]> git.dujemihanovic.xyz Git - u-boot.git/commitdiff
ram: octeon: Add MIPS Octeon3 DDR4 support (part 2/3)
authorAaron Williams <awilliams@marvell.com>
Wed, 2 Sep 2020 06:29:07 +0000 (08:29 +0200)
committerDaniel Schwierzeck <daniel.schwierzeck@gmail.com>
Wed, 7 Oct 2020 18:25:57 +0000 (20:25 +0200)
This Octeon 3 DDR driver is ported from the 2013 Cavium / Marvell U-Boot
repository. It currently supports DDR4 on Octeon 3. It can be later
extended to support also DDR3 and Octeon 2 platforms.

Part 2 includes the very complex Octeon 3 DDR4 configuration

Signed-off-by: Aaron Williams <awilliams@marvell.com>
Signed-off-by: Stefan Roese <sr@denx.de>
drivers/ram/octeon/octeon3_lmc.c [new file with mode: 0644]

diff --git a/drivers/ram/octeon/octeon3_lmc.c b/drivers/ram/octeon/octeon3_lmc.c
new file mode 100644 (file)
index 0000000..327cdc5
--- /dev/null
@@ -0,0 +1,11030 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2020 Marvell International Ltd.
+ */
+
+#include <command.h>
+#include <dm.h>
+#include <hang.h>
+#include <i2c.h>
+#include <ram.h>
+#include <time.h>
+
+#include <linux/bitops.h>
+#include <linux/io.h>
+
+#include <mach/octeon_ddr.h>
+
+/* Random number generator stuff */
+
+#define CVMX_RNM_CTL_STATUS    0x0001180040000000
+#define CVMX_OCT_DID_RNG       8ULL
+
+static u64 cvmx_build_io_address(u64 major_did, u64 sub_did)
+{
+       return ((0x1ull << 48) | (major_did << 43) | (sub_did << 40));
+}
+
+static u64 cvmx_rng_get_random64(void)
+{
+       return csr_rd(cvmx_build_io_address(CVMX_OCT_DID_RNG, 0));
+}
+
+static void cvmx_rng_enable(void)
+{
+       u64 val;
+
+       val = csr_rd(CVMX_RNM_CTL_STATUS);
+       val |= BIT(0) | BIT(1);
+       csr_wr(CVMX_RNM_CTL_STATUS, val);
+}
+
+#define RLEVEL_PRINTALL_DEFAULT                1
+#define WLEVEL_PRINTALL_DEFAULT                1
+
+/*
+ * Define how many HW WL samples to take for majority voting.
+ * MUST BE odd!!
+ * Assume there should only be 2 possible values that will show up,
+ * so treat ties as a problem!!!
+ * NOTE: Do not change this without checking the code!!!
+ */
+#define WLEVEL_LOOPS_DEFAULT           5
+
+#define ENABLE_COMPUTED_VREF_ADJUSTMENT        1
+#define SW_WLEVEL_HW_DEFAULT           1
+#define DEFAULT_BEST_RANK_SCORE                9999999
+#define MAX_RANK_SCORE_LIMIT           99
+
+/*
+ * Define how many HW RL samples per rank to take multiple samples will
+ * allow looking for the best sample score
+ */
+#define RLEVEL_SAMPLES_DEFAULT         3
+
+#define ddr_seq_print(format, ...) do {} while (0)
+
+struct wlevel_bitcnt {
+       int bitcnt[4];
+};
+
+static void display_dac_dbi_settings(int lmc, int dac_or_dbi,
+                                    int ecc_ena, int *settings, char *title);
+
+static unsigned short load_dac_override(struct ddr_priv *priv, int if_num,
+                                       int dac_value, int byte);
+
+/* "mode" arg */
+#define DBTRAIN_TEST 0
+#define DBTRAIN_DBI  1
+#define DBTRAIN_LFSR 2
+
+static int run_best_hw_patterns(struct ddr_priv *priv, int lmc, u64 phys_addr,
+                               int mode, u64 *xor_data);
+
+#define LMC_DDR3_RESET_ASSERT   0
+#define LMC_DDR3_RESET_DEASSERT 1
+
+static void cn7xxx_lmc_ddr3_reset(struct ddr_priv *priv, int if_num, int reset)
+{
+       union cvmx_lmcx_reset_ctl reset_ctl;
+
+       /*
+        * 4. Deassert DDRn_RESET_L pin by writing
+        *    LMC(0..3)_RESET_CTL[DDR3RST] = 1
+        *    without modifying any other LMC(0..3)_RESET_CTL fields.
+        * 5. Read LMC(0..3)_RESET_CTL and wait for the result.
+        * 6. Wait a minimum of 500us. This guarantees the necessary T = 500us
+        *    delay between DDRn_RESET_L deassertion and DDRn_DIMM*_CKE*
+        *    assertion.
+        */
+       debug("LMC%d %s DDR_RESET_L\n", if_num,
+             (reset ==
+              LMC_DDR3_RESET_DEASSERT) ? "De-asserting" : "Asserting");
+
+       reset_ctl.u64 = lmc_rd(priv, CVMX_LMCX_RESET_CTL(if_num));
+       reset_ctl.cn78xx.ddr3rst = reset;
+       lmc_wr(priv, CVMX_LMCX_RESET_CTL(if_num), reset_ctl.u64);
+
+       lmc_rd(priv, CVMX_LMCX_RESET_CTL(if_num));
+
+       udelay(500);
+}
+
+static void perform_lmc_reset(struct ddr_priv *priv, int node, int if_num)
+{
+       /*
+        * 5.9.6 LMC RESET Initialization
+        *
+        * The purpose of this step is to assert/deassert the RESET# pin at the
+        * DDR3/DDR4 parts.
+        *
+        * This LMC RESET step is done for all enabled LMCs.
+        *
+        * It may be appropriate to skip this step if the DDR3/DDR4 DRAM parts
+        * are in self refresh and are currently preserving their
+        * contents. (Software can determine this via
+        * LMC(0..3)_RESET_CTL[DDR3PSV] in some circumstances.) The remainder of
+        * this section assumes that the DRAM contents need not be preserved.
+        *
+        * The remainder of this section assumes that the CN78XX DDRn_RESET_L
+        * pin is attached to the RESET# pin of the attached DDR3/DDR4 parts,
+        * as will be appropriate in many systems.
+        *
+        * (In other systems, such as ones that can preserve DDR3/DDR4 part
+        * contents while CN78XX is powered down, it will not be appropriate to
+        * directly attach the CN78XX DDRn_RESET_L pin to DRESET# of the
+        * DDR3/DDR4 parts, and this section may not apply.)
+        *
+        * The remainder of this section describes the sequence for LMCn.
+        *
+        * Perform the following six substeps for LMC reset initialization:
+        *
+        * 1. If not done already, assert DDRn_RESET_L pin by writing
+        * LMC(0..3)_RESET_ CTL[DDR3RST] = 0 without modifying any other
+        * LMC(0..3)_RESET_CTL fields.
+        */
+
+       if (!ddr_memory_preserved(priv)) {
+               /*
+                * 2. Read LMC(0..3)_RESET_CTL and wait for the result.
+                */
+
+               lmc_rd(priv, CVMX_LMCX_RESET_CTL(if_num));
+
+               /*
+                * 3. Wait until RESET# assertion-time requirement from JEDEC
+                * DDR3/DDR4 specification is satisfied (200 us during a
+                * power-on ramp, 100ns when power is already stable).
+                */
+
+               udelay(200);
+
+               /*
+                * 4. Deassert DDRn_RESET_L pin by writing
+                *    LMC(0..3)_RESET_CTL[DDR3RST] = 1
+                *    without modifying any other LMC(0..3)_RESET_CTL fields.
+                * 5. Read LMC(0..3)_RESET_CTL and wait for the result.
+                * 6. Wait a minimum of 500us. This guarantees the necessary
+                *    T = 500us delay between DDRn_RESET_L deassertion and
+                *    DDRn_DIMM*_CKE* assertion.
+                */
+               cn7xxx_lmc_ddr3_reset(priv, if_num, LMC_DDR3_RESET_DEASSERT);
+
+               /* Toggle Reset Again */
+               /* That is, assert, then de-assert, one more time */
+               cn7xxx_lmc_ddr3_reset(priv, if_num, LMC_DDR3_RESET_ASSERT);
+               cn7xxx_lmc_ddr3_reset(priv, if_num, LMC_DDR3_RESET_DEASSERT);
+       }
+}
+
+void oct3_ddr3_seq(struct ddr_priv *priv, int rank_mask, int if_num,
+                  int sequence)
+{
+       /*
+        * 3. Without changing any other fields in LMC(0)_CONFIG, write
+        *    LMC(0)_CONFIG[RANKMASK] then write both
+        *    LMC(0)_SEQ_CTL[SEQ_SEL,INIT_START] = 1 with a single CSR write
+        *    operation. LMC(0)_CONFIG[RANKMASK] bits should be set to indicate
+        *    the ranks that will participate in the sequence.
+        *
+        *    The LMC(0)_SEQ_CTL[SEQ_SEL] value should select power-up/init or
+        *    selfrefresh exit, depending on whether the DRAM parts are in
+        *    self-refresh and whether their contents should be preserved. While
+        *    LMC performs these sequences, it will not perform any other DDR3
+        *    transactions. When the sequence is complete, hardware sets the
+        *    LMC(0)_CONFIG[INIT_STATUS] bits for the ranks that have been
+        *    initialized.
+        *
+        *    If power-up/init is selected immediately following a DRESET
+        *    assertion, LMC executes the sequence described in the "Reset and
+        *    Initialization Procedure" section of the JEDEC DDR3
+        *    specification. This includes activating CKE, writing all four DDR3
+        *    mode registers on all selected ranks, and issuing the required
+        *    ZQCL
+        *    command. The LMC(0)_CONFIG[RANKMASK] value should select all ranks
+        *    with attached DRAM in this case. If LMC(0)_CONTROL[RDIMM_ENA] = 1,
+        *    LMC writes the JEDEC standard SSTE32882 control words selected by
+        *    LMC(0)_DIMM_CTL[DIMM*_WMASK] between DDR_CKE* signal assertion and
+        *    the first DDR3 mode register write operation.
+        *    LMC(0)_DIMM_CTL[DIMM*_WMASK] should be cleared to 0 if the
+        *    corresponding DIMM is not present.
+        *
+        *    If self-refresh exit is selected, LMC executes the required SRX
+        *    command followed by a refresh and ZQ calibration. Section 4.5
+        *    describes behavior of a REF + ZQCS.  LMC does not write the DDR3
+        *    mode registers as part of this sequence, and the mode register
+        *    parameters must match at self-refresh entry and exit times.
+        *
+        * 4. Read LMC(0)_SEQ_CTL and wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE]
+        *    to be set.
+        *
+        * 5. Read LMC(0)_CONFIG[INIT_STATUS] and confirm that all ranks have
+        *    been initialized.
+        */
+
+       union cvmx_lmcx_seq_ctl seq_ctl;
+       union cvmx_lmcx_config lmc_config;
+       int timeout;
+
+       lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+       lmc_config.s.rankmask = rank_mask;
+       lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
+
+       seq_ctl.u64 = 0;
+
+       seq_ctl.s.init_start = 1;
+       seq_ctl.s.seq_sel = sequence;
+
+       ddr_seq_print
+           ("Performing LMC sequence: rank_mask=0x%02x, sequence=0x%x, %s\n",
+            rank_mask, sequence, sequence_str[sequence]);
+
+       if (seq_ctl.s.seq_sel == 3)
+               debug("LMC%d: Exiting Self-refresh Rank_mask:%x\n", if_num,
+                     rank_mask);
+
+       lmc_wr(priv, CVMX_LMCX_SEQ_CTL(if_num), seq_ctl.u64);
+       lmc_rd(priv, CVMX_LMCX_SEQ_CTL(if_num));
+
+       timeout = 100;
+       do {
+               udelay(100);    /* Wait a while */
+               seq_ctl.u64 = lmc_rd(priv, CVMX_LMCX_SEQ_CTL(if_num));
+               if (--timeout == 0) {
+                       printf("Sequence %d timed out\n", sequence);
+                       break;
+               }
+       } while (seq_ctl.s.seq_complete != 1);
+
+       ddr_seq_print("           LMC sequence=%x: Completed.\n", sequence);
+}
+
+#define bdk_numa_get_address(n, p)     ((p) | ((u64)n) << CVMX_NODE_MEM_SHIFT)
+#define AREA_BASE_OFFSET               BIT_ULL(26)
+
+static int test_dram_byte64(struct ddr_priv *priv, int lmc, u64 p,
+                           u64 bitmask, u64 *xor_data)
+{
+       u64 p1, p2, d1, d2;
+       u64 v, v1;
+       u64 p2offset = (1ULL << 26);    // offset to area 2
+       u64 datamask;
+       u64 xor;
+       u64 i, j, k;
+       u64 ii;
+       int errors = 0;
+       //u64 index;
+       u64 pattern1 = cvmx_rng_get_random64();
+       u64 pattern2 = 0;
+       u64 bad_bits[2] = { 0, 0 };
+       int kbitno = (octeon_is_cpuid(OCTEON_CN7XXX)) ? 20 : 18;
+       union cvmx_l2c_ctl l2c_ctl;
+       int burst;
+       int saved_dissblkdty;
+       int node = 0;
+
+       // Force full cacheline write-backs to boost traffic
+       l2c_ctl.u64 = l2c_rd(priv, CVMX_L2C_CTL);
+       saved_dissblkdty = l2c_ctl.cn78xx.dissblkdty;
+       l2c_ctl.cn78xx.dissblkdty = 1;
+       l2c_wr(priv, CVMX_L2C_CTL, l2c_ctl.u64);
+
+       if (octeon_is_cpuid(OCTEON_CN73XX) || octeon_is_cpuid(OCTEON_CNF75XX))
+               kbitno = 18;
+
+       // Byte lanes may be clear in the mask to indicate no testing on that
+       //lane.
+       datamask = bitmask;
+
+       /*
+        * Add offset to both test regions to not clobber boot stuff
+        * when running from L2 for NAND boot.
+        */
+       p += AREA_BASE_OFFSET;  // make sure base is out of the way of boot
+
+       // final address must include LMC and node
+       p |= (lmc << 7);        /* Map address into proper interface */
+       p = bdk_numa_get_address(node, p);      /* Map to node */
+       p |= 1ull << 63;
+
+#define II_INC BIT_ULL(22)
+#define II_MAX BIT_ULL(22)
+#define K_INC  BIT_ULL(14)
+#define K_MAX  BIT_ULL(kbitno)
+#define J_INC  BIT_ULL(9)
+#define J_MAX  BIT_ULL(12)
+#define I_INC  BIT_ULL(3)
+#define I_MAX  BIT_ULL(7)
+
+       debug("N%d.LMC%d: %s: phys_addr=0x%llx/0x%llx (0x%llx)\n",
+             node, lmc, __func__, p, p + p2offset, 1ULL << kbitno);
+
+       // loops are ordered so that only a single 64-bit slot is written to
+       // each cacheline at one time, then the cachelines are forced out;
+       // this should maximize read/write traffic
+
+       // FIXME? extend the range of memory tested!!
