return container_of(base, struct stm32_fmc2_nfc, base);
}
-static void stm32_fmc2_timings_init(struct nand_chip *chip)
+static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip)
{
- struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
struct stm32_fmc2_timings *timings = &nand->timings;
- u32 pcr = readl(fmc2->io_base + FMC2_PCR);
+ u32 pcr = readl(nfc->io_base + FMC2_PCR);
u32 pmem, patt;
/* Set tclr/tar timings */
patt |= FMC2_PATT_ATTHOLD(timings->thold_att);
patt |= FMC2_PATT_ATTHIZ(timings->thiz);
- writel(pcr, fmc2->io_base + FMC2_PCR);
- writel(pmem, fmc2->io_base + FMC2_PMEM);
- writel(patt, fmc2->io_base + FMC2_PATT);
+ writel(pcr, nfc->io_base + FMC2_PCR);
+ writel(pmem, nfc->io_base + FMC2_PMEM);
+ writel(patt, nfc->io_base + FMC2_PATT);
}
-static void stm32_fmc2_setup(struct nand_chip *chip)
+static void stm32_fmc2_nfc_setup(struct nand_chip *chip)
{
- struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
- u32 pcr = readl(fmc2->io_base + FMC2_PCR);
+ struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
+ u32 pcr = readl(nfc->io_base + FMC2_PCR);
/* Configure ECC algorithm (default configuration is Hamming) */
pcr &= ~FMC2_PCR_ECCALG;
pcr &= ~FMC2_PCR_ECCSS_MASK;
pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_512);
- writel(pcr, fmc2->io_base + FMC2_PCR);
+ writel(pcr, nfc->io_base + FMC2_PCR);
}
-static void stm32_fmc2_select_chip(struct mtd_info *mtd, int chipnr)
+static void stm32_fmc2_nfc_select_chip(struct mtd_info *mtd, int chipnr)
{
struct nand_chip *chip = mtd_to_nand(mtd);
- struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
if (chipnr < 0 || chipnr >= nand->ncs)
return;
- if (nand->cs_used[chipnr] == fmc2->cs_sel)
+ if (nand->cs_used[chipnr] == nfc->cs_sel)
return;
- fmc2->cs_sel = nand->cs_used[chipnr];
- chip->IO_ADDR_R = fmc2->data_base[fmc2->cs_sel];
- chip->IO_ADDR_W = fmc2->data_base[fmc2->cs_sel];
+ nfc->cs_sel = nand->cs_used[chipnr];
+ chip->IO_ADDR_R = nfc->data_base[nfc->cs_sel];
+ chip->IO_ADDR_W = nfc->data_base[nfc->cs_sel];
- stm32_fmc2_setup(chip);
- stm32_fmc2_timings_init(chip);
+ stm32_fmc2_nfc_setup(chip);
+ stm32_fmc2_nfc_timings_init(chip);
}
-static void stm32_fmc2_set_buswidth_16(struct stm32_fmc2_nfc *fmc2, bool set)
+static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc,
+ bool set)
{
- u32 pcr = readl(fmc2->io_base + FMC2_PCR);
+ u32 pcr = readl(nfc->io_base + FMC2_PCR);
pcr &= ~FMC2_PCR_PWID_MASK;
if (set)
pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16);
- writel(pcr, fmc2->io_base + FMC2_PCR);
+ writel(pcr, nfc->io_base + FMC2_PCR);
}
-static void stm32_fmc2_set_ecc(struct stm32_fmc2_nfc *fmc2, bool enable)
+static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable)
{
- u32 pcr = readl(fmc2->io_base + FMC2_PCR);
+ u32 pcr = readl(nfc->io_base + FMC2_PCR);
pcr &= ~FMC2_PCR_ECCEN;
if (enable)
pcr |= FMC2_PCR_ECCEN;
- writel(pcr, fmc2->io_base + FMC2_PCR);
