i]] = ~(ecc_calc[i]); + + /* Clear ECC last bit */ + data_phase_addr = (unsigned long)chip->IO_ADDR_W; + data_phase_addr &= ~ZYNQ_NAND_ECC_LAST; + chip->IO_ADDR_W = (void __iomem *)data_phase_addr; + + /* Write the spare area with ECC bytes */ + oob_ptr = chip->oob_poi; + chip->write_buf(mtd, oob_ptr, (mtd->oobsize - data_width)); + + data_phase_addr = (unsigned long)chip->IO_ADDR_W; + data_phase_addr |= ZYNQ_NAND_CLEAR_CS; + data_phase_addr |= (1 << END_CMD_VALID_SHIFT); + chip->IO_ADDR_W = (void __iomem *)data_phase_addr; + oob_ptr += (mtd->oobsize - data_width); + chip->write_buf(mtd, oob_ptr, data_width); + + return 0; +} + +/* + * zynq_nand_write_page_swecc - [REPLACABLE] software ecc based page + * write function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + */ +static int zynq_nand_write_page_swecc(struct mtd_info *mtd, + struct nand_chip *chip, const u8 *buf, int oob_required, int page) +{ + int i, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + u8 *ecc_calc = chip->buffers->ecccalc; + const u8 *p = buf; + u32 *eccpos = chip->ecc.layout->eccpos; + + /* Software ecc calculation */ + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) + chip->ecc.calculate(mtd, p, &ecc_calc[i]); + + for (i = 0; i < chip->ecc.total; i++) + chip->oob_poi[eccpos[i]] = ecc_calc[i]; + + return chip->ecc.write_page_raw(mtd, chip, buf, 1, page); +} + +/* + * nand_read_page_hwecc - Hardware ECC based page read function + * @mtd: Pointer to the mtd info structure + * @chip: Pointer to the NAND chip info structure + * @buf: Pointer to the buffer to store read data + * @oob_required: must write chip->oob_poi to OOB + * @page: page number to read + * + * This functions reads data and checks the data integrity by comparing hardware + * generated ECC values and read ECC values from spare area. + * + * returns: 0 always and updates ECC operation status in to MTD structure + */ +static int zynq_nand_read_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, u8 *buf, int oob_required, int page) +{ + int i, stat, eccsteps, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + u8 *p = buf; + u8 *ecc_calc = chip->buffers->ecccalc; + u8 *ecc_code = chip->buffers->ecccode; + u32 *eccpos = chip->ecc.layout->eccpos; + unsigned long data_phase_addr = 0; + unsigned long data_width = 4; + u8 *oob_ptr; + + for (eccsteps = chip->ecc.steps; (eccsteps - 1); eccsteps--) { + chip->read_buf(mtd, p, eccsize); + p += eccsize; + } + chip->read_buf(mtd, p, (eccsize - data_width)); + p += eccsize - data_width; + + /* Set ECC Last bit to 1 */ + data_phase_addr = (unsigned long)chip->IO_ADDR_R; + data_phase_addr |= ZYNQ_NAND_ECC_LAST; + chip->IO_ADDR_R = (void __iomem *)data_phase_addr; + chip->read_buf(mtd, p, data_width); + + /* Read the calculated ECC value */ + p = buf; + chip->ecc.calculate(mtd, p, &ecc_calc[0]); + + /* Clear ECC last bit */ + data_phase_addr = (unsigned long)chip->IO_ADDR_R; + data_phase_addr &= ~ZYNQ_NAND_ECC_LAST; + chip->IO_ADDR_R = (void __iomem *)data_phase_addr; + + /* Read the stored ECC value */ + oob_ptr = chip->oob_poi; + chip->read_buf(mtd, oob_ptr, (mtd->oobsize - data_width)); + + /* de-assert chip select */ + data_phase_addr = (unsigned long)chip->IO_ADDR_R; + data_phase_addr |= ZYNQ_NAND_CLEAR_CS; + chip->IO_ADDR_R = (void __iomem *)data_phase_addr; + + oob_ptr += (mtd->oobsize - data_width); + chip->read_buf(mtd, oob_ptr, data_width); + + for (i = 0; i < chip->ecc.total; i++) + ecc_code[i] = ~(chip->oob_poi[eccpos[i]]); + + eccsteps = chip->ecc.steps; + p = buf; + + /* Check ECC error for all blocks and correct if it is correctable */ + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); + if (stat < 0) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += stat; + } + return 0; +} + +/* + * zynq_nand_read_page_swecc - [REPLACABLE] software ecc based page + * read function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @page: page number to read + */ +static int zynq_nand_read_page_swecc(struct mtd_info *mtd, + struct nand_chip *chip, u8 *buf, int oob_required, int page) +{ + int i, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + u8 *p = buf; + u8 *ecc_calc = chip->buffers->ecccalc; + u8 *ecc_code = chip->buffers->ecccode; + u32 *eccpos = chip->ecc.layout->eccpos; + + chip->ecc.read_page_raw(mtd, chip, buf, 1, page); + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) + chip->ecc.calculate(mtd, p, &ecc_calc[i]); + + for (i = 0; i < chip->ecc.total; i++) + ecc_code[i] = chip->oob_poi[eccpos[i]]; + + eccsteps = chip->ecc.steps; + p = buf; + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + int stat; + + stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); + if (stat < 0) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += stat; + } + return 0; +} + +/* + * zynq_nand_select_chip - Select the flash device + * @mtd: Pointer to the mtd_info structure + * @chip: Chip number to be selected + * + * This function is empty as the NAND controller handles chip select line + * internally based on the chip address passed in command and data phase. + */ +static void zynq_nand_select_chip(struct mtd_info *mtd, int chip) +{ + /* Not support multiple chips yet */ +} + +/* + * zynq_nand_cmd_function - Send command to NAND device + * @mtd: Pointer to the mtd_info structure + * @command: The command to be sent to the flash device + * @column: The column address for this command, -1 if none + * @page_addr: The page address for this command, -1 if none + */ +static void zynq_nand_cmd_function(struct mtd_info *mtd, unsigned int command, + int column, int page_addr) +{ + struct nand_chip *chip = mtd->priv; + const struct zynq_nand_command_format *curr_cmd = NULL; + struct zynq_nand_info *xnand = (struct zynq_nand_info *)chip->priv; + void *cmd_addr; + unsigned long cmd_data = 0; + unsigned long cmd_phase_addr = 0; + unsigned long data_phase_addr = 0; + u8 end_cmd = 0; + u8 end_cmd_valid = 0; + u32 index; + + if (xnand->end_cmd_pending) { + /* Check for end command if this command request is same as the + * pending command then return + */ + if (xnand->end_cmd == command) { + xnand->end_cmd = 0; + xnand->end_cmd_pending = 0; + return; + } + } + + /* Emulate NAND_CMD_READOOB for large page device */ + if ((mtd->writesize > ZYNQ_NAND_ECC_SIZE) && + (command == NAND_CMD_READOOB)) { + column += mtd->writesize; + command = NAND_CMD_READ0; + } + + /* Get the command format */ + for (index = 0; index < ARRAY_SIZE(zynq_nand_commands); index++) + if (command == zynq_nand_commands[index].start_cmd) + break; + + if (index == ARRAY_SIZE(zynq_nand_commands)) { + printf("%s: Unsupported start cmd %02x\n", __func__, command); + return; + } + curr_cmd = &zynq_nand_commands[index]; + + /* Clear interrupt */ + writel(ZYNQ_MEMC_CLRCR_INT_CLR1, &zynq_nand_smc_base->cfr); + + /* Get the command phase address */ + if (curr_cmd->end_cmd_valid == ZYNQ_NAND_CMD_PHASE) + end_cmd_valid = 1; + + if (curr_cmd->end_cmd == NAND_CMD_NONE) + end_cmd = 0x0; + else + end_cmd = curr_cmd->end_cmd; + + cmd_phase_addr = (unsigned long)xnand->nand_base | + (curr_cmd->addr_cycles << ADDR_CYCLES_SHIFT) | + (end_cmd_valid << END_CMD_VALID_SHIFT) | + (COMMAND_PHASE) | + (end_cmd << END_CMD_SHIFT) | + (curr_cmd->start_cmd << START_CMD_SHIFT); + + cmd_addr = (void __iomem *)cmd_phase_addr; + + /* Get the data phase address */ + end_cmd_valid = 0; + + data_phase_addr = (unsigned long)xnand->nand_base | + (0x0 << CLEAR_CS_SHIFT) | + (end_cmd_valid << END_CMD_VALID_SHIFT) | + (DATA_PHASE) | + (end_cmd << END_CMD_SHIFT) | + (0x0 << ECC_LAST_SHIFT); + + chip->IO_ADDR_R = (void __iomem *)data_phase_addr; + chip->IO_ADDR_W = chip->IO_ADDR_R; + + /* Command phase AXI Read & Write */ + if (column != -1 && page_addr != -1) { + /* Adjust columns for 16 bit bus width */ + if (chip->options & NAND_BUSWIDTH_16) + column >>= 1; + cmd_data = column; + if (mtd->writesize > ZYNQ_NAND_ECC_SIZE) { + cmd_data |= page_addr << 16; + /* Another address cycle for devices > 128MiB */ + if (chip->chipsize > (128 << 20)) { + writel(cmd_data, cmd_addr); + cmd_data = (page_addr >> 16); + } + } else { + cmd_data |= page_addr << 8; + } + } else if (page_addr != -1) { /* Erase */ + cmd_data = page_addr; + } else if (column != -1) { /* Change read/write column, read id etc */ + /* Adjust columns for 16 bit bus width */ + if ((chip->options & NAND_BUSWIDTH_16) && + ((command == NAND_CMD_READ0) || + (command == NAND_CMD_SEQIN) || + (command == NAND_CMD_RNDOUT) || + (command == NAND_CMD_RNDIN))) + column >>= 1; + cmd_data = column; + } + + writel(cmd_data, cmd_addr); + + if (curr_cmd->end_cmd_valid) { + xnand->end_cmd = curr_cmd->end_cmd; + xnand->end_cmd_pending = 1; + } + + ndelay(100); + + if ((command == NAND_CMD_READ0) || + (command == NAND_CMD_RESET) || + (command == NAND_CMD_PARAM) || + (command == NAND_CMD_GET_FEATURES)) + /* wait until command is processed */ + nand_wait_ready(mtd); +} + +/* + * zynq_nand_read_buf - read chip data into buffer + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read + */ +static void zynq_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + + /* Make sure that buf is 32 bit aligned */ + if (((unsigned long)buf & 0x3) != 0) { + if (((unsigned long)buf & 0x1) != 0) { + if (len) { + *buf = readb(chip->IO_ADDR_R); + buf += 1; + len--; + } + } + + if (((unsigned long)buf & 0x3) != 0) { + if (len >= 2) { + *(u16 *)buf = readw(chip->IO_ADDR_R); + buf += 2; + len -= 2; + } + } + } + + /* copy aligned data */ + while (len >= 4) { + *(u32 *)buf = readl(chip->IO_ADDR_R); + buf += 4; + len -= 4; + } + + /* mop up any remaining bytes */ + if (len) { + if (len >= 2) { + *(u16 *)buf = readw(chip->IO_ADDR_R); + buf += 2; + len -= 2; + } + if (len) + *buf = readb(chip->IO_ADDR_R); + } +} + +/* + * zynq_nand_write_buf - write buffer to chip + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write + */ +static void zynq_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + const u32 *nand = chip->IO_ADDR_W; + + /* Make sure that buf is 32 bit aligned */ + if (((unsigned long)buf & 0x3) != 0) { + if (((unsigned long)buf & 0x1) != 0) { + if (len) { + writeb(*buf, nand); + buf += 1; + len--; + } + } + + if (((unsigned long)buf & 0x3) != 0) { + if (len >= 2) { + writew(*(u16 *)buf, nand); + buf += 2; + len -= 2; + } + } + } + + /* copy aligned data */ + while (len >= 4) { + writel(*(u32 *)buf, nand); + buf += 4; + len -= 4; + } + + /* mop up any remaining bytes */ + if (len) { + if (len >= 2) { + writew(*(u16 *)buf, nand); + buf += 2; + len -= 2; + } + + if (len) + writeb(*buf, nand); + } +} + +/* + * zynq_nand_device_ready - Check device ready/busy line + * @mtd: Pointer to the mtd_info structure + * + * returns: 0 on busy or 1 on ready state + */ +static int zynq_nand_device_ready(struct mtd_info *mtd) +{ + u32 csr_val; + + csr_val = readl(&zynq_nand_smc_base->csr); + /* Check the raw_int_status1 bit */ + if (csr_val & ZYNQ_MEMC_SR_RAW_INT_ST1) { + /* Clear the interrupt condition */ + writel(ZYNQ_MEMC_SR_INT_ST1, &zynq_nand_smc_base->cfr); + return 1; + } + + return 0; +} + +static int zynq_nand_init(struct nand_chip *nand_chip, int devnum) +{ + struct zynq_nand_info *xnand; + struct mtd_info *mtd; + unsigned long ecc_page_size; + u8 maf_id, dev_id, i; + u8 get_feature[4]; + u8 set_feature[4] = {ONDIE_ECC_FEATURE_ENABLE, 0x00, 0x00, 0x00}; + unsigned long ecc_cfg; + int ondie_ecc_enabled = 0; + int err = -1; + + xnand = calloc(1, sizeof(struct zynq_nand_info)); + if (!xnand) { + printf("%s: failed to allocate\n", __func__); + goto fail; + } + + xnand->nand_base = (void __iomem *)ZYNQ_NAND_BASEADDR; + mtd = (struct mtd_info *)&nand_info[0]; + + nand_chip->priv = xnand; + mtd->priv = nand_chip; + + /* Set address of NAND IO lines */ + nand_chip->IO_ADDR_R = xnand->nand_base; + nand_chip->IO_ADDR_W = xnand->nand_base; + + /* Set the driver entry points for MTD */ + nand_chip->cmdfunc = zynq_nand_cmd_function; + nand_chip->dev_ready = zynq_nand_device_ready; + nand_chip->select_chip = zynq_nand_select_chip; + + /* If we don't set this delay driver sets 20us by default */ + nand_chip->chip_delay = 30; + + /* Buffer read/write routines */ + nand_chip->read_buf = zynq_nand_read_buf; + nand_chip->write_buf = zynq_nand_write_buf; + + nand_chip->bbt_options = NAND_BBT_USE_FLASH; + + /* Initialize the NAND flash interface on NAND controller */ + if (zynq_nand_init_nand_flash(nand_chip->options) < 0) { + printf("%s: nand flash init failed\n", __func__); + goto fail; + } + + /* first scan to find the device and get the page size */ + if (nand_scan_ident(mtd, 1, NULL)) { + printf("%s: nand_scan_ident failed\n", __func__); + goto fail; + } + /* Send the command for reading device ID */ + nand_chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); + nand_chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); + + /* Read manufacturer and device IDs */ + maf_id = nand_chip->read_byte(mtd); + dev_id = nand_chip->read_byte(mtd); + + if ((maf_id == 0x2c) && ((dev_id == 0xf1) || + (dev_id == 0xa1) || (dev_id == 0xb1) || + (dev_id == 0xaa) || (dev_id == 0xba) || + (dev_id == 0xda) || (dev_id == 0xca) || + (dev_id == 0xac) || (dev_id == 0xbc) || + (dev_id == 0xdc) || (dev_id == 0xcc) || + (dev_id == 0xa3) || (dev_id == 0xb3) || + (dev_id == 0xd3) || (dev_id == 0xc3))) { + nand_chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, + ONDIE_ECC_FEATURE_ADDR, -1); + for (i = 0; i < 4; i++) + writeb(set_feature[i], nand_chip->IO_ADDR_W); + + /* Wait for 1us after writing data with SET_FEATURES command */ + ndelay(1000); + + nand_chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, + ONDIE_ECC_FEATURE_ADDR, -1); + nand_chip->read_buf(mtd, get_feature, 4); + + if (get_feature[0] & ONDIE_ECC_FEATURE_ENABLE) { + debug("%s: OnDie ECC flash\n", __func__); + ondie_ecc_enabled = 