+       for (ii = 0; ii < II_MAX; ii += II_INC) {
+               for (i = 0; i < I_MAX; i += I_INC) {
+                       for (k = 0; k < K_MAX; k += K_INC) {
+                               for (j = 0; j < J_MAX; j += J_INC) {
+                                       p1 = p + ii + k + j;
+                                       p2 = p1 + p2offset;
+
+                                       v = pattern1 * (p1 + i);
+                                       // write the same thing to both areas
+                                       v1 = v;
+
+                                       cvmx_write64_uint64(p1 + i, v);
+                                       cvmx_write64_uint64(p2 + i, v1);
+
+                                       CVMX_CACHE_WBIL2(p1, 0);
+                                       CVMX_CACHE_WBIL2(p2, 0);
+                               }
+                       }
+               }
+       }
+
+       CVMX_DCACHE_INVALIDATE;
+
+       debug("N%d.LMC%d: dram_tuning_mem_xor: done INIT loop\n", node, lmc);
+
+       /* Make a series of passes over the memory areas. */
+
+       for (burst = 0; burst < 1 /* was: dram_tune_use_bursts */ ; burst++) {
+               u64 this_pattern = cvmx_rng_get_random64();
+
+               pattern2 ^= this_pattern;
+
+               /*
+                * XOR the data with a random value, applying the change to both
+                * memory areas.
+                */
+
+               // FIXME? extend the range of memory tested!!
+               for (ii = 0; ii < II_MAX; ii += II_INC) {
+                       // FIXME: rearranged, did not make much difference?
+                       for (i = 0; i < I_MAX; i += I_INC) {
+                               for (k = 0; k < K_MAX; k += K_INC) {
+                                       for (j = 0; j < J_MAX; j += J_INC) {
+                                               p1 = p + ii + k + j;
+                                               p2 = p1 + p2offset;
+
+                                               v = cvmx_read64_uint64(p1 +
+                                                                     i) ^
+                                                   this_pattern;
+                                               v1 = cvmx_read64_uint64(p2 +
+                                                                      i) ^
+                                                   this_pattern;
+
+                                               cvmx_write64_uint64(p1 + i, v);
+                                               cvmx_write64_uint64(p2 + i, v1);
+
+                                               CVMX_CACHE_WBIL2(p1, 0);
+                                               CVMX_CACHE_WBIL2(p2, 0);
+                                       }
+                               }
+                       }
+               }
+
+               CVMX_DCACHE_INVALIDATE;
+
+               debug("N%d.LMC%d: dram_tuning_mem_xor: done MODIFY loop\n",
+                     node, lmc);
+
+               /*
+                * Look for differences in the areas. If there is a mismatch,
+                * reset both memory locations with the same pattern. Failing
+                * to do so means that on all subsequent passes the pair of
+                * locations remain out of sync giving spurious errors.
+                */
+
+               // FIXME: Change the loop order so that an entire cache line
+               //        is compared at one time. This is so that a read
+               //        error that occurs *anywhere* on the cacheline will
+               //        be caught, rather than comparing only 1 cacheline
+               //        slot at a time, where an error on a different
+               //        slot will be missed that time around
+               // Does the above make sense?
+
+               // FIXME? extend the range of memory tested!!
+               for (ii = 0; ii < II_MAX; ii += II_INC) {
+                       for (k = 0; k < K_MAX; k += K_INC) {
+                               for (j = 0; j < J_MAX; j += J_INC) {
+                                       p1 = p + ii + k + j;
+                                       p2 = p1 + p2offset;
+
+                                       // process entire cachelines in the
+                                       //innermost loop
+                                       for (i = 0; i < I_MAX; i += I_INC) {
+                                               int bybit = 1;
+                                               // start in byte lane 0
+                                               u64 bymsk = 0xffULL;
+
+                                               // FIXME: this should predict
+                                               // what we find...???
+                                               v = ((p1 + i) * pattern1) ^
+                                                       pattern2;
+                                               d1 = cvmx_read64_uint64(p1 + i);
+                                               d2 = cvmx_read64_uint64(p2 + i);
+
+                                               // union of error bits only in
+                                               // active byte lanes
+                                               xor = ((d1 ^ v) | (d2 ^ v)) &
+                                                       datamask;
+
+                                               if (!xor)
+                                                       continue;
+
+                                               // accumulate bad bits
+                                               bad_bits[0] |= xor;
+
+                                               while (xor != 0) {
+                                                       debug("ERROR(%03d): [0x%016llX] [0x%016llX]  expected 0x%016llX d1 %016llX d2 %016llX\n",
+                                                             burst, p1, p2, v,
+                                                             d1, d2);
+                                                       // error(s) in this lane
+                                                       if (xor & bymsk) {
+                                                               // set the byte
+                                                               // error bit
+                                                               errors |= bybit;
+                                                               // clear byte
+                                                               // lane in
+                                                               // error bits
+                                                               xor &= ~bymsk;
+                                                               // clear the
+                                                               // byte lane in
+                                                               // the mask
+                                                               datamask &= ~bymsk;
+#if EXIT_WHEN_ALL_LANES_HAVE_ERRORS
+                                                               // nothing
+                                                               // left to do
+                                                               if (datamask == 0) {
+                                                                       return errors;
+                                                               }
+#endif /* EXIT_WHEN_ALL_LANES_HAVE_ERRORS */
+                                                       }
+                                                       // move mask into
+                                                       // next byte lane
+                                                       bymsk <<= 8;
+                                                       // move bit into next
+                                                       // byte position
+                                                       bybit <<= 1;
+                                               }
+                                       }
+                                       CVMX_CACHE_WBIL2(p1, 0);
+                                       CVMX_CACHE_WBIL2(p2, 0);
+                               }
+                       }
+               }
+
+               debug("N%d.LMC%d: dram_tuning_mem_xor: done TEST loop\n",
+                     node, lmc);
+       }
+
+       if (xor_data) {         // send the bad bits back...
+               xor_data[0] = bad_bits[0];
+               xor_data[1] = bad_bits[1];      // let it be zeroed
+       }
+
+       // Restore original setting that could enable partial cacheline writes
+       l2c_ctl.u64 = l2c_rd(priv, CVMX_L2C_CTL);
+       l2c_ctl.cn78xx.dissblkdty = saved_dissblkdty;
+       l2c_wr(priv, CVMX_L2C_CTL, l2c_ctl.u64);
+
+       return errors;
+}
+
+static void ddr4_mrw(struct ddr_priv *priv, int if_num, int rank,
+                    int mr_wr_addr, int mr_wr_sel, int mr_wr_bg1)
+{
+       union cvmx_lmcx_mr_mpr_ctl lmc_mr_mpr_ctl;
+
+       lmc_mr_mpr_ctl.u64 = 0;
+       lmc_mr_mpr_ctl.cn78xx.mr_wr_addr = (mr_wr_addr == -1) ? 0 : mr_wr_addr;
+       lmc_mr_mpr_ctl.cn78xx.mr_wr_sel = mr_wr_sel;
+       lmc_mr_mpr_ctl.cn78xx.mr_wr_rank = rank;
+       lmc_mr_mpr_ctl.cn78xx.mr_wr_use_default_value =
+               (mr_wr_addr == -1) ? 1 : 0;
+       lmc_mr_mpr_ctl.cn78xx.mr_wr_bg1 = mr_wr_bg1;
+       lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64);
+
+       /* Mode Register Write */
+       oct3_ddr3_seq(priv, 1 << rank, if_num, 0x8);
+}
+
+#define INV_A0_17(x)   ((x) ^ 0x22bf8)
+
+static void set_mpr_mode(struct ddr_priv *priv, int rank_mask,
+                        int if_num, int dimm_count, int mpr, int bg1)
+{
+       int rankx;
+
+       debug("All Ranks: Set mpr mode = %x %c-side\n",
+             mpr, (bg1 == 0) ? 'A' : 'B');
+
+       for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+               if (!(rank_mask & (1 << rankx)))
+                       continue;
+               if (bg1 == 0) {
+                       /* MR3 A-side */
+                       ddr4_mrw(priv, if_num, rankx, mpr << 2, 3, bg1);
+               } else {
+                       /* MR3 B-side */
+                       ddr4_mrw(priv, if_num, rankx, INV_A0_17(mpr << 2), ~3,
+                                bg1);
+               }
+       }
+}
+
+static void do_ddr4_mpr_read(struct ddr_priv *priv, int if_num,
+                            int rank, int page, int location)
+{
+       union cvmx_lmcx_mr_mpr_ctl lmc_mr_mpr_ctl;
+
+       lmc_mr_mpr_ctl.u64 = lmc_rd(priv, CVMX_LMCX_MR_MPR_CTL(if_num));
+       lmc_mr_mpr_ctl.cn70xx.mr_wr_addr = 0;
+       lmc_mr_mpr_ctl.cn70xx.mr_wr_sel = page; /* Page */
+       lmc_mr_mpr_ctl.cn70xx.mr_wr_rank = rank;
+       lmc_mr_mpr_ctl.cn70xx.mpr_loc = location;
+       lmc_mr_mpr_ctl.cn70xx.mpr_wr = 0;       /* Read=0, Write=1 */
+       lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64);
+
+       /* MPR register access sequence */
+       oct3_ddr3_seq(priv, 1 << rank, if_num, 0x9);
+
+       debug("LMC_MR_MPR_CTL                  : 0x%016llx\n",
+             lmc_mr_mpr_ctl.u64);
+       debug("lmc_mr_mpr_ctl.cn70xx.mr_wr_addr: 0x%02x\n",
+             lmc_mr_mpr_ctl.cn70xx.mr_wr_addr);
+       debug("lmc_mr_mpr_ctl.cn70xx.mr_wr_sel : 0x%02x\n",
+             lmc_mr_mpr_ctl.cn70xx.mr_wr_sel);
+       debug("lmc_mr_mpr_ctl.cn70xx.mpr_loc   : 0x%02x\n",
+             lmc_mr_mpr_ctl.cn70xx.mpr_loc);
+       debug("lmc_mr_mpr_ctl.cn70xx.mpr_wr    : 0x%02x\n",
+             lmc_mr_mpr_ctl.cn70xx.mpr_wr);
+}
+
+static int set_rdimm_mode(struct ddr_priv *priv, int if_num, int enable)
+{
+       union cvmx_lmcx_control lmc_control;
+       int save_rdimm_mode;
+
+       lmc_control.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+       save_rdimm_mode = lmc_control.s.rdimm_ena;
+       lmc_control.s.rdimm_ena = enable;
+       debug("Setting RDIMM_ENA = %x\n", enable);
+       lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), lmc_control.u64);
+
+       return save_rdimm_mode;
+}
+
+static void ddr4_mpr_read(struct ddr_priv *priv, int if_num, int rank,
+                         int page, int location, u64 *mpr_data)
+{
+       do_ddr4_mpr_read(priv, if_num, rank, page, location);
+
+       mpr_data[0] = lmc_rd(priv, CVMX_LMCX_MPR_DATA0(if_num));
+}
+
+/* Display MPR values for Page */
+static void display_mpr_page(struct ddr_priv *priv, int rank_mask,
+                            int if_num, int page)
+{
+       int rankx, location;
+       u64 mpr_data[3];
+
+       for (rankx = 0; rankx < 4; rankx++) {
+               if (!(rank_mask & (1 << rankx)))
+                       continue;
+
+               debug("N0.LMC%d.R%d: MPR Page %d loc [0:3]: ",
+                     if_num, rankx, page);
+               for (location = 0; location < 4; location++) {
+                       ddr4_mpr_read(priv, if_num, rankx, page, location,
+                                     mpr_data);
+                       debug("0x%02llx ", mpr_data[0] & 0xFF);
+               }
+               debug("\n");
+
+       }                       /* for (rankx = 0; rankx < 4; rankx++) */
+}
+
+static void ddr4_mpr_write(struct ddr_priv *priv, int if_num, int rank,
+                          int page, int location, u8 mpr_data)
+{
+       union cvmx_lmcx_mr_mpr_ctl lmc_mr_mpr_ctl;
+
+       lmc_mr_mpr_ctl.u64 = 0;
+       lmc_mr_mpr_ctl.cn70xx.mr_wr_addr = mpr_data;
+       lmc_mr_mpr_ctl.cn70xx.mr_wr_sel = page; /* Page */
+       lmc_mr_mpr_ctl.cn70xx.mr_wr_rank = rank;
+       lmc_mr_mpr_ctl.cn70xx.mpr_loc = location;
+       lmc_mr_mpr_ctl.cn70xx.mpr_wr = 1;       /* Read=0, Write=1 */
+       lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64);
+
+       /* MPR register access sequence */
+       oct3_ddr3_seq(priv, 1 << rank, if_num, 0x9);
+
+       debug("LMC_MR_MPR_CTL                  : 0x%016llx\n",
+             lmc_mr_mpr_ctl.u64);
+       debug("lmc_mr_mpr_ctl.cn70xx.mr_wr_addr: 0x%02x\n",
+             lmc_mr_mpr_ctl.cn70xx.mr_wr_addr);
+       debug("lmc_mr_mpr_ctl.cn70xx.mr_wr_sel : 0x%02x\n",
+             lmc_mr_mpr_ctl.cn70xx.mr_wr_sel);
+       debug("lmc_mr_mpr_ctl.cn70xx.mpr_loc   : 0x%02x\n",
+             lmc_mr_mpr_ctl.cn70xx.mpr_loc);
+       debug("lmc_mr_mpr_ctl.cn70xx.mpr_wr    : 0x%02x\n",
+             lmc_mr_mpr_ctl.cn70xx.mpr_wr);
+}
+
+static void set_vref(struct ddr_priv *priv, int if_num, int rank,
+                    int range, int value)
+{
+       union cvmx_lmcx_mr_mpr_ctl lmc_mr_mpr_ctl;
+       union cvmx_lmcx_modereg_params3 lmc_modereg_params3;
+       int mr_wr_addr = 0;
+
+       lmc_mr_mpr_ctl.u64 = 0;
+       lmc_modereg_params3.u64 = lmc_rd(priv,
+                                        CVMX_LMCX_MODEREG_PARAMS3(if_num));
+
+       /* A12:A10 tCCD_L */
+       mr_wr_addr |= lmc_modereg_params3.s.tccd_l << 10;
+       mr_wr_addr |= 1 << 7;   /* A7 1 = Enable(Training Mode) */
+       mr_wr_addr |= range << 6;       /* A6 vrefDQ Training Range */
+       mr_wr_addr |= value << 0;       /* A5:A0 vrefDQ Training Value */
+
+       lmc_mr_mpr_ctl.cn70xx.mr_wr_addr = mr_wr_addr;
+       lmc_mr_mpr_ctl.cn70xx.mr_wr_sel = 6;    /* Write MR6 */
+       lmc_mr_mpr_ctl.cn70xx.mr_wr_rank = rank;
+       lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64);
+
+       /* 0x8 = Mode Register Write */
+       oct3_ddr3_seq(priv, 1 << rank, if_num, 0x8);
+
+       /*
+        * It is vendor specific whether vref_value is captured with A7=1.
+        * A subsequent MRS might be necessary.