+ writel(pcr, nfc->io_base + FMC2_PCR);
}
-static inline void stm32_fmc2_clear_bch_irq(struct stm32_fmc2_nfc *fmc2)
+static void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc)
{
- writel(FMC2_BCHICR_CLEAR_IRQ, fmc2->io_base + FMC2_BCHICR);
+ writel(FMC2_BCHICR_CLEAR_IRQ, nfc->io_base + FMC2_BCHICR);
}
-static void stm32_fmc2_cmd_ctrl(struct mtd_info *mtd, int cmd,
- unsigned int ctrl)
+static void stm32_fmc2_nfc_cmd_ctrl(struct mtd_info *mtd, int cmd,
+ unsigned int ctrl)
{
struct nand_chip *chip = mtd_to_nand(mtd);
- struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
if (cmd == NAND_CMD_NONE)
return;
if (ctrl & NAND_CLE) {
- writeb(cmd, fmc2->cmd_base[fmc2->cs_sel]);
+ writeb(cmd, nfc->cmd_base[nfc->cs_sel]);
return;
}
- writeb(cmd, fmc2->addr_base[fmc2->cs_sel]);
+ writeb(cmd, nfc->addr_base[nfc->cs_sel]);
}
/*
* Enable ECC logic and reset syndrome/parity bits previously calculated
* Syndrome/parity bits is cleared by setting the ECCEN bit to 0
*/
-static void stm32_fmc2_hwctl(struct mtd_info *mtd, int mode)
+static void stm32_fmc2_nfc_hwctl(struct mtd_info *mtd, int mode)
{
struct nand_chip *chip = mtd_to_nand(mtd);
- struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
- stm32_fmc2_set_ecc(fmc2, false);
+ stm32_fmc2_nfc_set_ecc(nfc, false);
if (chip->ecc.strength != FMC2_ECC_HAM) {
- u32 pcr = readl(fmc2->io_base + FMC2_PCR);
+ u32 pcr = readl(nfc->io_base + FMC2_PCR);
if (mode == NAND_ECC_WRITE)
pcr |= FMC2_PCR_WEN;
else
pcr &= ~FMC2_PCR_WEN;
- writel(pcr, fmc2->io_base + FMC2_PCR);
+ writel(pcr, nfc->io_base + FMC2_PCR);
- stm32_fmc2_clear_bch_irq(fmc2);
+ stm32_fmc2_nfc_clear_bch_irq(nfc);
}
- stm32_fmc2_set_ecc(fmc2, true);
+ stm32_fmc2_nfc_set_ecc(nfc, true);
}
/*
* ECC is 3 bytes for 512 bytes of data (supports error correction up to
* max of 1-bit)
*/
-static int stm32_fmc2_ham_calculate(struct mtd_info *mtd, const u8 *data,
- u8 *ecc)
+static int stm32_fmc2_nfc_ham_calculate(struct mtd_info *mtd, const u8 *data,
+ u8 *ecc)
{
struct nand_chip *chip = mtd_to_nand(mtd);
- struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
u32 heccr, sr;
int ret;
- ret = readl_poll_timeout(fmc2->io_base + FMC2_SR, sr,
+ ret = readl_poll_timeout(nfc->io_base + FMC2_SR, sr,
sr & FMC2_SR_NWRF, FMC2_TIMEOUT_5S);
if (ret < 0) {
pr_err("Ham timeout\n");
return ret;
}
- heccr = readl(fmc2->io_base + FMC2_HECCR);
+ heccr = readl(nfc->io_base + FMC2_HECCR);
ecc[0] = heccr;
ecc[1] = heccr >> 8;
ecc[2] = heccr >> 16;
- stm32_fmc2_set_ecc(fmc2, false);
+ stm32_fmc2_nfc_set_ecc(nfc, false);
return 0;
}
-static int stm32_fmc2_ham_correct(struct mtd_info *mtd, u8 *dat,
- u8 *read_ecc, u8 *calc_ecc)
+static int stm32_fmc2_nfc_ham_correct(struct mtd_info *mtd, u8 *dat,
+ u8 *read_ecc, u8 *calc_ecc)
{
u8 bit_position = 0, b0, b1, b2;
u32 byte_addr = 0, b;
* max of 4-bit/8-bit)
*/
-static int stm32_fmc2_bch_calculate(struct mtd_info *mtd, const u8 *data,
- u8 *ecc)