1; + } else { + printf("%s: Unable to detect OnDie ECC\n", __func__); + } + } + + if (ondie_ecc_enabled) { + /* Bypass the controller ECC block */ + ecc_cfg = readl(&zynq_nand_smc_base->emcr); + ecc_cfg &= ~ZYNQ_MEMC_NAND_ECC_MODE_MASK; + writel(ecc_cfg, &zynq_nand_smc_base->emcr); + + /* The software ECC routines won't work + * with the SMC controller + */ + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.strength = 1; + nand_chip->ecc.read_page = zynq_nand_read_page_raw_nooob; + nand_chip->ecc.read_subpage = zynq_nand_read_subpage_raw; + nand_chip->ecc.write_page = zynq_nand_write_page_raw; + nand_chip->ecc.read_page_raw = zynq_nand_read_page_raw; + nand_chip->ecc.write_page_raw = zynq_nand_write_page_raw; + nand_chip->ecc.read_oob = zynq_nand_read_oob; + nand_chip->ecc.write_oob = zynq_nand_write_oob; + nand_chip->ecc.size = mtd->writesize; + nand_chip->ecc.bytes = 0; + + /* NAND with on-die ECC supports subpage reads */ + nand_chip->options |= NAND_SUBPAGE_READ; + + /* On-Die ECC spare bytes offset 8 is used for ECC codes */ + if (ondie_ecc_enabled) { + nand_chip->ecc.layout = &ondie_nand_oob_64; + /* Use the BBT pattern descriptors */ + nand_chip->bbt_td = &bbt_main_descr; + nand_chip->bbt_md = &bbt_mirror_descr; + } + } else { + /* Hardware ECC generates 3 bytes ECC code for each 512 bytes */ + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.strength = 1; + nand_chip->ecc.size = ZYNQ_NAND_ECC_SIZE; + nand_chip->ecc.bytes = 3; + nand_chip->ecc.calculate = zynq_nand_calculate_hwecc; + nand_chip->ecc.correct = zynq_nand_correct_data; + nand_chip->ecc.hwctl = NULL; + nand_chip->ecc.read_page = zynq_nand_read_page_hwecc; + nand_chip->ecc.write_page = zynq_nand_write_page_hwecc; + nand_chip->ecc.read_page_raw = zynq_nand_read_page_raw; + nand_chip->ecc.write_page_raw = zynq_nand_write_page_raw; + nand_chip->ecc.read_oob = zynq_nand_read_oob; + nand_chip->ecc.write_oob = zynq_nand_write_oob; + + switch (mtd->writesize) { + case 512: + ecc_page_size = 0x1; + /* Set the ECC memory config register */ + writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size), + &zynq_nand_smc_base->emcr); + break; + case 1024: + ecc_page_size = 0x2; + /* Set the ECC memory config register */ + writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size), + &zynq_nand_smc_base->emcr); + break; + case 2048: + ecc_page_size = 0x3; + /* Set the ECC memory config register */ + writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size), + &zynq_nand_smc_base->emcr); + break; + default: + nand_chip->ecc.mode = NAND_ECC_SOFT; + nand_chip->ecc.calculate = nand_calculate_ecc; + nand_chip->ecc.correct = nand_correct_data; + nand_chip->ecc.read_page = zynq_nand_read_page_swecc; + nand_chip->ecc.write_page = zynq_nand_write_page_swecc; + nand_chip->ecc.size = 256; + break; + } + + if (mtd->oobsize == 16) + nand_chip->ecc.layout = &nand_oob_16; + else if (mtd->oobsize == 64) + nand_chip->ecc.layout = &nand_oob_64; + else + printf("%s: No oob layout found\n", __func__); + } + + /* Second phase scan */ + if (nand_scan_tail(mtd)) { + printf("%s: nand_scan_tail failed\n", __func__); + goto fail; + } + if (nand_register(devnum, mtd)) + goto fail; + return 0; +fail: + free(xnand); + return err; +} + +static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE]; + +void board_nand_init(void) +{ + struct nand_chip *nand = &nand_chip[0]; + + if (zynq_nand_init(nand, 0)) + puts("ZYNQ NAND init failed\n"); +}