+        */
+       oct3_ddr3_seq(priv, 1 << rank, if_num, 0x8);
+
+       mr_wr_addr &= ~(1 << 7);        /* A7 0 = Disable(Training Mode) */
+       lmc_mr_mpr_ctl.cn70xx.mr_wr_addr = mr_wr_addr;
+       lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64);
+}
+
+static void set_dram_output_inversion(struct ddr_priv *priv, int if_num,
+                                     int dimm_count, int rank_mask,
+                                     int inversion)
+{
+       union cvmx_lmcx_ddr4_dimm_ctl lmc_ddr4_dimm_ctl;
+       union cvmx_lmcx_dimmx_params lmc_dimmx_params;
+       union cvmx_lmcx_dimm_ctl lmc_dimm_ctl;
+       int dimm_no;
+
+       /* Don't touch extenced register control words */
+       lmc_ddr4_dimm_ctl.u64 = 0;
+       lmc_wr(priv, CVMX_LMCX_DDR4_DIMM_CTL(if_num), lmc_ddr4_dimm_ctl.u64);
+
+       debug("All DIMMs: Register Control Word          RC0 : %x\n",
+             (inversion & 1));
+
+       for (dimm_no = 0; dimm_no < dimm_count; ++dimm_no) {
+               lmc_dimmx_params.u64 =
+                   lmc_rd(priv, CVMX_LMCX_DIMMX_PARAMS(dimm_no, if_num));
+               lmc_dimmx_params.s.rc0 =
+                   (lmc_dimmx_params.s.rc0 & ~1) | (inversion & 1);
+
+               lmc_wr(priv,
+                      CVMX_LMCX_DIMMX_PARAMS(dimm_no, if_num),
+                      lmc_dimmx_params.u64);
+       }
+
+       /* LMC0_DIMM_CTL */
+       lmc_dimm_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DIMM_CTL(if_num));
+       lmc_dimm_ctl.s.dimm0_wmask = 0x1;
+       lmc_dimm_ctl.s.dimm1_wmask = (dimm_count > 1) ? 0x0001 : 0x0000;
+
+       debug("LMC DIMM_CTL                                  : 0x%016llx\n",
+             lmc_dimm_ctl.u64);
+       lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), lmc_dimm_ctl.u64);
+
+       oct3_ddr3_seq(priv, rank_mask, if_num, 0x7);    /* Init RCW */
+}
+
+static void write_mpr_page0_pattern(struct ddr_priv *priv, int rank_mask,
+                                   int if_num, int dimm_count, int pattern,
+                                   int location_mask)
+{
+       int rankx;
+       int location;
+
+       for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+               if (!(rank_mask & (1 << rankx)))
+                       continue;
+               for (location = 0; location < 4; ++location) {
+                       if (!(location_mask & (1 << location)))
+                               continue;
+
+                       ddr4_mpr_write(priv, if_num, rankx,
+                                      /* page */ 0, /* location */ location,
+                                      pattern);
+               }
+       }
+}
+
+static void change_rdimm_mpr_pattern(struct ddr_priv *priv, int rank_mask,
+                                    int if_num, int dimm_count)
+{
+       int save_ref_zqcs_int;
+       union cvmx_lmcx_config lmc_config;
+
+       /*
+        * Okay, here is the latest sequence.  This should work for all
+        * chips and passes (78,88,73,etc).  This sequence should be run
+        * immediately after DRAM INIT.  The basic idea is to write the
+        * same pattern into each of the 4 MPR locations in the DRAM, so
+        * that the same value is returned when doing MPR reads regardless
+        * of the inversion state.  My advice is to put this into a
+        * function, change_rdimm_mpr_pattern or something like that, so
+        * that it can be called multiple times, as I think David wants a
+        * clock-like pattern for OFFSET training, but does not want a
+        * clock pattern for Bit-Deskew.  You should then be able to call
+        * this at any point in the init sequence (after DRAM init) to
+        * change the pattern to a new value.
+        * Mike
+        *
+        * A correction: PHY doesn't need any pattern during offset
+        * training, but needs clock like pattern for internal vref and
+        * bit-dskew training.  So for that reason, these steps below have
+        * to be conducted before those trainings to pre-condition
+        * the pattern.  David
+        *
+        * Note: Step 3, 4, 8 and 9 have to be done through RDIMM
+        * sequence. If you issue MRW sequence to do RCW write (in o78 pass
+        * 1 at least), LMC will still do two commands because
+        * CONTROL[RDIMM_ENA] is still set high. We don't want it to have
+        * any unintentional mode register write so it's best to do what
+        * Mike is doing here.
+        * Andrew
+        */
+
+       /* 1) Disable refresh (REF_ZQCS_INT = 0) */
+
+       debug("1) Disable refresh (REF_ZQCS_INT = 0)\n");
+
+       lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+       save_ref_zqcs_int = lmc_config.cn78xx.ref_zqcs_int;
+       lmc_config.cn78xx.ref_zqcs_int = 0;
+       lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
+
+       /*
+        * 2) Put all devices in MPR mode (Run MRW sequence (sequence=8)
+        * with MODEREG_PARAMS0[MPRLOC]=0,
+        * MODEREG_PARAMS0[MPR]=1, MR_MPR_CTL[MR_WR_SEL]=3, and
+        * MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=1)
+        */
+
+       debug("2) Put all devices in MPR mode (Run MRW sequence (sequence=8)\n");
+
+       /* A-side */
+       set_mpr_mode(priv, rank_mask, if_num, dimm_count, 1, 0);
+       /* B-side */
+       set_mpr_mode(priv, rank_mask, if_num, dimm_count, 1, 1);
+
+       /*
+        * a. Or you can set MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=0 and set
+        * the value you would like directly into
+        * MR_MPR_CTL[MR_WR_ADDR]
+        */
+
+       /*
+        * 3) Disable RCD Parity (if previously enabled) - parity does not
+        * work if inversion disabled
+        */
+
+       debug("3) Disable RCD Parity\n");
+
+       /*
+        * 4) Disable Inversion in the RCD.
+        * a. I did (3&4) via the RDIMM sequence (seq_sel=7), but it
+        * may be easier to use the MRW sequence (seq_sel=8).  Just set
+        * MR_MPR_CTL[MR_WR_SEL]=7, MR_MPR_CTL[MR_WR_ADDR][3:0]=data,
+        * MR_MPR_CTL[MR_WR_ADDR][7:4]=RCD reg
+        */
+
+       debug("4) Disable Inversion in the RCD.\n");
+
+       set_dram_output_inversion(priv, if_num, dimm_count, rank_mask, 1);
+
+       /*
+        * 5) Disable CONTROL[RDIMM_ENA] so that MR sequence goes out
+        * non-inverted.
+        */
+
+       debug("5) Disable CONTROL[RDIMM_ENA]\n");
+
+       set_rdimm_mode(priv, if_num, 0);
+
+       /*
+        * 6) Write all 4 MPR registers with the desired pattern (have to
+        * do this for all enabled ranks)
+        * a. MR_MPR_CTL.MPR_WR=1, MR_MPR_CTL.MPR_LOC=0..3,
+        * MR_MPR_CTL.MR_WR_SEL=0, MR_MPR_CTL.MR_WR_ADDR[7:0]=pattern
+        */
+
+       debug("6) Write all 4 MPR page 0 Training Patterns\n");
+
+       write_mpr_page0_pattern(priv, rank_mask, if_num, dimm_count, 0x55, 0x8);
+
+       /* 7) Re-enable RDIMM_ENA */
+
+       debug("7) Re-enable RDIMM_ENA\n");
+
+       set_rdimm_mode(priv, if_num, 1);
+
+       /* 8) Re-enable RDIMM inversion */
+
+       debug("8) Re-enable RDIMM inversion\n");
+
+       set_dram_output_inversion(priv, if_num, dimm_count, rank_mask, 0);
+
+       /* 9) Re-enable RDIMM parity (if desired) */
+
+       debug("9) Re-enable RDIMM parity (if desired)\n");
+
+       /*
+        * 10)Take B-side devices out of MPR mode (Run MRW sequence
+        * (sequence=8) with MODEREG_PARAMS0[MPRLOC]=0,
+        * MODEREG_PARAMS0[MPR]=0, MR_MPR_CTL[MR_WR_SEL]=3, and
+        * MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=1)
+        */
+
+       debug("10)Take B-side devices out of MPR mode\n");
+
+       set_mpr_mode(priv, rank_mask, if_num, dimm_count,
+                    /* mpr */ 0, /* bg1 */ 1);
+
+       /*
+        * a. Or you can set MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=0 and
+        * set the value you would like directly into MR_MPR_CTL[MR_WR_ADDR]
+        */
+
+       /* 11)Re-enable refresh (REF_ZQCS_INT=previous value) */
+
+       debug("11)Re-enable refresh (REF_ZQCS_INT=previous value)\n");
+
+       lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+       lmc_config.cn78xx.ref_zqcs_int = save_ref_zqcs_int;
+       lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
+}
+
+static int validate_hwl_seq(int *wl, int *seq)
+{
+       // sequence index, step through the sequence array
+       int seqx;
+       int bitnum;
+
+       seqx = 0;
+
+       while (seq[seqx + 1] >= 0) {    // stop on next seq entry == -1
+               // but now, check current versus next
+               bitnum = (wl[seq[seqx]] << 2) | wl[seq[seqx + 1]];
+               // magic validity number (see matrix above)
+               if (!((1 << bitnum) & 0xBDE7))
+                       return 1;
+               seqx++;
+       }
+
+       return 0;
+}
+
+static int validate_hw_wl_settings(int if_num,
+                                  union cvmx_lmcx_wlevel_rankx
+                                  *lmc_wlevel_rank, int is_rdimm, int ecc_ena)
+{
+       int wl[9], byte, errors;
+
+       // arrange the sequences so
+       // index 0 has byte 0, etc, ECC in middle
+       int useq[] = { 0, 1, 2, 3, 8, 4, 5, 6, 7, -1 };
+       // index 0 is ECC, then go down
+       int rseq1[] = { 8, 3, 2, 1, 0, -1 };
+       // index 0 has byte 4, then go up
+       int rseq2[] = { 4, 5, 6, 7, -1 };
+       // index 0 has byte 0, etc, no ECC
+       int useqno[] = { 0, 1, 2, 3, 4, 5, 6, 7, -1 };
+       // index 0 is byte 3, then go down, no ECC
+       int rseq1no[] = { 3, 2, 1, 0, -1 };
+
+       // in the CSR, bytes 0-7 are always data, byte 8 is ECC
+       for (byte = 0; byte < (8 + ecc_ena); byte++) {
+               // preprocess :-)
+               wl[byte] = (get_wl_rank(lmc_wlevel_rank, byte) >>
+                           1) & 3;
+       }
+
+       errors = 0;
+       if (is_rdimm) {         // RDIMM order
+               errors = validate_hwl_seq(wl, (ecc_ena) ? rseq1 : rseq1no);
+               errors += validate_hwl_seq(wl, rseq2);
+       } else {                // UDIMM order
+               errors = validate_hwl_seq(wl, (ecc_ena) ? useq : useqno);
+       }
+
+       return errors;
+}
+
+static unsigned int extr_wr(u64 u, int x)
+{
+       return (unsigned int)(((u >> (x * 12 + 5)) & 0x3ULL) |
+                             ((u >> (51 + x - 2)) & 0x4ULL));
+}
+
+static void insrt_wr(u64 *up, int x, int v)
+{
+       u64 u = *up;
+
+       u &= ~(((0x3ULL) << (x * 12 + 5)) | ((0x1ULL) << (51 + x)));
+       *up = (u | ((v & 0x3ULL) << (x * 12 + 5)) |
+              ((v & 0x4ULL) << (51 + x - 2)));
+}
+
+/* Read out Deskew Settings for DDR */
+
+struct deskew_bytes {
+       u16 bits[8];
+};
+
+struct deskew_data {
+       struct deskew_bytes bytes[9];
+};
+
+struct dac_data {
+       int bytes[9];
+};
+
+// T88 pass 1, skip 4=DAC
+static const u8 dsk_bit_seq_p1[8] = { 0, 1, 2, 3, 5, 6, 7, 8 };
+// T88 Pass 2, skip 4=DAC and 5=DBI
+static const u8 dsk_bit_seq_p2[8] = { 0, 1, 2, 3, 6, 7, 8, 9 };
+
+static void get_deskew_settings(struct ddr_priv *priv, int if_num,
+                               struct deskew_data *dskdat)
+{
+       union cvmx_lmcx_phy_ctl phy_ctl;
+       union cvmx_lmcx_config lmc_config;
+       int bit_index;
+       int byte_lane, byte_limit;
+       // NOTE: these are for pass 2.x
+       int is_o78p2 = !octeon_is_cpuid(OCTEON_CN78XX_PASS1_X);
+       const u8 *bit_seq = (is_o78p2) ? dsk_bit_seq_p2 : dsk_bit_seq_p1;
+
+       lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+       byte_limit = ((!lmc_config.s.mode32b) ? 8 : 4) + lmc_config.s.ecc_ena;
+
+       memset(dskdat, 0, sizeof(*dskdat));
+
+       phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+       phy_ctl.s.dsk_dbg_clk_scaler = 3;
+
+       for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
+               phy_ctl.s.dsk_dbg_byte_sel = byte_lane; // set byte lane
+
+               for (bit_index = 0; bit_index < 8; ++bit_index) {
+                       // set bit number and start read sequence
+                       phy_ctl.s.dsk_dbg_bit_sel = bit_seq[bit_index];
+                       phy_ctl.s.dsk_dbg_rd_start = 1;
+                       lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+                       // poll for read sequence to complete
+                       do {
+                               phy_ctl.u64 =
+                                       lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+                       } while (phy_ctl.s.dsk_dbg_rd_complete != 1);
+
+                       // record the data
+                       dskdat->bytes[byte_lane].bits[bit_index] =
+                               phy_ctl.s.dsk_dbg_rd_data & 0x3ff;
+               }
+       }
+}
+
+static void display_deskew_settings(struct ddr_priv *priv, int if_num,
+                                   struct deskew_data *dskdat,
+                                   int print_enable)
+{
+       int byte_lane;
+       int bit_num;
+       u16 flags, deskew;
+       union cvmx_lmcx_config lmc_config;
+       int byte_limit;
+       const char *fc = " ?-=+*#&";
+
+       lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+       byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena;
+
+       if (print_enable) {
+               debug("N0.LMC%d: Deskew Data:              Bit =>      :",
+                     if_num);
+               for (bit_num = 7; bit_num >= 0; --bit_num)
+                       debug(" %3d  ", bit_num);
+               debug("\n");
+       }
+
+       for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
+               if (print_enable)
+                       debug("N0.LMC%d: Bit Deskew Byte %d %s               :",
+                             if_num, byte_lane,
+                             (print_enable >= 3) ? "FINAL" : "     ");
+
+               for (bit_num = 7; bit_num >= 0; --bit_num) {
+                       flags = dskdat->bytes[byte_lane].bits[bit_num] & 7;
+                       deskew = dskdat->bytes[byte_lane].bits[bit_num] >> 3;
+
+                       if (print_enable)
+                               debug(" %3d %c", deskew, fc[flags ^ 1]);
+
+               }               /* for (bit_num = 7; bit_num >= 0; --bit_num) */
+
+               if (print_enable)
+                       debug("\n");
+       }
+}
+
+static void override_deskew_settings(struct ddr_priv *priv, int if_num,
+                                    struct deskew_data *dskdat)
+{
+       union cvmx_lmcx_phy_ctl phy_ctl;
+       union cvmx_lmcx_config lmc_config;
+
+       int bit, byte_lane, byte_limit;
+       u64 csr_data;
+
+       lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+       byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena;
+
+       phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+
+       phy_ctl.s.phy_reset = 0;
+       phy_ctl.s.dsk_dbg_num_bits_sel = 1;
+       phy_ctl.s.dsk_dbg_offset = 0;
+       phy_ctl.s.dsk_dbg_clk_scaler = 3;
+
+       phy_ctl.s.dsk_dbg_wr_mode = 1;
+       phy_ctl.s.dsk_dbg_load_dis = 0;
+       phy_ctl.s.dsk_dbg_overwrt_ena = 0;
+
+       phy_ctl.s.phy_dsk_reset = 0;
+
+       lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+       lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+
+       for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
+               csr_data = 0;
+               // FIXME: can we ignore DBI?