+static int stm32_fmc2_nfc_bch_calculate(struct mtd_info *mtd, const u8 *data,
+ u8 *ecc)
{
struct nand_chip *chip = mtd_to_nand(mtd);
- struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
u32 bchpbr, bchisr;
int ret;
/* Wait until the BCH code is ready */
- ret = readl_poll_timeout(fmc2->io_base + FMC2_BCHISR, bchisr,
+ ret = readl_poll_timeout(nfc->io_base + FMC2_BCHISR, bchisr,
bchisr & FMC2_BCHISR_EPBRF, FMC2_TIMEOUT_5S);
if (ret < 0) {
pr_err("Bch timeout\n");
}
/* Read parity bits */
- bchpbr = readl(fmc2->io_base + FMC2_BCHPBR1);
+ bchpbr = readl(nfc->io_base + FMC2_BCHPBR1);
ecc[0] = bchpbr;
ecc[1] = bchpbr >> 8;
ecc[2] = bchpbr >> 16;
ecc[3] = bchpbr >> 24;
- bchpbr = readl(fmc2->io_base + FMC2_BCHPBR2);
+ bchpbr = readl(nfc->io_base + FMC2_BCHPBR2);
ecc[4] = bchpbr;
ecc[5] = bchpbr >> 8;
ecc[6] = bchpbr >> 16;
if (chip->ecc.strength == FMC2_ECC_BCH8) {
ecc[7] = bchpbr >> 24;
- bchpbr = readl(fmc2->io_base + FMC2_BCHPBR3);
+ bchpbr = readl(nfc->io_base + FMC2_BCHPBR3);
ecc[8] = bchpbr;
ecc[9] = bchpbr >> 8;
ecc[10] = bchpbr >> 16;
ecc[11] = bchpbr >> 24;
- bchpbr = readl(fmc2->io_base + FMC2_BCHPBR4);
+ bchpbr = readl(nfc->io_base + FMC2_BCHPBR4);
ecc[12] = bchpbr;
}
- stm32_fmc2_set_ecc(fmc2, false);
+ stm32_fmc2_nfc_set_ecc(nfc, false);
return 0;
}
-static int stm32_fmc2_bch_correct(struct mtd_info *mtd, u8 *dat,
- u8 *read_ecc, u8 *calc_ecc)
+static int stm32_fmc2_nfc_bch_correct(struct mtd_info *mtd, u8 *dat,
+ u8 *read_ecc, u8 *calc_ecc)
{
struct nand_chip *chip = mtd_to_nand(mtd);
- struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
u32 bchdsr0, bchdsr1, bchdsr2, bchdsr3, bchdsr4, bchisr;
u16 pos[8];
int i, ret, den, eccsize = chip->ecc.size;
unsigned int nb_errs = 0;
/* Wait until the decoding error is ready */
- ret = readl_poll_timeout(fmc2->io_base + FMC2_BCHISR, bchisr,
+ ret = readl_poll_timeout(nfc->io_base + FMC2_BCHISR, bchisr,
bchisr & FMC2_BCHISR_DERF, FMC2_TIMEOUT_5S);
if (ret < 0) {
pr_err("Bch timeout\n");
return ret;
}
- bchdsr0 = readl(fmc2->io_base + FMC2_BCHDSR0);
- bchdsr1 = readl(fmc2->io_base + FMC2_BCHDSR1);
- bchdsr2 = readl(fmc2->io_base + FMC2_BCHDSR2);
- bchdsr3 = readl(fmc2->io_base + FMC2_BCHDSR3);
- bchdsr4 = readl(fmc2->io_base + FMC2_BCHDSR4);
+ bchdsr0 = readl(nfc->io_base + FMC2_BCHDSR0);
+ bchdsr1 = readl(nfc->io_base + FMC2_BCHDSR1);
+ bchdsr2 = readl(nfc->io_base + FMC2_BCHDSR2);
+ bchdsr3 = readl(nfc->io_base + FMC2_BCHDSR3);
+ bchdsr4 = readl(nfc->io_base + FMC2_BCHDSR4);
- stm32_fmc2_set_ecc(fmc2, false);
+ stm32_fmc2_nfc_set_ecc(nfc, false);
/* No errors found */
if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
return nb_errs;
}
-static int stm32_fmc2_read_page(struct mtd_info *mtd,
- struct nand_chip *chip, u8 *buf,
- int oob_required, int page)
+static int stm32_fmc2_nfc_read_page(struct mtd_info *mtd,
+ struct nand_chip *chip, u8 *buf,
+ int oob_required, int page)
{