+               for (bit = 0; bit < 8; ++bit) {
+                       // fetch input and adjust
+                       u64 bits = (dskdat->bytes[byte_lane].bits[bit] >> 3) &
+                               0x7F;
+
+                       /*
+                        * lmc_general_purpose0.data[6:0]    // DQ0
+                        * lmc_general_purpose0.data[13:7]   // DQ1
+                        * lmc_general_purpose0.data[20:14]  // DQ2
+                        * lmc_general_purpose0.data[27:21]  // DQ3
+                        * lmc_general_purpose0.data[34:28]  // DQ4
+                        * lmc_general_purpose0.data[41:35]  // DQ5
+                        * lmc_general_purpose0.data[48:42]  // DQ6
+                        * lmc_general_purpose0.data[55:49]  // DQ7
+                        * lmc_general_purpose0.data[62:56]  // DBI
+                        */
+                       csr_data |= (bits << (7 * bit));
+
+               } /* for (bit = 0; bit < 8; ++bit) */
+
+               // update GP0 with the bit data for this byte lane
+               lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE0(if_num), csr_data);
+               lmc_rd(priv, CVMX_LMCX_GENERAL_PURPOSE0(if_num));
+
+               // start the deskew load sequence
+               phy_ctl.s.dsk_dbg_byte_sel = byte_lane;
+               phy_ctl.s.dsk_dbg_rd_start = 1;
+               lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+               // poll for read sequence to complete
+               do {
+                       udelay(100);
+                       phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+               } while (phy_ctl.s.dsk_dbg_rd_complete != 1);
+       }
+
+       // tell phy to use the new settings
+       phy_ctl.s.dsk_dbg_overwrt_ena = 1;
+       phy_ctl.s.dsk_dbg_rd_start = 0;
+       lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+       phy_ctl.s.dsk_dbg_wr_mode = 0;
+       lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+}
+
+static void process_by_rank_dac(struct ddr_priv *priv, int if_num,
+                               int rank_mask, struct dac_data *dacdat)
+{
+       union cvmx_lmcx_config lmc_config;
+       int rankx, byte_lane;
+       int byte_limit;
+       int rank_count;
+       struct dac_data dacsum;
+       int lane_probs;
+
+       lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+       byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena;
+
+       memset((void *)&dacsum, 0, sizeof(dacsum));
+       rank_count = 0;
+       lane_probs = 0;
+
+       for (rankx = 0; rankx < 4; rankx++) {
+               if (!(rank_mask & (1 << rankx)))
+                       continue;
+               rank_count++;
+
+               display_dac_dbi_settings(if_num, /*dac */ 1,
+                                        lmc_config.s.ecc_ena,
+                                        &dacdat[rankx].bytes[0],
+                                        "By-Ranks VREF");
+               // sum
+               for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
+                       if (rank_count == 2) {
+                               int ranks_diff =
+                                   abs((dacsum.bytes[byte_lane] -
+                                        dacdat[rankx].bytes[byte_lane]));
+
+                               // FIXME: is 19 a good number?
+                               if (ranks_diff > 19)
+                                       lane_probs |= (1 << byte_lane);
+                       }
+                       dacsum.bytes[byte_lane] +=
+                           dacdat[rankx].bytes[byte_lane];
+               }
+       }
+
+       // average
+       for (byte_lane = 0; byte_lane < byte_limit; byte_lane++)
+               dacsum.bytes[byte_lane] /= rank_count;  // FIXME: nint?
+
+       display_dac_dbi_settings(if_num, /*dac */ 1, lmc_config.s.ecc_ena,
+                                &dacsum.bytes[0], "All-Rank VREF");
+
+       if (lane_probs) {
+               debug("N0.LMC%d: All-Rank VREF DAC Problem Bytelane(s): 0x%03x\n",
+                     if_num, lane_probs);
+       }
+
+       // finally, write the averaged DAC values
+       for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
+               load_dac_override(priv, if_num, dacsum.bytes[byte_lane],
+                                 byte_lane);
+       }
+}
+
+static void process_by_rank_dsk(struct ddr_priv *priv, int if_num,
+                               int rank_mask, struct deskew_data *dskdat)
+{
+       union cvmx_lmcx_config lmc_config;
+       int rankx, lane, bit;
+       int byte_limit;
+       struct deskew_data dsksum, dskcnt;
+       u16 deskew;
+
+       lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+       byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena;
+
+       memset((void *)&dsksum, 0, sizeof(dsksum));
+       memset((void *)&dskcnt, 0, sizeof(dskcnt));
+
+       for (rankx = 0; rankx < 4; rankx++) {
+               if (!(rank_mask & (1 << rankx)))
+                       continue;
+
+               // sum ranks
+               for (lane = 0; lane < byte_limit; lane++) {
+                       for (bit = 0; bit < 8; ++bit) {
+                               deskew = dskdat[rankx].bytes[lane].bits[bit];
+                               // if flags indicate sat hi or lo, skip it
+                               if (deskew & 6)
+                                       continue;
+
+                               // clear flags
+                               dsksum.bytes[lane].bits[bit] +=
+                                       deskew & ~7;
+                               // count entries
+                               dskcnt.bytes[lane].bits[bit] += 1;
+                       }
+               }
+       }
+
+       // average ranks
+       for (lane = 0; lane < byte_limit; lane++) {
+               for (bit = 0; bit < 8; ++bit) {
+                       int div = dskcnt.bytes[lane].bits[bit];
+
+                       if (div > 0) {
+                               dsksum.bytes[lane].bits[bit] /= div;
+                               // clear flags
+                               dsksum.bytes[lane].bits[bit] &= ~7;
+                               // set LOCK
+                               dsksum.bytes[lane].bits[bit] |= 1;
+                       } else {
+                               // FIXME? use reset value?
+                               dsksum.bytes[lane].bits[bit] =
+                                       (64 << 3) | 1;
+                       }
+               }
+       }
+
+       // TME for FINAL version
+       display_deskew_settings(priv, if_num, &dsksum, /*VBL_TME */ 3);
+
+       // finally, write the averaged DESKEW values
+       override_deskew_settings(priv, if_num, &dsksum);
+}
+
+struct deskew_counts {
+       int saturated;          // number saturated
+       int unlocked;           // number unlocked
+       int nibrng_errs;        // nibble range errors
+       int nibunl_errs;        // nibble unlocked errors
+       int bitval_errs;        // bit value errors
+};
+
+#define MIN_BITVAL  17
+#define MAX_BITVAL 110
+
+static void validate_deskew_training(struct ddr_priv *priv, int rank_mask,
+                                    int if_num, struct deskew_counts *counts,
+                                    int print_flags)
+{
+       int byte_lane, bit_index, nib_num;
+       int nibrng_errs, nibunl_errs, bitval_errs;
+       union cvmx_lmcx_config lmc_config;
+       s16 nib_min[2], nib_max[2], nib_unl[2];
+       int byte_limit;
+       int print_enable = print_flags & 1;
+       struct deskew_data dskdat;
+       s16 flags, deskew;
+       const char *fc = " ?-=+*#&";
+       int bit_last;
+
+       lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+       byte_limit = ((!lmc_config.s.mode32b) ? 8 : 4) + lmc_config.s.ecc_ena;
+
+       memset(counts, 0, sizeof(struct deskew_counts));
+
+       get_deskew_settings(priv, if_num, &dskdat);
+
+       if (print_enable) {
+               debug("N0.LMC%d: Deskew Settings:          Bit =>      :",
+                     if_num);
+               for (bit_index = 7; bit_index >= 0; --bit_index)
+                       debug(" %3d  ", bit_index);
+               debug("\n");
+       }
+
+       for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
+               if (print_enable)
+                       debug("N0.LMC%d: Bit Deskew Byte %d %s               :",
+                             if_num, byte_lane,
+                             (print_flags & 2) ? "FINAL" : "     ");
+
+               nib_min[0] = 127;
+               nib_min[1] = 127;
+               nib_max[0] = 0;
+               nib_max[1] = 0;
+               nib_unl[0] = 0;
+               nib_unl[1] = 0;
+
+               if (lmc_config.s.mode32b == 1 && byte_lane == 4) {
+                       bit_last = 3;
+                       if (print_enable)
+                               debug("                        ");
+               } else {
+                       bit_last = 7;
+               }
+
+               for (bit_index = bit_last; bit_index >= 0; --bit_index) {
+                       nib_num = (bit_index > 3) ? 1 : 0;
+
+                       flags = dskdat.bytes[byte_lane].bits[bit_index] & 7;
+                       deskew = dskdat.bytes[byte_lane].bits[bit_index] >> 3;
+
+                       counts->saturated += !!(flags & 6);
+
+                       // Do range calc even when locked; it could happen
+                       // that a bit is still unlocked after final retry,
+                       // and we want to have an external retry if a RANGE
+                       // error is present at exit...
+                       nib_min[nib_num] = min(nib_min[nib_num], deskew);
+                       nib_max[nib_num] = max(nib_max[nib_num], deskew);
+
+                       if (!(flags & 1)) {     // only when not locked
+                               counts->unlocked += 1;
+                               nib_unl[nib_num] += 1;
+                       }
+
+                       if (print_enable)
+                               debug(" %3d %c", deskew, fc[flags ^ 1]);
+               }
+
+               /*
+                * Now look for nibble errors
+                *
+                * For bit 55, it looks like a bit deskew problem. When the
+                * upper nibble of byte 6 needs to go to saturation, bit 7
+                * of byte 6 locks prematurely at 64. For DIMMs with raw
+                * card A and B, can we reset the deskew training when we
+                * encounter this case? The reset criteria should be looking
+                * at one nibble at a time for raw card A and B; if the
+                * bit-deskew setting within a nibble is different by > 33,
+                * we'll issue a reset to the bit deskew training.
+                *
+                * LMC0 Bit Deskew Byte(6): 64 0 - 0 - 0 - 26 61 35 64
+                */
+               // upper nibble range, then lower nibble range
+               nibrng_errs = ((nib_max[1] - nib_min[1]) > 33) ? 1 : 0;
+               nibrng_errs |= ((nib_max[0] - nib_min[0]) > 33) ? 1 : 0;
+
+               // check for nibble all unlocked
+               nibunl_errs = ((nib_unl[0] == 4) || (nib_unl[1] == 4)) ? 1 : 0;
+
+               // check for bit value errors, ie < 17 or > 110
+               // FIXME? assume max always > MIN_BITVAL and min < MAX_BITVAL
+               bitval_errs = ((nib_max[1] > MAX_BITVAL) ||
+                              (nib_max[0] > MAX_BITVAL)) ? 1 : 0;
+               bitval_errs |= ((nib_min[1] < MIN_BITVAL) ||
+                               (nib_min[0] < MIN_BITVAL)) ? 1 : 0;
+
+               if ((nibrng_errs != 0 || nibunl_errs != 0 ||
+                    bitval_errs != 0) && print_enable) {
+                       debug(" %c%c%c",
+                             (nibrng_errs) ? 'R' : ' ',
+                             (nibunl_errs) ? 'U' : ' ',
+                             (bitval_errs) ? 'V' : ' ');
+               }
+
+               if (print_enable)
+                       debug("\n");
+
+               counts->nibrng_errs |= (nibrng_errs << byte_lane);
+               counts->nibunl_errs |= (nibunl_errs << byte_lane);
+               counts->bitval_errs |= (bitval_errs << byte_lane);
+       }
+}
+
+static unsigned short load_dac_override(struct ddr_priv *priv, int if_num,
+                                       int dac_value, int byte)
+{
+       union cvmx_lmcx_dll_ctl3 ddr_dll_ctl3;
+       // single bytelanes incr by 1; A is for ALL
+       int bytex = (byte == 0x0A) ? byte : byte + 1;
+
+       ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
+
+       SET_DDR_DLL_CTL3(byte_sel, bytex);
+       SET_DDR_DLL_CTL3(offset, dac_value >> 1);
+
+       ddr_dll_ctl3.cn73xx.bit_select = 0x9;   /* No-op */
+       lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
+
+       ddr_dll_ctl3.cn73xx.bit_select = 0xC;   /* vref bypass setting load */
+       lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
+
+       ddr_dll_ctl3.cn73xx.bit_select = 0xD;   /* vref bypass on. */
+       lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
+
+       ddr_dll_ctl3.cn73xx.bit_select = 0x9;   /* No-op */
+       lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
+
+       lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));       // flush writes
+
+       return (unsigned short)GET_DDR_DLL_CTL3(offset);
+}
+
+// arg dac_or_dbi is 1 for DAC, 0 for DBI
+// returns 9 entries (bytelanes 0 through 8) in settings[]
+// returns 0 if OK, -1 if a problem
+static int read_dac_dbi_settings(struct ddr_priv *priv, int if_num,
+                                int dac_or_dbi, int *settings)
+{
+       union cvmx_lmcx_phy_ctl phy_ctl;
+       int byte_lane, bit_num;
+       int deskew;
+       int dac_value;
+       int new_deskew_layout = 0;
+
+       new_deskew_layout = octeon_is_cpuid(OCTEON_CN73XX) ||
+               octeon_is_cpuid(OCTEON_CNF75XX);
+       new_deskew_layout |= (octeon_is_cpuid(OCTEON_CN78XX) &&
+                             !octeon_is_cpuid(OCTEON_CN78XX_PASS1_X));
+
+       phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+       phy_ctl.s.dsk_dbg_clk_scaler = 3;
+       lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+       bit_num = (dac_or_dbi) ? 4 : 5;
+       // DBI not available
+       if (bit_num == 5 && !new_deskew_layout)
+               return -1;
+
+       // FIXME: always assume ECC is available
+       for (byte_lane = 8; byte_lane >= 0; --byte_lane) {
+               //set byte lane and bit to read
+               phy_ctl.s.dsk_dbg_bit_sel = bit_num;
+               phy_ctl.s.dsk_dbg_byte_sel = byte_lane;
+               lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+               //start read sequence
+               phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+               phy_ctl.s.dsk_dbg_rd_start = 1;
+               lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+               //poll for read sequence to complete
+               do {
+                       phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+               } while (phy_ctl.s.dsk_dbg_rd_complete != 1);
+
+               // keep the flag bits where they are for DBI
+               deskew = phy_ctl.s.dsk_dbg_rd_data; /* >> 3 */
+               dac_value = phy_ctl.s.dsk_dbg_rd_data & 0xff;
+
+               settings[byte_lane] = (dac_or_dbi) ? dac_value : deskew;
+       }
+
+       return 0;
+}
+
+// print out the DBI settings array
+// arg dac_or_dbi is 1 for DAC, 0 for DBI
+static void display_dac_dbi_settings(int lmc, int dac_or_dbi,
+                                    int ecc_ena, int *settings, char *title)
+{
+       int byte;
+       int flags;
+       int deskew;
+       const char *fc = " ?-=+*#&";
+
+       debug("N0.LMC%d: %s %s Settings %d:0 :",
+             lmc, title, (dac_or_dbi) ? "DAC" : "DBI", 7 + ecc_ena);
+       // FIXME: what about 32-bit mode?
+       for (byte = (7 + ecc_ena); byte >= 0; --byte) {
+               if (dac_or_dbi) {       // DAC
+                       flags = 1;      // say its locked to get blank
+                       deskew = settings[byte] & 0xff;
+               } else {        // DBI
+                       flags = settings[byte] & 7;
+                       deskew = (settings[byte] >> 3) & 0x7f;
+               }
+               debug(" %3d %c", deskew, fc[flags ^ 1]);
+       }
+       debug("\n");
+}
+
+// Find a HWL majority
+static int find_wl_majority(struct wlevel_bitcnt *bc, int *mx, int *mc,
+                           int *xc, int *cc)
+{
+       int ix, ic;
+
+       *mx = -1;
+       *mc = 0;
+       *xc = 0;
+       *cc = 0;
+
+       for (ix = 0; ix < 4; ix++) {
+               ic = bc->bitcnt[ix];
+
+               // make a bitmask of the ones with a count
+               if (ic > 0) {
+                       *mc |= (1 << ix);
+                       *cc += 1;       // count how many had non-zero counts
+               }
+
+               // find the majority
+               if (ic > *xc) { // new max?
+                       *xc = ic;       // yes
+                       *mx = ix;       // set its index
+               }
+       }
+
+       return (*mx << 1);
+}
+
+// Evaluate the DAC settings array
+static int evaluate_dac_settings(int if_64b, int ecc_ena, int *settings)
+{
+       int byte, lane, dac, comp;
+       int last = (if_64b) ? 7 : 3;
+
+       // FIXME: change the check...???
+       // this looks only for sets of DAC values whose max/min differ by a lot
+       // let any EVEN go so long as it is within range...
+       for (byte = (last + ecc_ena); byte >= 0; --byte) {
+               dac = settings[byte] & 0xff;
+
+               for (lane = (last + ecc_ena); lane >= 0; --lane) {
+                       comp = settings[lane] & 0xff;
+                       if (abs((dac - comp)) > 25)
+                               return 1;
+               }
+       }
+
+       return 0;
+}
+
+static void perform_offset_training(struct ddr_priv *priv, int rank_mask,
+                                   int if_num)
+{
+       union cvmx_lmcx_phy_ctl lmc_phy_ctl;
+       u64 orig_phy_ctl;
+       const char *s;
+
+       /*
+        * 4.8.6 LMC Offset Training
+        *
+        * LMC requires input-receiver offset training.
+        *
+        * 1. Write LMC(0)_PHY_CTL[DAC_ON] = 1
+        */
+       lmc_phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+       orig_phy_ctl = lmc_phy_ctl.u64;
+       lmc_phy_ctl.s.dac_on = 1;
+
+       // allow full CSR override
+       s = lookup_env_ull(priv, "ddr_phy_ctl");
+       if (s)
+               lmc_phy_ctl.u64 = strtoull(s, NULL, 0);
+
+       // do not print or write if CSR does not change...
+       if (lmc_phy_ctl.u64 != orig_phy_ctl) {
+               debug("PHY_CTL                                       : 0x%016llx\n",
+                     lmc_phy_ctl.u64);
+               lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), lmc_phy_ctl.u64);
+       }
+
+       /*
+        * 2. Write LMC(0)_SEQ_CTL[SEQ_SEL] = 0x0B and
+        *    LMC(0)_SEQ_CTL[INIT_START] = 1.
+        *
+        * 3. Wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE] to be set to 1.
+        */
+       /* Start Offset training sequence */
+       oct3_ddr3_seq(priv, rank_mask, if_num, 0x0B);
+}
+
+static void perform_internal_vref_training(struct ddr_priv *priv,
+                                          int rank_mask, int if_num)
+{
+       union cvmx_lmcx_ext_config ext_config;
+       union cvmx_lmcx_dll_ctl3 ddr_dll_ctl3;
+
+       // First, make sure all byte-lanes are out of VREF bypass mode
+       ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
+
+       ddr_dll_ctl3.cn78xx.byte_sel = 0x0A;    /* all byte-lanes */
+       ddr_dll_ctl3.cn78xx.bit_select = 0x09;  /* No-op */
+       lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
+
+       ddr_dll_ctl3.cn78xx.bit_select = 0x0E;  /* vref bypass off. */
+       lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
+
+       ddr_dll_ctl3.cn78xx.bit_select = 0x09;  /* No-op */
+       lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
+
+       /*
+        * 4.8.7 LMC Internal vref Training
+        *
+        * LMC requires input-reference-voltage training.
+        *
+        * 1. Write LMC(0)_EXT_CONFIG[VREFINT_SEQ_DESKEW] = 0.
+        */
+       ext_config.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num));
+       ext_config.s.vrefint_seq_deskew = 0;
+
+       ddr_seq_print("Performing LMC sequence: vrefint_seq_deskew = %d\n",
+                     ext_config.s.vrefint_seq_deskew);
+
+       lmc_wr(priv, CVMX_LMCX_EXT_CONFIG(if_num), ext_config.u64);
+
+       /*
+        * 2. Write LMC(0)_SEQ_CTL[SEQ_SEL] = 0x0a and
+        *    LMC(0)_SEQ_CTL[INIT_START] = 1.
+        *
+        * 3. Wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE] to be set to 1.
+        */
+       /* Start LMC Internal vref Training */
+       oct3_ddr3_seq(priv, rank_mask, if_num, 0x0A);
+}
+
+#define dbg_avg(format, ...)   // debug(format, ##__VA_ARGS__)
+
+static int process_samples_average(s16 *bytes, int num_samples,
+                                  int lmc, int lane_no)
+{
+       int i, sadj, sum = 0, ret, asum, trunc;
+       s16 smin = 32767, smax = -32768;
+       int nmin, nmax;
+       //int rng;
+
+       dbg_avg("DBG_AVG%d.%d: ", lmc, lane_no);
+
+       for (i = 0; i < num_samples; i++) {
+               sum += bytes[i];
+               if (bytes[i] < smin)
+                       smin = bytes[i];
+               if (bytes[i] > smax)
+                       smax = bytes[i];
+               dbg_avg(" %3d", bytes[i]);
+       }
+
+       nmin = 0;
+       nmax = 0;
+       for (i = 0; i < num_samples; i++) {
+               if (bytes[i] == smin)
+                       nmin += 1;
+               if (bytes[i] == smax)
+                       nmax += 1;
+       }
+       dbg_avg(" (min=%3d/%d, max=%3d/%d, range=%2d, samples=%2d)",
+               smin, nmin, smax, nmax, rng, num_samples);
+
+       asum = sum - smin - smax;
+
+       sadj = divide_nint(asum * 10, (num_samples - 2));
+
+       trunc = asum / (num_samples - 2);
+
+       dbg_avg(" [%3d.%d, %3d]", sadj / 10, sadj % 10, trunc);
+
+       sadj = divide_nint(sadj, 10);
+       if (trunc & 1)
+               ret = trunc;
+       else if (sadj & 1)
+               ret = sadj;
+       else
+               ret = trunc + 1;
+
+       dbg_avg(" -> %3d\n", ret);
+
+       return ret;
+}
+
+#define DEFAULT_SAT_RETRY_LIMIT    11  // 1 + 10 retries
+
+#define default_lock_retry_limit   20  // 20 retries
+#define deskew_validation_delay    10000       // 10 millisecs
+
+static int perform_deskew_training(struct ddr_priv *priv, int rank_mask,
+                                  int if_num, int spd_rawcard_aorb)
+{
+       int unsaturated, locked;
+       int sat_retries, sat_retries_limit;
+       int lock_retries, lock_retries_total, lock_retries_limit;
+       int print_first;
+       int print_them_all;
+       struct deskew_counts dsk_counts;
+       union cvmx_lmcx_phy_ctl phy_ctl;
+       char *s;
+       int has_no_sat = octeon_is_cpuid(OCTEON_CN78XX_PASS2_X) ||
+               octeon_is_cpuid(OCTEON_CNF75XX);
+       int disable_bitval_retries = 1; // default to disabled
+
+       debug("N0.LMC%d: Performing Deskew Training.\n", if_num);
+
+       sat_retries = 0;
+       sat_retries_limit = (has_no_sat) ? 5 : DEFAULT_SAT_RETRY_LIMIT;
+
+       lock_retries_total = 0;
+       unsaturated = 0;
+       print_first = 1;        // print the first one
+       // set to true for printing all normal deskew attempts
+       print_them_all = 0;
+
+       // provide override for bitval_errs causing internal VREF retries
+       s = env_get("ddr_disable_bitval_retries");
+       if (s)
+               disable_bitval_retries = !!simple_strtoul(s, NULL, 0);
+
+       lock_retries_limit = default_lock_retry_limit;
+       if ((octeon_is_cpuid(OCTEON_CN78XX_PASS2_X)) ||
+           (octeon_is_cpuid(OCTEON_CN73XX)) ||
+           (octeon_is_cpuid(OCTEON_CNF75XX)))
+               lock_retries_limit *= 2;        // give new chips twice as many
+
+       do {                    /* while (sat_retries < sat_retry_limit) */
+               /*
+                * 4.8.8 LMC Deskew Training
+                *
+                * LMC requires input-read-data deskew training.
+                *
+                * 1. Write LMC(0)_EXT_CONFIG[VREFINT_SEQ_DESKEW] = 1.
+                */
+
+               union cvmx_lmcx_ext_config ext_config;
+
+               ext_config.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num));
+               ext_config.s.vrefint_seq_deskew = 1;
+
+               ddr_seq_print
+                   ("Performing LMC sequence: vrefint_seq_deskew = %d\n",
+                    ext_config.s.vrefint_seq_deskew);
+
+               lmc_wr(priv, CVMX_LMCX_EXT_CONFIG(if_num), ext_config.u64);
+
+               /*
+                * 2. Write LMC(0)_SEQ_CTL[SEQ_SEL] = 0x0A and
+                *    LMC(0)_SEQ_CTL[INIT_START] = 1.
+                *
+                * 3. Wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE] to be set to 1.
+                */
+
+               phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+               phy_ctl.s.phy_dsk_reset = 1;    /* RESET Deskew sequence */
+               lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+               /* LMC Deskew Training */
+               oct3_ddr3_seq(priv, rank_mask, if_num, 0x0A);
+
+               lock_retries = 0;
+
+perform_deskew_training:
+
+               phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+               phy_ctl.s.phy_dsk_reset = 0;    /* Normal Deskew sequence */
+               lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+               /* LMC Deskew Training */
+               oct3_ddr3_seq(priv, rank_mask, if_num, 0x0A);
+
+               // Moved this from validate_deskew_training
+               /* Allow deskew results to stabilize before evaluating them. */
+               udelay(deskew_validation_delay);
+
+               // Now go look at lock and saturation status...
+               validate_deskew_training(priv, rank_mask, if_num, &dsk_counts,
+                                        print_first);
+               // after printing the first and not doing them all, no more
+               if (print_first && !print_them_all)
+                       print_first = 0;
+
+               unsaturated = (dsk_counts.saturated == 0);
+               locked = (dsk_counts.unlocked == 0);
+
+               // only do locking retries if unsaturated or rawcard A or B,
+               // otherwise full SAT retry
+               if (unsaturated || (spd_rawcard_aorb && !has_no_sat)) {
+                       if (!locked) {  // and not locked
+                               lock_retries++;
+                               lock_retries_total++;
+                               if (lock_retries <= lock_retries_limit) {
+                                       goto perform_deskew_training;
+                               } else {
+                                       debug("N0.LMC%d: LOCK RETRIES failed after %d retries\n",
+                                             if_num, lock_retries_limit);
+                               }
+                       } else {
+                               // only print if we did try
+                               if (lock_retries_total > 0)
+                                       debug("N0.LMC%d: LOCK RETRIES successful after %d retries\n",
+                                             if_num, lock_retries);
+                       }
+               }               /* if (unsaturated || spd_rawcard_aorb) */
+
+               ++sat_retries;
+
+               /*
+                * At this point, check for a DDR4 RDIMM that will not
+                * benefit from SAT retries; if so, exit
+                */
+               if (spd_rawcard_aorb && !has_no_sat) {
+                       debug("N0.LMC%d: Deskew Training Loop: Exiting for RAWCARD == A or B.\n",
+                             if_num);
+                       break;  // no sat or lock retries
+               }
+
+       } while (!unsaturated && (sat_retries < sat_retries_limit));
+
+       debug("N0.LMC%d: Deskew Training %s. %d sat-retries, %d lock-retries\n",
+             if_num, (sat_retries >= DEFAULT_SAT_RETRY_LIMIT) ?
+             "Timed Out" : "Completed", sat_retries - 1, lock_retries_total);
+
+       // FIXME? add saturation to reasons for fault return - give it a
+       // chance via Internal VREF
+       // FIXME? add OPTIONAL bit value to reasons for fault return -
+       // give it a chance via Internal VREF
+       if (dsk_counts.nibrng_errs != 0 || dsk_counts.nibunl_errs != 0 ||
+           (dsk_counts.bitval_errs != 0 && !disable_bitval_retries) ||
+           !unsaturated) {
+               debug("N0.LMC%d: Nibble or Saturation Error(s) found, returning FAULT\n",
+                     if_num);
+               // FIXME: do we want this output always for errors?
+               validate_deskew_training(priv, rank_mask, if_num,
+                                        &dsk_counts, 1);
+               return -1;      // we did retry locally, they did not help
+       }
+
+       // NOTE: we (currently) always print one last training validation
+       // before starting Read Leveling...
+
+       return 0;
+}
+
+#define SCALING_FACTOR (1000)
+
+// NOTE: this gets called for 1-rank and 2-rank DIMMs in single-slot config
+static int compute_vref_1slot_2rank(int rtt_wr, int rtt_park, int dqx_ctl,
+                                   int rank_count, int dram_connection)
+{
+       u64 reff_s;
+       u64 rser_s = (dram_connection) ? 0 : 15;
+       u64 vdd = 1200;
+       u64 vref;
+       // 99 == HiZ
+       u64 rtt_wr_s = (((rtt_wr == 0) || rtt_wr == 99) ?
+                       1 * 1024 * 1024 : rtt_wr);
+       u64 rtt_park_s = (((rtt_park == 0) || ((rank_count == 1) &&
+                                              (rtt_wr != 0))) ?
+                         1 * 1024 * 1024 : rtt_park);
+       u64 dqx_ctl_s = (dqx_ctl == 0 ? 1 * 1024 * 1024 : dqx_ctl);
+       int vref_value;
+       u64 rangepc = 6000;     // range1 base
+       u64 vrefpc;
+       int vref_range = 0;
+
+       reff_s = divide_nint((rtt_wr_s * rtt_park_s), (rtt_wr_s + rtt_park_s));
+
+       vref = (((rser_s + dqx_ctl_s) * SCALING_FACTOR) /
+               (rser_s + dqx_ctl_s + reff_s)) + SCALING_FACTOR;
+
+       vref = (vref * vdd) / 2 / SCALING_FACTOR;
+
+       vrefpc = (vref * 100 * 100) / vdd;
+
+       if (vrefpc < rangepc) { // < range1 base, use range2
+               vref_range = 1 << 6;    // set bit A6 for range2
+               rangepc = 4500; // range2 base is 45%
+       }
+
+       vref_value = divide_nint(vrefpc - rangepc, 65);
+       if (vref_value < 0)
+               vref_value = vref_range;        // set to base of range
+       else
+               vref_value |= vref_range;
+
+       debug("rtt_wr: %d, rtt_park: %d, dqx_ctl: %d, rank_count: %d\n",
+             rtt_wr, rtt_park, dqx_ctl, rank_count);
+       debug("rtt_wr_s: %lld, rtt_park_s: %lld, dqx_ctl_s: %lld, vref_value: 0x%x, range: %d\n",
+             rtt_wr_s, rtt_park_s, dqx_ctl_s, vref_value ^ vref_range,
+             vref_range ? 2 : 1);
+
+       return vref_value;
+}
+
+// NOTE: this gets called for 1-rank and 2-rank DIMMs in two-slot configs
+static int compute_vref_2slot_2rank(int rtt_wr, int rtt_park_00,
+                                   int rtt_park_01,
+                                   int dqx_ctl, int rtt_nom,
+                                   int dram_connection)
+{
+       u64 rser = (dram_connection) ? 0 : 15;
+       u64 vdd = 1200;
+       u64 vl, vlp, vcm;
+       u64 rd0, rd1, rpullup;
+       // 99 == HiZ
+       u64 rtt_wr_s = (((rtt_wr == 0) || rtt_wr == 99) ?