int i, s, stat, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
return max_bitflips;
}
-static void stm32_fmc2_init(struct stm32_fmc2_nfc *fmc2)
+static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc)
{
- u32 pcr = readl(fmc2->io_base + FMC2_PCR);
- u32 bcr1 = readl(fmc2->io_base + FMC2_BCR1);
+ u32 pcr = readl(nfc->io_base + FMC2_PCR);
+ u32 bcr1 = readl(nfc->io_base + FMC2_BCR1);
/* Set CS used to undefined */
- fmc2->cs_sel = -1;
+ nfc->cs_sel = -1;
/* Enable wait feature and nand flash memory bank */
pcr |= FMC2_PCR_PWAITEN;
/* Enable FMC2 controller */
bcr1 |= FMC2_BCR1_FMC2EN;
- writel(bcr1, fmc2->io_base + FMC2_BCR1);
- writel(pcr, fmc2->io_base + FMC2_PCR);
- writel(FMC2_PMEM_DEFAULT, fmc2->io_base + FMC2_PMEM);
- writel(FMC2_PATT_DEFAULT, fmc2->io_base + FMC2_PATT);
+ writel(bcr1, nfc->io_base + FMC2_BCR1);
+ writel(pcr, nfc->io_base + FMC2_PCR);
+ writel(FMC2_PMEM_DEFAULT, nfc->io_base + FMC2_PMEM);
+ writel(FMC2_PATT_DEFAULT, nfc->io_base + FMC2_PATT);
}
-static void stm32_fmc2_calc_timings(struct nand_chip *chip,
- const struct nand_sdr_timings *sdrt)
+static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip,
+ const struct nand_sdr_timings *sdrt)
{
- struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
struct stm32_fmc2_timings *tims = &nand->timings;
- unsigned long hclk = clk_get_rate(&fmc2->clk);
+ unsigned long hclk = clk_get_rate(&nfc->clk);
unsigned long hclkp = FMC2_NSEC_PER_SEC / (hclk / 1000);
unsigned long timing, tar, tclr, thiz, twait;
unsigned long tset_mem, tset_att, thold_mem, thold_att;
tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
}
-static int stm32_fmc2_setup_interface(struct mtd_info *mtd, int chipnr,
- const struct nand_data_interface *conf)
+static int stm32_fmc2_nfc_setup_interface(struct mtd_info *mtd, int chipnr,
+ const struct nand_data_interface *cf)
{
struct nand_chip *chip = mtd_to_nand(mtd);
const struct nand_sdr_timings *sdrt;
- sdrt = nand_get_sdr_timings(conf);
+ sdrt = nand_get_sdr_timings(cf);
if (IS_ERR(sdrt))
return PTR_ERR(sdrt);
if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
return 0;
- stm32_fmc2_calc_timings(chip, sdrt);
-
- stm32_fmc2_timings_init(chip);
+ stm32_fmc2_nfc_calc_timings(chip, sdrt);
+ stm32_fmc2_nfc_timings_init(chip);
return 0;
}
-static void stm32_fmc2_nand_callbacks_setup(struct nand_chip *chip)
+static void stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip *chip)
{
- chip->ecc.hwctl = stm32_fmc2_hwctl;
+ chip->ecc.hwctl = stm32_fmc2_nfc_hwctl;
/*
* Specific callbacks to read/write a page depending on
*/
if (chip->ecc.strength == FMC2_ECC_HAM) {
/* Hamming is used */
- chip->ecc.calculate = stm32_fmc2_ham_calculate;
- chip->ecc.correct = stm32_fmc2_ham_correct;
+ chip->ecc.calculate = stm32_fmc2_nfc_ham_calculate;
+ chip->ecc.correct = stm32_fmc2_nfc_ham_correct;
chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
return;
}
/* BCH is used */