+                       1 * 1024 * 1024 : rtt_wr);
+       u64 rtt_park_00_s = (rtt_park_00 == 0 ? 1 * 1024 * 1024 : rtt_park_00);
+       u64 rtt_park_01_s = (rtt_park_01 == 0 ? 1 * 1024 * 1024 : rtt_park_01);
+       u64 dqx_ctl_s = (dqx_ctl == 0 ? 1 * 1024 * 1024 : dqx_ctl);
+       u64 rtt_nom_s = (rtt_nom == 0 ? 1 * 1024 * 1024 : rtt_nom);
+       int vref_value;
+       u64 rangepc = 6000;     // range1 base
+       u64 vrefpc;
+       int vref_range = 0;
+
+       // rd0 = (RTT_NOM (parallel) RTT_WR) +  =
+       // ((RTT_NOM * RTT_WR) / (RTT_NOM + RTT_WR)) + RSER
+       rd0 = divide_nint((rtt_nom_s * rtt_wr_s),
+                         (rtt_nom_s + rtt_wr_s)) + rser;
+
+       // rd1 = (RTT_PARK_00 (parallel) RTT_PARK_01) + RSER =
+       // ((RTT_PARK_00 * RTT_PARK_01) / (RTT_PARK_00 + RTT_PARK_01)) + RSER
+       rd1 = divide_nint((rtt_park_00_s * rtt_park_01_s),
+                         (rtt_park_00_s + rtt_park_01_s)) + rser;
+
+       // rpullup = rd0 (parallel) rd1 = (rd0 * rd1) / (rd0 + rd1)
+       rpullup = divide_nint((rd0 * rd1), (rd0 + rd1));
+
+       // vl = (DQX_CTL / (DQX_CTL + rpullup)) * 1.2
+       vl = divide_nint((dqx_ctl_s * vdd), (dqx_ctl_s + rpullup));
+
+       // vlp = ((RSER / rd0) * (1.2 - vl)) + vl
+       vlp = divide_nint((rser * (vdd - vl)), rd0) + vl;
+
+       // vcm = (vlp + 1.2) / 2
+       vcm = divide_nint((vlp + vdd), 2);
+
+       // vrefpc = (vcm / 1.2) * 100
+       vrefpc = divide_nint((vcm * 100 * 100), vdd);
+
+       if (vrefpc < rangepc) { // < range1 base, use range2
+               vref_range = 1 << 6;    // set bit A6 for range2
+               rangepc = 4500; // range2 base is 45%
+       }
+
+       vref_value = divide_nint(vrefpc - rangepc, 65);
+       if (vref_value < 0)
+               vref_value = vref_range;        // set to base of range
+       else
+               vref_value |= vref_range;
+
+       debug("rtt_wr:%d, rtt_park_00:%d, rtt_park_01:%d, dqx_ctl:%d, rtt_nom:%d, vref_value:%d (0x%x)\n",
+             rtt_wr, rtt_park_00, rtt_park_01, dqx_ctl, rtt_nom, vref_value,
+             vref_value);
+
+       return vref_value;
+}
+
+// NOTE: only call this for DIMMs with 1 or 2 ranks, not 4.
+static int compute_vref_val(struct ddr_priv *priv, int if_num, int rankx,
+                           int dimm_count, int rank_count,
+                           struct impedence_values *imp_values,
+                           int is_stacked_die, int dram_connection)
+{
+       int computed_final_vref_value = 0;
+       int enable_adjust = ENABLE_COMPUTED_VREF_ADJUSTMENT;
+       const char *s;
+       int rtt_wr, dqx_ctl, rtt_nom, index;
+       union cvmx_lmcx_modereg_params1 lmc_modereg_params1;
+       union cvmx_lmcx_modereg_params2 lmc_modereg_params2;
+       union cvmx_lmcx_comp_ctl2 comp_ctl2;
+       int rtt_park;
+       int rtt_park_00;
+       int rtt_park_01;
+
+       debug("N0.LMC%d.R%d: %s(...dram_connection = %d)\n",
+             if_num, rankx, __func__, dram_connection);
+
+       // allow some overrides...
+       s = env_get("ddr_adjust_computed_vref");
+       if (s) {
+               enable_adjust = !!simple_strtoul(s, NULL, 0);
+               if (!enable_adjust) {
+                       debug("N0.LMC%d.R%d: DISABLE adjustment of computed VREF\n",
+                             if_num, rankx);
+               }
+       }
+
+       s = env_get("ddr_set_computed_vref");
+       if (s) {
+               int new_vref = simple_strtoul(s, NULL, 0);
+
+               debug("N0.LMC%d.R%d: OVERRIDE computed VREF to 0x%x (%d)\n",
+                     if_num, rankx, new_vref, new_vref);
+               return new_vref;
+       }
+
+       /*
+        * Calculate an alternative to the measured vref value
+        * but only for configurations we know how to...
+        */
+       // We have code for 2-rank DIMMs in both 1-slot or 2-slot configs,
+       // and can use the 2-rank 1-slot code for 1-rank DIMMs in 1-slot
+       // configs, and can use the 2-rank 2-slot code for 1-rank DIMMs
+       // in 2-slot configs.
+
+       lmc_modereg_params1.u64 =
+           lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num));
+       lmc_modereg_params2.u64 =
+           lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS2(if_num));
+       comp_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+       dqx_ctl = imp_values->dqx_strength[comp_ctl2.s.dqx_ctl];
+
+       // WR always comes from the current rank
+       index = (lmc_modereg_params1.u64 >> (rankx * 12 + 5)) & 0x03;
+       if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X))
+               index |= lmc_modereg_params1.u64 >> (51 + rankx - 2) & 0x04;
+       rtt_wr = imp_values->rtt_wr_ohms[index];
+
+       // separate calculations for 1 vs 2 DIMMs per LMC
+       if (dimm_count == 1) {
+               // PARK comes from this rank if 1-rank, otherwise other rank
+               index =
+                   (lmc_modereg_params2.u64 >>
+                    ((rankx ^ (rank_count - 1)) * 10 + 0)) & 0x07;
+               rtt_park = imp_values->rtt_nom_ohms[index];
+               computed_final_vref_value =
+                   compute_vref_1slot_2rank(rtt_wr, rtt_park, dqx_ctl,
+                                            rank_count, dram_connection);
+       } else {
+               // get both PARK values from the other DIMM
+               index =
+                   (lmc_modereg_params2.u64 >> ((rankx ^ 0x02) * 10 + 0)) &
+                   0x07;
+               rtt_park_00 = imp_values->rtt_nom_ohms[index];
+               index =
+                   (lmc_modereg_params2.u64 >> ((rankx ^ 0x03) * 10 + 0)) &
+                   0x07;
+               rtt_park_01 = imp_values->rtt_nom_ohms[index];
+               // NOM comes from this rank if 1-rank, otherwise other rank
+               index =
+                   (lmc_modereg_params1.u64 >>
+                    ((rankx ^ (rank_count - 1)) * 12 + 9)) & 0x07;
+               rtt_nom = imp_values->rtt_nom_ohms[index];
+               computed_final_vref_value =
+                   compute_vref_2slot_2rank(rtt_wr, rtt_park_00, rtt_park_01,
+                                            dqx_ctl, rtt_nom, dram_connection);
+       }
+
+       if (enable_adjust) {
+               union cvmx_lmcx_config lmc_config;
+               union cvmx_lmcx_control lmc_control;
+
+               lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+               lmc_control.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+
+               /*
+                *  New computed vref = existing computed vref â€“ X
+                *
+                * The value of X is depending on different conditions.
+                * Both #122 and #139 are 2Rx4 RDIMM, while #124 is stacked
+                * die 2Rx4, so I conclude the results into two conditions:
+                *
+                * 1. Stacked Die: 2Rx4
+                * 1-slot: offset = 7. i, e New computed vref = existing
+                * computed vref â€“ 7
+                * 2-slot: offset = 6
+                *
+                * 2. Regular: 2Rx4
+                * 1-slot: offset = 3
+                * 2-slot:  offset = 2
+                */
+               // we know we never get called unless DDR4, so test just
+               // the other conditions
+               if (lmc_control.s.rdimm_ena == 1 &&
+                   rank_count == 2 && lmc_config.s.mode_x4dev) {
+                       // it must first be RDIMM and 2-rank and x4
+                       int adj;
+
+                       // now do according to stacked die or not...
+                       if (is_stacked_die)
+                               adj = (dimm_count == 1) ? -7 : -6;
+                       else
+                               adj = (dimm_count == 1) ? -3 : -2;
+
+                       // we must have adjusted it, so print it out if
+                       // verbosity is right
+                       debug("N0.LMC%d.R%d: adjusting computed vref from %2d (0x%02x) to %2d (0x%02x)\n",
+                             if_num, rankx, computed_final_vref_value,
+                             computed_final_vref_value,
+                             computed_final_vref_value + adj,
+                             computed_final_vref_value + adj);
+                       computed_final_vref_value += adj;
+               }
+       }
+
+       return computed_final_vref_value;
+}
+
+static void unpack_rlevel_settings(int if_bytemask, int ecc_ena,
+                                  struct rlevel_byte_data *rlevel_byte,
+                                  union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank)
+{
+       if ((if_bytemask & 0xff) == 0xff) {
+               if (ecc_ena) {
+                       rlevel_byte[8].delay = lmc_rlevel_rank.s.byte7;
+                       rlevel_byte[7].delay = lmc_rlevel_rank.s.byte6;
+                       rlevel_byte[6].delay = lmc_rlevel_rank.s.byte5;
+                       rlevel_byte[5].delay = lmc_rlevel_rank.s.byte4;
+                       /* ECC */
+                       rlevel_byte[4].delay = lmc_rlevel_rank.s.byte8;
+               } else {
+                       rlevel_byte[7].delay = lmc_rlevel_rank.s.byte7;
+                       rlevel_byte[6].delay = lmc_rlevel_rank.s.byte6;
+                       rlevel_byte[5].delay = lmc_rlevel_rank.s.byte5;
+                       rlevel_byte[4].delay = lmc_rlevel_rank.s.byte4;
+               }
+       } else {
+               rlevel_byte[8].delay = lmc_rlevel_rank.s.byte8; /* unused */
+               rlevel_byte[7].delay = lmc_rlevel_rank.s.byte7; /* unused */
+               rlevel_byte[6].delay = lmc_rlevel_rank.s.byte6; /* unused */
+               rlevel_byte[5].delay = lmc_rlevel_rank.s.byte5; /* unused */
+               rlevel_byte[4].delay = lmc_rlevel_rank.s.byte4; /* ECC */
+       }
+
+       rlevel_byte[3].delay = lmc_rlevel_rank.s.byte3;
+       rlevel_byte[2].delay = lmc_rlevel_rank.s.byte2;
+       rlevel_byte[1].delay = lmc_rlevel_rank.s.byte1;
+       rlevel_byte[0].delay = lmc_rlevel_rank.s.byte0;
+}
+
+static void pack_rlevel_settings(int if_bytemask, int ecc_ena,
+                                struct rlevel_byte_data *rlevel_byte,
+                                union cvmx_lmcx_rlevel_rankx
+                                *final_rlevel_rank)
+{
+       union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank = *final_rlevel_rank;
+
+       if ((if_bytemask & 0xff) == 0xff) {
+               if (ecc_ena) {
+                       lmc_rlevel_rank.s.byte7 = rlevel_byte[8].delay;
+                       lmc_rlevel_rank.s.byte6 = rlevel_byte[7].delay;
+                       lmc_rlevel_rank.s.byte5 = rlevel_byte[6].delay;
+                       lmc_rlevel_rank.s.byte4 = rlevel_byte[5].delay;
+                       /* ECC */
+                       lmc_rlevel_rank.s.byte8 = rlevel_byte[4].delay;
+               } else {
+                       lmc_rlevel_rank.s.byte7 = rlevel_byte[7].delay;
+                       lmc_rlevel_rank.s.byte6 = rlevel_byte[6].delay;
+                       lmc_rlevel_rank.s.byte5 = rlevel_byte[5].delay;
+                       lmc_rlevel_rank.s.byte4 = rlevel_byte[4].delay;
+               }
+       } else {
+               lmc_rlevel_rank.s.byte8 = rlevel_byte[8].delay;
+               lmc_rlevel_rank.s.byte7 = rlevel_byte[7].delay;
+               lmc_rlevel_rank.s.byte6 = rlevel_byte[6].delay;
+               lmc_rlevel_rank.s.byte5 = rlevel_byte[5].delay;
+               lmc_rlevel_rank.s.byte4 = rlevel_byte[4].delay;
+       }
+
+       lmc_rlevel_rank.s.byte3 = rlevel_byte[3].delay;
+       lmc_rlevel_rank.s.byte2 = rlevel_byte[2].delay;
+       lmc_rlevel_rank.s.byte1 = rlevel_byte[1].delay;
+       lmc_rlevel_rank.s.byte0 = rlevel_byte[0].delay;
+
+       *final_rlevel_rank = lmc_rlevel_rank;
+}
+
+/////////////////// These are the RLEVEL settings display routines
+
+// flags
+#define WITH_NOTHING 0
+#define WITH_SCORE   1
+#define WITH_AVERAGE 2
+#define WITH_FINAL   4
+#define WITH_COMPUTE 8
+
+static void do_display_rl(int if_num,
+                         union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank,
+                         int rank, int flags, int score)
+{
+       char score_buf[16];
+       char *msg_buf;
+       char hex_buf[20];
+
+       if (flags & WITH_SCORE) {
+               snprintf(score_buf, sizeof(score_buf), "(%d)", score);
+       } else {
+               score_buf[0] = ' ';
+               score_buf[1] = 0;
+       }
+
+       if (flags & WITH_AVERAGE) {
+               msg_buf = "  DELAY AVERAGES  ";
+       } else if (flags & WITH_FINAL) {
+               msg_buf = "  FINAL SETTINGS  ";
+       } else if (flags & WITH_COMPUTE) {
+               msg_buf = "  COMPUTED DELAYS ";
+       } else {
+               snprintf(hex_buf, sizeof(hex_buf), "0x%016llX",
+                        (unsigned long long)lmc_rlevel_rank.u64);
+               msg_buf = hex_buf;
+       }
+
+       debug("N0.LMC%d.R%d: Rlevel Rank %#4x, %s  : %5d %5d %5d %5d %5d %5d %5d %5d %5d %s\n",
+             if_num, rank, lmc_rlevel_rank.s.status, msg_buf,
+             lmc_rlevel_rank.s.byte8, lmc_rlevel_rank.s.byte7,
+             lmc_rlevel_rank.s.byte6, lmc_rlevel_rank.s.byte5,
+             lmc_rlevel_rank.s.byte4, lmc_rlevel_rank.s.byte3,
+             lmc_rlevel_rank.s.byte2, lmc_rlevel_rank.s.byte1,
+             lmc_rlevel_rank.s.byte0, score_buf);
+}
+
+static void display_rl(int if_num,
+                      union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank, int rank)
+{
+       do_display_rl(if_num, lmc_rlevel_rank, rank, 0, 0);
+}
+
+static void display_rl_with_score(int if_num,
+                                 union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank,
+                                 int rank, int score)
+{
+       do_display_rl(if_num, lmc_rlevel_rank, rank, 1, score);
+}
+
+static void display_rl_with_final(int if_num,
+                                 union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank,
+                                 int rank)
+{
+       do_display_rl(if_num, lmc_rlevel_rank, rank, 4, 0);
+}
+
+static void display_rl_with_computed(int if_num,
+                                    union cvmx_lmcx_rlevel_rankx
+                                    lmc_rlevel_rank, int rank, int score)
+{
+       do_display_rl(if_num, lmc_rlevel_rank, rank, 9, score);
+}
+
+// flag values
+#define WITH_RODT_BLANK      0
+#define WITH_RODT_SKIPPING   1
+#define WITH_RODT_BESTROW    2
+#define WITH_RODT_BESTSCORE  3
+// control
+#define SKIP_SKIPPING 1
+
+static const char *with_rodt_canned_msgs[4] = {
+       "          ", "SKIPPING  ", "BEST ROW  ", "BEST SCORE"
+};
+
+static void display_rl_with_rodt(int if_num,
+                                union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank,
+                                int rank, int score,
+                                int nom_ohms, int rodt_ohms, int flag)
+{
+       const char *msg_buf;
+       char set_buf[20];
+
+#if SKIP_SKIPPING
+       if (flag == WITH_RODT_SKIPPING)
+               return;
+#endif
+
+       msg_buf = with_rodt_canned_msgs[flag];
+       if (nom_ohms < 0) {
+               snprintf(set_buf, sizeof(set_buf), "    RODT %3d    ",
+                        rodt_ohms);
+       } else {
+               snprintf(set_buf, sizeof(set_buf), "NOM %3d RODT %3d", nom_ohms,
+                        rodt_ohms);
+       }
+
+       debug("N0.LMC%d.R%d: Rlevel %s   %s  : %5d %5d %5d %5d %5d %5d %5d %5d %5d (%d)\n",
+             if_num, rank, set_buf, msg_buf, lmc_rlevel_rank.s.byte8,
+             lmc_rlevel_rank.s.byte7, lmc_rlevel_rank.s.byte6,
+             lmc_rlevel_rank.s.byte5, lmc_rlevel_rank.s.byte4,
+             lmc_rlevel_rank.s.byte3, lmc_rlevel_rank.s.byte2,
+             lmc_rlevel_rank.s.byte1, lmc_rlevel_rank.s.byte0, score);
+}
+
+static void do_display_wl(int if_num,
+                         union cvmx_lmcx_wlevel_rankx lmc_wlevel_rank,
+                         int rank, int flags)
+{
+       char *msg_buf;
+       char hex_buf[20];
+
+       if (flags & WITH_FINAL) {
+               msg_buf = "  FINAL SETTINGS  ";
+       } else {
+               snprintf(hex_buf, sizeof(hex_buf), "0x%016llX",
+                        (unsigned long long)lmc_wlevel_rank.u64);
+               msg_buf = hex_buf;
+       }
+
+       debug("N0.LMC%d.R%d: Wlevel Rank %#4x, %s  : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",
+             if_num, rank, lmc_wlevel_rank.s.status, msg_buf,
+             lmc_wlevel_rank.s.byte8, lmc_wlevel_rank.s.byte7,
+             lmc_wlevel_rank.s.byte6, lmc_wlevel_rank.s.byte5,
+             lmc_wlevel_rank.s.byte4, lmc_wlevel_rank.s.byte3,
+             lmc_wlevel_rank.s.byte2, lmc_wlevel_rank.s.byte1,
+             lmc_wlevel_rank.s.byte0);
+}
+
+static void display_wl(int if_num,
+                      union cvmx_lmcx_wlevel_rankx lmc_wlevel_rank, int rank)
+{
+       do_display_wl(if_num, lmc_wlevel_rank, rank, WITH_NOTHING);
+}
+
+static void display_wl_with_final(int if_num,
+                                 union cvmx_lmcx_wlevel_rankx lmc_wlevel_rank,
+                                 int rank)
+{
+       do_display_wl(if_num, lmc_wlevel_rank, rank, WITH_FINAL);
+}
+
+// pretty-print bitmask adjuster
+static u64 ppbm(u64 bm)
+{
+       if (bm != 0ul) {
+               while ((bm & 0x0fful) == 0ul)
+                       bm >>= 4;
+       }
+
+       return bm;
+}
+
+// xlate PACKED index to UNPACKED index to use with rlevel_byte
+#define XPU(i, e) (((i) < 4) ? (i) : (((i) < 8) ? (i) + (e) : 4))
+// xlate UNPACKED index to PACKED index to use with rlevel_bitmask
+#define XUP(i, e) (((i) < 4) ? (i) : (e) ? (((i) > 4) ? (i) - 1 : 8) : (i))
+
+// flag values
+#define WITH_WL_BITMASKS      0
+#define WITH_RL_BITMASKS      1
+#define WITH_RL_MASK_SCORES   2
+#define WITH_RL_SEQ_SCORES    3
+
+static void do_display_bm(int if_num, int rank, void *bm,
+                         int flags, int ecc)
+{
+       if (flags == WITH_WL_BITMASKS) {
+               // wlevel_bitmask array in PACKED index order, so just
+               // print them
+               int *bitmasks = (int *)bm;
+
+               debug("N0.LMC%d.R%d: Wlevel Debug Bitmasks                 : %05x %05x %05x %05x %05x %05x %05x %05x %05x\n",
+                     if_num, rank, bitmasks[8], bitmasks[7], bitmasks[6],
+                     bitmasks[5], bitmasks[4], bitmasks[3], bitmasks[2],
+                     bitmasks[1], bitmasks[0]
+                       );
+       } else if (flags == WITH_RL_BITMASKS) {
+               // rlevel_bitmask array in PACKED index order, so just
+               // print them
+               struct rlevel_bitmask *rlevel_bitmask =
+                       (struct rlevel_bitmask *)bm;
+
+               debug("N0.LMC%d.R%d: Rlevel Debug Bitmasks        8:0      : %05llx %05llx %05llx %05llx %05llx %05llx %05llx %05llx %05llx\n",
+                     if_num, rank, ppbm(rlevel_bitmask[8].bm),
+                     ppbm(rlevel_bitmask[7].bm), ppbm(rlevel_bitmask[6].bm),
+                     ppbm(rlevel_bitmask[5].bm), ppbm(rlevel_bitmask[4].bm),
+                     ppbm(rlevel_bitmask[3].bm), ppbm(rlevel_bitmask[2].bm),
+                     ppbm(rlevel_bitmask[1].bm), ppbm(rlevel_bitmask[0].bm)
+                       );
+       } else if (flags == WITH_RL_MASK_SCORES) {
+               // rlevel_bitmask array in PACKED index order, so just
+               // print them
+               struct rlevel_bitmask *rlevel_bitmask =
+                       (struct rlevel_bitmask *)bm;
+
+               debug("N0.LMC%d.R%d: Rlevel Debug Bitmask Scores  8:0      : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",
+                     if_num, rank, rlevel_bitmask[8].errs,
+                     rlevel_bitmask[7].errs, rlevel_bitmask[6].errs,
+                     rlevel_bitmask[5].errs, rlevel_bitmask[4].errs,
+                     rlevel_bitmask[3].errs, rlevel_bitmask[2].errs,
+                     rlevel_bitmask[1].errs, rlevel_bitmask[0].errs);
+       } else if (flags == WITH_RL_SEQ_SCORES) {
+               // rlevel_byte array in UNPACKED index order, so xlate
+               // and print them
+               struct rlevel_byte_data *rlevel_byte =
+                       (struct rlevel_byte_data *)bm;
+
+               debug("N0.LMC%d.R%d: Rlevel Debug Non-seq Scores  8:0      : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",
+                     if_num, rank, rlevel_byte[XPU(8, ecc)].sqerrs,
+                     rlevel_byte[XPU(7, ecc)].sqerrs,
+                     rlevel_byte[XPU(6, ecc)].sqerrs,
+                     rlevel_byte[XPU(5, ecc)].sqerrs,
+                     rlevel_byte[XPU(4, ecc)].sqerrs,
+                     rlevel_byte[XPU(3, ecc)].sqerrs,
+                     rlevel_byte[XPU(2, ecc)].sqerrs,
+                     rlevel_byte[XPU(1, ecc)].sqerrs,
+                     rlevel_byte[XPU(0, ecc)].sqerrs);
+       }
+}
+
+static void display_wl_bm(int if_num, int rank, int *bitmasks)
+{
+       do_display_bm(if_num, rank, (void *)bitmasks, WITH_WL_BITMASKS, 0);
+}
+
+static void display_rl_bm(int if_num, int rank,
+                         struct rlevel_bitmask *bitmasks, int ecc_ena)
+{
+       do_display_bm(if_num, rank, (void *)bitmasks, WITH_RL_BITMASKS,
+                     ecc_ena);
+}
+
+static void display_rl_bm_scores(int if_num, int rank,
+                                struct rlevel_bitmask *bitmasks, int ecc_ena)
+{
+       do_display_bm(if_num, rank, (void *)bitmasks, WITH_RL_MASK_SCORES,
+                     ecc_ena);
+}
+
+static void display_rl_seq_scores(int if_num, int rank,
+                                 struct rlevel_byte_data *bytes, int ecc_ena)
+{
+       do_display_bm(if_num, rank, (void *)bytes, WITH_RL_SEQ_SCORES, ecc_ena);
+}
+
+#define RODT_OHMS_COUNT        8
+#define RTT_NOM_OHMS_COUNT     8
+#define RTT_NOM_TABLE_COUNT    8
+#define RTT_WR_OHMS_COUNT      8
+#define DIC_OHMS_COUNT         3
+#define DRIVE_STRENGTH_COUNT  15
+
+static unsigned char ddr4_rodt_ohms[RODT_OHMS_COUNT] = {
+       0, 40, 60, 80, 120, 240, 34, 48 };
+static unsigned char ddr4_rtt_nom_ohms[RTT_NOM_OHMS_COUNT] = {
+       0, 60, 120, 40, 240, 48, 80, 34 };
+static unsigned char ddr4_rtt_nom_table[RTT_NOM_TABLE_COUNT] = {
+       0, 4, 2, 6, 1, 5, 3, 7 };
+// setting HiZ ohms to 99 for computed vref
+static unsigned char ddr4_rtt_wr_ohms[RTT_WR_OHMS_COUNT] = {
+       0, 120, 240, 99, 80 };
+static unsigned char ddr4_dic_ohms[DIC_OHMS_COUNT] = { 34, 48 };
+static short ddr4_drive_strength[DRIVE_STRENGTH_COUNT] = {
+       0, 0, 26, 30, 34, 40, 48, 68, 0, 0, 0, 0, 0, 0, 0 };
+static short ddr4_dqx_strength[DRIVE_STRENGTH_COUNT] = {
+       0, 24, 27, 30, 34, 40, 48, 60, 0, 0, 0, 0, 0, 0, 0 };
+struct impedence_values ddr4_impedence_val = {
+       .rodt_ohms = ddr4_rodt_ohms,
+       .rtt_nom_ohms = ddr4_rtt_nom_ohms,
+       .rtt_nom_table = ddr4_rtt_nom_table,
+       .rtt_wr_ohms = ddr4_rtt_wr_ohms,
+       .dic_ohms = ddr4_dic_ohms,
+       .drive_strength = ddr4_drive_strength,
+       .dqx_strength = ddr4_dqx_strength,
+};
+
+static unsigned char ddr3_rodt_ohms[RODT_OHMS_COUNT] = {
+       0, 20, 30, 40, 60, 120, 0, 0 };
+static unsigned char ddr3_rtt_nom_ohms[RTT_NOM_OHMS_COUNT] = {
+       0, 60, 120, 40, 20, 30, 0, 0 };
+static unsigned char ddr3_rtt_nom_table[RTT_NOM_TABLE_COUNT] = {
+       0, 2, 1, 3, 5, 4, 0, 0 };
+static unsigned char ddr3_rtt_wr_ohms[RTT_WR_OHMS_COUNT] = { 0, 60, 120 };
+static unsigned char ddr3_dic_ohms[DIC_OHMS_COUNT] = { 40, 34 };
+static short ddr3_drive_strength[DRIVE_STRENGTH_COUNT] = {
+       0, 24, 27, 30, 34, 40, 48, 60, 0, 0, 0, 0, 0, 0, 0 };
+static struct impedence_values ddr3_impedence_val = {
+       .rodt_ohms = ddr3_rodt_ohms,
+       .rtt_nom_ohms = ddr3_rtt_nom_ohms,
+       .rtt_nom_table = ddr3_rtt_nom_table,
+       .rtt_wr_ohms = ddr3_rtt_wr_ohms,
+       .dic_ohms = ddr3_dic_ohms,
+       .drive_strength = ddr3_drive_strength,
+       .dqx_strength = ddr3_drive_strength,
+};
+
+static u64 hertz_to_psecs(u64 hertz)
+{
+       /* Clock in psecs */
+       return divide_nint((u64)1000 * 1000 * 1000 * 1000, hertz);
+}
+
+#define DIVIDEND_SCALE 1000    /* Scale to avoid rounding error. */
+
+static u64 psecs_to_mts(u64 psecs)
+{
+       return divide_nint(divide_nint((u64)(2 * 1000000 * DIVIDEND_SCALE),
+                                      psecs), DIVIDEND_SCALE);
+}
+
+#define WITHIN(v, b, m) (((v) >= ((b) - (m))) && ((v) <= ((b) + (m))))
+
+static unsigned long pretty_psecs_to_mts(u64 psecs)
+{
+       u64 ret = 0;            // default to error
+
+       if (WITHIN(psecs, 2500, 1))
+               ret = 800;
+       else if (WITHIN(psecs, 1875, 1))
+               ret = 1066;
+       else if (WITHIN(psecs, 1500, 1))
+               ret = 1333;
+       else if (WITHIN(psecs, 1250, 1))
+               ret = 1600;
+       else if (WITHIN(psecs, 1071, 1))
+               ret = 1866;
+       else if (WITHIN(psecs, 937, 1))
+               ret = 2133;
+       else if (WITHIN(psecs, 833, 1))
+               ret = 2400;
+       else if (WITHIN(psecs, 750, 1))
+               ret = 2666;
+       return ret;
+}
+
+static u64 mts_to_hertz(u64 mts)
+{
+       return ((mts * 1000 * 1000) / 2);
+}
+
+static int compute_rc3x(int64_t tclk_psecs)
+{
+       long speed;
+       long tclk_psecs_min, tclk_psecs_max;
+       long data_rate_mhz, data_rate_mhz_min, data_rate_mhz_max;
+       int rc3x;
+
+#define ENCODING_BASE 1240
+
+       data_rate_mhz = psecs_to_mts(tclk_psecs);
+
+       /*
+        * 2400 MT/s is a special case. Using integer arithmetic it rounds
+        * from 833 psecs to 2401 MT/s. Force it to 2400 to pick the
+        * proper setting from the table.
+        */
+       if (tclk_psecs == 833)
+               data_rate_mhz = 2400;
+
+       for (speed = ENCODING_BASE; speed < 3200; speed += 20) {
+               int error = 0;
+
+               /* Clock in psecs */
+               tclk_psecs_min = hertz_to_psecs(mts_to_hertz(speed + 00));
+               /* Clock in psecs */
+               tclk_psecs_max = hertz_to_psecs(mts_to_hertz(speed + 18));
+
+               data_rate_mhz_min = psecs_to_mts(tclk_psecs_min);
+               data_rate_mhz_max = psecs_to_mts(tclk_psecs_max);
+
+               /* Force alingment to multiple to avound rounding errors. */
+               data_rate_mhz_min = ((data_rate_mhz_min + 18) / 20) * 20;
+               data_rate_mhz_max = ((data_rate_mhz_max + 18) / 20) * 20;
+
+               error += (speed + 00 != data_rate_mhz_min);
+               error += (speed + 20 != data_rate_mhz_max);
+
+               rc3x = (speed - ENCODING_BASE) / 20;
+
+               if (data_rate_mhz <= (speed + 20))
+                       break;
+       }
+
+       return rc3x;
+}
+
+/*
+ * static global variables needed, so that functions (loops) can be
+ * restructured from the main huge function. Its not elegant, but the
+ * only way to break the original functions like init_octeon3_ddr3_interface()
+ * into separate logical smaller functions with less indentation levels.