- chip->ecc.read_page = stm32_fmc2_read_page;
- chip->ecc.calculate = stm32_fmc2_bch_calculate;
- chip->ecc.correct = stm32_fmc2_bch_correct;
+ chip->ecc.read_page = stm32_fmc2_nfc_read_page;
+ chip->ecc.calculate = stm32_fmc2_nfc_bch_calculate;
+ chip->ecc.correct = stm32_fmc2_nfc_bch_correct;
if (chip->ecc.strength == FMC2_ECC_BCH8)
chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
}
-static int stm32_fmc2_calc_ecc_bytes(int step_size, int strength)
+static int stm32_fmc2_nfc_calc_ecc_bytes(int step_size, int strength)
{
/* Hamming */
if (strength == FMC2_ECC_HAM)
return 8;
}
-NAND_ECC_CAPS_SINGLE(stm32_fmc2_ecc_caps, stm32_fmc2_calc_ecc_bytes,
+NAND_ECC_CAPS_SINGLE(stm32_fmc2_nfc_ecc_caps, stm32_fmc2_nfc_calc_ecc_bytes,
FMC2_ECC_STEP_SIZE,
FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
-static int stm32_fmc2_parse_child(struct stm32_fmc2_nfc *fmc2,
- ofnode node)
+static int stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc *nfc, ofnode node)
{
- struct stm32_fmc2_nand *nand = &fmc2->nand;
+ struct stm32_fmc2_nand *nand = &nfc->nand;
u32 cs[FMC2_MAX_CE];
int ret, i;
return -EINVAL;
}
- if (fmc2->cs_assigned & BIT(cs[i])) {
+ if (nfc->cs_assigned & BIT(cs[i])) {
pr_err("Cs already assigned: %d\n",
nand->cs_used[i]);
return -EINVAL;
}
- fmc2->cs_assigned |= BIT(cs[i]);
+ nfc->cs_assigned |= BIT(cs[i]);
nand->cs_used[i] = cs[i];
}
return 0;
}
-static int stm32_fmc2_parse_dt(struct udevice *dev,
- struct stm32_fmc2_nfc *fmc2)
+static int stm32_fmc2_nfc_parse_dt(struct udevice *dev,
+ struct stm32_fmc2_nfc *nfc)
{
ofnode child;
int ret, nchips = 0;
}
dev_for_each_subnode(child, dev) {
- ret = stm32_fmc2_parse_child(fmc2, child);
+ ret = stm32_fmc2_nfc_parse_child(nfc, child);
if (ret)
return ret;
}
return 0;
}
-static int stm32_fmc2_probe(struct udevice *dev)
+static int stm32_fmc2_nfc_probe(struct udevice *dev)
{
- struct stm32_fmc2_nfc *fmc2 = dev_get_priv(dev);
- struct stm32_fmc2_nand *nand = &fmc2->nand;
+ struct stm32_fmc2_nfc *nfc = dev_get_priv(dev);
+ struct stm32_fmc2_nand *nand = &nfc->nand;
struct nand_chip *chip = &nand->chip;
struct mtd_info *mtd = &chip->mtd;
struct nand_ecclayout *ecclayout;
int oob_index, chip_cs, mem_region, ret;
unsigned int i;
- spin_lock_init(&fmc2->controller.lock);
- init_waitqueue_head(&fmc2->controller.wq);
+ spin_lock_init(&nfc->controller.lock);
+ init_waitqueue_head(&nfc->controller.wq);
- ret = stm32_fmc2_parse_dt(dev, fmc2);
+ ret = stm32_fmc2_nfc_parse_dt(dev, nfc);
if (ret)
return ret;
pr_err("Resource io_base not found");
return ret;
}
- fmc2->io_base = (void __iomem *)resource.start;
+ nfc->io_base = (void __iomem *)resource.start;
for (chip_cs = 0, mem_region = 1; chip_cs < FMC2_MAX_CE;
chip_cs++, mem_region += 3) {
- if (!(fmc2->cs_assigned & BIT(chip_cs)))
+ if (!(nfc->cs_assigned & BIT(chip_cs)))
continue;
ret = dev_read_resource(dev, mem_region, &resource);
chip_cs);
return ret;
}
- fmc2->data_base[chip_cs] = (void __iomem *)resource.start;
+ nfc->data_base[chip_cs] = (void __iomem *)resource.start;
ret = dev_read_resource(dev, mem_region + 1, &resource);
if (ret) {
chip_cs);
return ret;
}
- fmc2->cmd_base[chip_cs] = (void __iomem *)resource.start;
+ nfc->cmd_base[chip_cs] = (void __iomem *)resource.start;
ret = dev_read_resource(dev, mem_region + 2, &resource);
if (ret) {
chip_cs);
return ret;
}
- fmc2->addr_base[chip_cs] = (void __iomem *)resource.start;
+ nfc->addr_base[chip_cs] = (void __iomem *)resource.start;
}
/* Enable the clock */
- ret = clk_get_by_index(dev, 0, &fmc2->clk);
+ ret = clk_get_by_index(dev, 0, &nfc->clk);
if (ret)
return ret;
- ret = clk_enable(&fmc2->clk);
+ ret = clk_enable(&nfc->clk);
if (ret)
return ret;
reset_deassert(&reset);
}
- stm32_fmc2_init(fmc2);
+ stm32_fmc2_nfc_init(nfc);
- chip->controller = &fmc2->base;
- chip->select_chip = stm32_fmc2_select_chip;
- chip->setup_data_interface = stm32_fmc2_setup_interface;
- chip->cmd_ctrl = stm32_fmc2_cmd_ctrl;
+ chip->controller = &nfc->base;
+ chip->select_chip = stm32_fmc2_nfc_select_chip;
+ chip->setup_data_interface = stm32_fmc2_nfc_setup_interface;
+ chip->cmd_ctrl = stm32_fmc2_nfc_cmd_ctrl;
chip->chip_delay = FMC2_RB_DELAY_US;
chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
NAND_USE_BOUNCE_BUFFER;
return -EINVAL;
}
- ret = nand_check_ecc_caps(chip, &stm32_fmc2_ecc_caps,
+ ret = nand_check_ecc_caps(chip, &stm32_fmc2_nfc_ecc_caps,
mtd->oobsize - FMC2_BBM_LEN);
if (ret) {
pr_err("No valid ECC settings set\n");
if (chip->bbt_options & NAND_BBT_USE_FLASH)
chip->bbt_options |= NAND_BBT_NO_OOB;
- stm32_fmc2_nand_callbacks_setup(chip);
+ stm32_fmc2_nfc_nand_callbacks_setup(chip);
/* Define ECC layout */
- ecclayout = &fmc2->ecclayout;
+ ecclayout = &nfc->ecclayout;
ecclayout->eccbytes = chip->ecc.bytes *
(mtd->writesize / chip->ecc.size);
oob_index = FMC2_BBM_LEN;
chip->ecc.layout = ecclayout;
if (chip->options & NAND_BUSWIDTH_16)
- stm32_fmc2_set_buswidth_16(fmc2, true);
+ stm32_fmc2_nfc_set_buswidth_16(nfc, true);
ret = nand_scan_tail(mtd);
if (ret)
return nand_register(0, mtd);
}
-static const struct udevice_id stm32_fmc2_match[] = {
+static const struct udevice_id stm32_fmc2_nfc_match[] = {
{ .compatible = "st,stm32mp15-fmc2" },
{ /* Sentinel */ }
};
-U_BOOT_DRIVER(stm32_fmc2_nand) = {
- .name = "stm32_fmc2_nand",
+U_BOOT_DRIVER(stm32_fmc2_nfc) = {
+ .name = "stm32_fmc2_nfc",
.id = UCLASS_MTD,
- .of_match = stm32_fmc2_match,
- .probe = stm32_fmc2_probe,
+ .of_match = stm32_fmc2_nfc_match,
+ .probe = stm32_fmc2_nfc_probe,
.priv_auto_alloc_size = sizeof(struct stm32_fmc2_nfc),
};
int ret;
ret = uclass_get_device_by_driver(UCLASS_MTD,
- DM_GET_DRIVER(stm32_fmc2_nand),
+ DM_GET_DRIVER(stm32_fmc2_nfc),
&dev);
if (ret && ret != -ENODEV)
- pr_err("Failed to initialize STM32 FMC2 NAND controller. (error %d)\n",
+ pr_err("Failed to initialize STM32 FMC2 NFC controller. (error %d)\n",
ret);
}