+ */
+static int if_num __section(".data");
+static u32 if_mask __section(".data");
+static int ddr_hertz __section(".data");
+
+static struct ddr_conf *ddr_conf __section(".data");
+static const struct dimm_odt_config *odt_1rank_config __section(".data");
+static const struct dimm_odt_config *odt_2rank_config __section(".data");
+static const struct dimm_odt_config *odt_4rank_config __section(".data");
+static struct dimm_config *dimm_config_table __section(".data");
+static const struct dimm_odt_config *odt_config __section(".data");
+static const struct ddr3_custom_config *c_cfg __section(".data");
+
+static int odt_idx __section(".data");
+
+static ulong tclk_psecs __section(".data");
+static ulong eclk_psecs __section(".data");
+
+static int row_bits __section(".data");
+static int col_bits __section(".data");
+static int num_banks __section(".data");
+static int num_ranks __section(".data");
+static int dram_width __section(".data");
+static int dimm_count __section(".data");
+/* Accumulate and report all the errors before giving up */
+static int fatal_error __section(".data");
+/* Flag that indicates safe DDR settings should be used */
+static int safe_ddr_flag __section(".data");
+/* Octeon II Default: 64bit interface width */
+static int if_64b __section(".data");
+static int if_bytemask __section(".data");
+static u32 mem_size_mbytes __section(".data");
+static unsigned int didx __section(".data");
+static int bank_bits __section(".data");
+static int bunk_enable __section(".data");
+static int rank_mask __section(".data");
+static int column_bits_start __section(".data");
+static int row_lsb __section(".data");
+static int pbank_lsb __section(".data");
+static int use_ecc __section(".data");
+static int mtb_psec __section(".data");
+static short ftb_dividend __section(".data");
+static short ftb_divisor __section(".data");
+static int taamin __section(".data");
+static int tckmin __section(".data");
+static int cl __section(".data");
+static int min_cas_latency __section(".data");
+static int max_cas_latency __section(".data");
+static int override_cas_latency __section(".data");
+static int ddr_rtt_nom_auto __section(".data");
+static int ddr_rodt_ctl_auto __section(".data");
+
+static int spd_addr __section(".data");
+static int spd_org __section(".data");
+static int spd_banks __section(".data");
+static int spd_rdimm __section(".data");
+static int spd_dimm_type __section(".data");
+static int spd_ecc __section(".data");
+static u32 spd_cas_latency __section(".data");
+static int spd_mtb_dividend __section(".data");
+static int spd_mtb_divisor __section(".data");
+static int spd_tck_min __section(".data");
+static int spd_taa_min __section(".data");
+static int spd_twr __section(".data");
+static int spd_trcd __section(".data");
+static int spd_trrd __section(".data");
+static int spd_trp __section(".data");
+static int spd_tras __section(".data");
+static int spd_trc __section(".data");
+static int spd_trfc __section(".data");
+static int spd_twtr __section(".data");
+static int spd_trtp __section(".data");
+static int spd_tfaw __section(".data");
+static int spd_addr_mirror __section(".data");
+static int spd_package __section(".data");
+static int spd_rawcard __section(".data");
+static int spd_rawcard_aorb __section(".data");
+static int spd_rdimm_registers __section(".data");
+static int spd_thermal_sensor __section(".data");
+
+static int is_stacked_die __section(".data");
+static int is_3ds_dimm __section(".data");
+// 3DS: logical ranks per package rank
+static int lranks_per_prank __section(".data");
+// 3DS: logical ranks bits
+static int lranks_bits __section(".data");
+// in Mbits; only used for 3DS
+static int die_capacity __section(".data");
+
+static enum ddr_type ddr_type __section(".data");
+
+static int twr __section(".data");
+static int trcd __section(".data");
+static int trrd __section(".data");
+static int trp __section(".data");
+static int tras __section(".data");
+static int trc __section(".data");
+static int trfc __section(".data");
+static int twtr __section(".data");
+static int trtp __section(".data");
+static int tfaw __section(".data");
+
+static int ddr4_tckavgmin __section(".data");
+static int ddr4_tckavgmax __section(".data");
+static int ddr4_trdcmin __section(".data");
+static int ddr4_trpmin __section(".data");
+static int ddr4_trasmin __section(".data");
+static int ddr4_trcmin __section(".data");
+static int ddr4_trfc1min __section(".data");
+static int ddr4_trfc2min __section(".data");
+static int ddr4_trfc4min __section(".data");
+static int ddr4_tfawmin __section(".data");
+static int ddr4_trrd_smin __section(".data");
+static int ddr4_trrd_lmin __section(".data");
+static int ddr4_tccd_lmin __section(".data");
+
+static int wl_mask_err __section(".data");
+static int wl_loops __section(".data");
+static int default_rtt_nom[4] __section(".data");
+static int dyn_rtt_nom_mask __section(".data");
+static struct impedence_values *imp_val __section(".data");
+static char default_rodt_ctl __section(".data");
+// default to disabled (ie, try LMC restart, not chip reset)
+static int ddr_disable_chip_reset __section(".data");
+static const char *dimm_type_name __section(".data");
+static int match_wl_rtt_nom __section(".data");
+
+struct hwl_alt_by_rank {
+       u16 hwl_alt_mask;       // mask of bytelanes with alternate
+       u16 hwl_alt_delay[9];   // bytelane alternate avail if mask=1
+};
+
+static struct hwl_alt_by_rank hwl_alts[4] __section(".data");
+
+#define DEFAULT_INTERNAL_VREF_TRAINING_LIMIT 3 // was: 5
+static int internal_retries __section(".data");
+
+static int deskew_training_errors __section(".data");
+static struct deskew_counts deskew_training_results __section(".data");
+static int disable_deskew_training __section(".data");
+static int restart_if_dsk_incomplete __section(".data");
+static int dac_eval_retries __section(".data");
+static int dac_settings[9] __section(".data");
+static int num_samples __section(".data");
+static int sample __section(".data");
+static int lane __section(".data");
+static int last_lane __section(".data");
+static int total_dac_eval_retries __section(".data");
+static int dac_eval_exhausted __section(".data");
+
+#define DEFAULT_DAC_SAMPLES 7  // originally was 5
+#define DAC_RETRIES_LIMIT   2
+
+struct bytelane_sample {
+       s16 bytes[DEFAULT_DAC_SAMPLES];
+};
+
+static struct bytelane_sample lanes[9] __section(".data");
+
+static char disable_sequential_delay_check __section(".data");
+static int wl_print __section(".data");
+
+static int enable_by_rank_init __section(".data");
+static int saved_rank_mask __section(".data");
+static int by_rank __section(".data");
+static struct deskew_data rank_dsk[4] __section(".data");
+static struct dac_data rank_dac[4] __section(".data");
+
+// todo: perhaps remove node at some time completely?
+static int node __section(".data");
+static int base_cl __section(".data");
+
+/* Parameters from DDR3 Specifications */
+#define DDR3_TREFI         7800000     /* 7.8 us */
+#define DDR3_ZQCS          80000ull    /* 80 ns */
+#define DDR3_ZQCS_INTERNAL 1280000000ull       /* 128ms/100 */
+#define DDR3_TCKE          5000        /* 5 ns */
+#define DDR3_TMRD          4   /* 4 nCK */
+#define DDR3_TDLLK         512 /* 512 nCK */
+#define DDR3_TMPRR         1   /* 1 nCK */
+#define DDR3_TWLMRD        40  /* 40 nCK */
+#define DDR3_TWLDQSEN      25  /* 25 nCK */
+
+/* Parameters from DDR4 Specifications */
+#define DDR4_TMRD          8   /* 8 nCK */
+#define DDR4_TDLLK         768 /* 768 nCK */
+
+static void lmc_config(struct ddr_priv *priv)
+{
+       union cvmx_lmcx_config cfg;
+       char *s;
+
+       cfg.u64 = 0;
+
+       cfg.cn78xx.ecc_ena = use_ecc;
+       cfg.cn78xx.row_lsb = encode_row_lsb_ddr3(row_lsb);
+       cfg.cn78xx.pbank_lsb = encode_pbank_lsb_ddr3(pbank_lsb);
+
+       cfg.cn78xx.idlepower = 0;       /* Disabled */
+
+       s = lookup_env(priv, "ddr_idlepower");
+       if (s)
+               cfg.cn78xx.idlepower = simple_strtoul(s, NULL, 0);
+
+       cfg.cn78xx.forcewrite = 0;      /* Disabled */
+       /* Include memory reference address in the ECC */
+       cfg.cn78xx.ecc_adr = 1;
+
+       s = lookup_env(priv, "ddr_ecc_adr");
+       if (s)
+               cfg.cn78xx.ecc_adr = simple_strtoul(s, NULL, 0);
+
+       cfg.cn78xx.reset = 0;
+
+       /*
+        * Program LMC0_CONFIG[24:18], ref_zqcs_int(6:0) to
+        * RND-DN(tREFI/clkPeriod/512) Program LMC0_CONFIG[36:25],
+        * ref_zqcs_int(18:7) to
+        * RND-DN(ZQCS_Interval/clkPeriod/(512*128)). Note that this
+        * value should always be greater than 32, to account for
+        * resistor calibration delays.
+        */
+
+       cfg.cn78xx.ref_zqcs_int = ((DDR3_TREFI / tclk_psecs / 512) & 0x7f);
+       cfg.cn78xx.ref_zqcs_int |=
+               ((max(33ull, (DDR3_ZQCS_INTERNAL / (tclk_psecs / 100) /
+                             (512 * 128))) & 0xfff) << 7);
+
+       cfg.cn78xx.early_dqx = 1;       /* Default to enabled */
+
+       s = lookup_env(priv, "ddr_early_dqx");
+       if (!s)
+               s = lookup_env(priv, "ddr%d_early_dqx", if_num);
+
+       if (s)
+               cfg.cn78xx.early_dqx = simple_strtoul(s, NULL, 0);
+
+       cfg.cn78xx.sref_with_dll = 0;
+
+       cfg.cn78xx.rank_ena = bunk_enable;
+       cfg.cn78xx.rankmask = rank_mask;        /* Set later */
+       cfg.cn78xx.mirrmask = (spd_addr_mirror << 1 | spd_addr_mirror << 3) &
+               rank_mask;
+       /* Set once and don't change it. */
+       cfg.cn78xx.init_status = rank_mask;
+       cfg.cn78xx.early_unload_d0_r0 = 0;
+       cfg.cn78xx.early_unload_d0_r1 = 0;
+       cfg.cn78xx.early_unload_d1_r0 = 0;
+       cfg.cn78xx.early_unload_d1_r1 = 0;
+       cfg.cn78xx.scrz = 0;
+       if (octeon_is_cpuid(OCTEON_CN70XX))
+               cfg.cn78xx.mode32b = 1; /* Read-only. Always 1. */
+       cfg.cn78xx.mode_x4dev = (dram_width == 4) ? 1 : 0;
+       cfg.cn78xx.bg2_enable = ((ddr_type == DDR4_DRAM) &&
+                                (dram_width == 16)) ? 0 : 1;
+
+       s = lookup_env_ull(priv, "ddr_config");
+       if (s)
+               cfg.u64 = simple_strtoull(s, NULL, 0);
+       debug("LMC_CONFIG                                    : 0x%016llx\n",
+             cfg.u64);
+       lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64);
+}
+
+static void lmc_control(struct ddr_priv *priv)
+{
+       union cvmx_lmcx_control ctrl;
+       char *s;
+
+       ctrl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+       ctrl.s.rdimm_ena = spd_rdimm;
+       ctrl.s.bwcnt = 0;       /* Clear counter later */
+       if (spd_rdimm)
+               ctrl.s.ddr2t = (safe_ddr_flag ? 1 : c_cfg->ddr2t_rdimm);
+       else
+               ctrl.s.ddr2t = (safe_ddr_flag ? 1 : c_cfg->ddr2t_udimm);
+       ctrl.s.pocas = 0;
+       ctrl.s.fprch2 = (safe_ddr_flag ? 2 : c_cfg->fprch2);
+       ctrl.s.throttle_rd = safe_ddr_flag ? 1 : 0;
+       ctrl.s.throttle_wr = safe_ddr_flag ? 1 : 0;
+       ctrl.s.inorder_rd = safe_ddr_flag ? 1 : 0;
+       ctrl.s.inorder_wr = safe_ddr_flag ? 1 : 0;
+       ctrl.s.elev_prio_dis = safe_ddr_flag ? 1 : 0;
+       /* discards writes to addresses that don't exist in the DRAM */
+       ctrl.s.nxm_write_en = 0;
+       ctrl.s.max_write_batch = 8;
+       ctrl.s.xor_bank = 1;
+       ctrl.s.auto_dclkdis = 1;
+       ctrl.s.int_zqcs_dis = 0;
+       ctrl.s.ext_zqcs_dis = 0;
+       ctrl.s.bprch = 1;
+       ctrl.s.wodt_bprch = 1;
+       ctrl.s.rodt_bprch = 1;
+
+       s = lookup_env(priv, "ddr_xor_bank");
+       if (s)
+               ctrl.s.xor_bank = simple_strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_2t");
+       if (s)
+               ctrl.s.ddr2t = simple_strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_fprch2");
+       if (s)
+               ctrl.s.fprch2 = simple_strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_bprch");
+       if (s)
+               ctrl.s.bprch = simple_strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_wodt_bprch");
+       if (s)
+               ctrl.s.wodt_bprch = simple_strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_rodt_bprch");
+       if (s)
+               ctrl.s.rodt_bprch = simple_strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_int_zqcs_dis");
+       if (s)
+               ctrl.s.int_zqcs_dis = simple_strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_ext_zqcs_dis");
+       if (s)
+               ctrl.s.ext_zqcs_dis = simple_strtoul(s, NULL, 0);
+
+       s = lookup_env_ull(priv, "ddr_control");
+       if (s)
+               ctrl.u64 = simple_strtoull(s, NULL, 0);
+
+       debug("LMC_CONTROL                                   : 0x%016llx\n",
+             ctrl.u64);
+       lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctrl.u64);
+}
+
+static void lmc_timing_params0(struct ddr_priv *priv)
+{
+       union cvmx_lmcx_timing_params0 tp0;
+       unsigned int trp_value;
+       char *s;
+
+       tp0.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS0(if_num));
+
+       trp_value = divide_roundup(trp, tclk_psecs) - 1;
+       debug("TIMING_PARAMS0[TRP]: NEW 0x%x, OLD 0x%x\n", trp_value,
+             trp_value +
+             (unsigned int)(divide_roundup(max(4ull * tclk_psecs, 7500ull),
+                                           tclk_psecs)) - 4);
+       s = lookup_env_ull(priv, "ddr_use_old_trp");
+       if (s) {
+               if (!!simple_strtoull(s, NULL, 0)) {
+                       trp_value +=
+                           divide_roundup(max(4ull * tclk_psecs, 7500ull),
+                                          tclk_psecs) - 4;
+                       debug("TIMING_PARAMS0[trp]: USING OLD 0x%x\n",
+                             trp_value);
+               }
+       }
+
+       tp0.cn78xx.txpr =
+           divide_roundup(max(5ull * tclk_psecs, trfc + 10000ull),
+                          16 * tclk_psecs);
+       tp0.cn78xx.trp = trp_value & 0x1f;
+       tp0.cn78xx.tcksre =
+           divide_roundup(max(5ull * tclk_psecs, 10000ull), tclk_psecs) - 1;
+
+       if (ddr_type == DDR4_DRAM) {
+               int tzqinit = 4;        // Default to 4, for all DDR4 speed bins
+
+               s = lookup_env(priv, "ddr_tzqinit");
+               if (s)
+                       tzqinit = simple_strtoul(s, NULL, 0);
+
+               tp0.cn78xx.tzqinit = tzqinit;
+               /* Always 8. */
+               tp0.cn78xx.tzqcs = divide_roundup(128 * tclk_psecs,
+                                                 (16 * tclk_psecs));
+               tp0.cn78xx.tcke =
+                   divide_roundup(max(3 * tclk_psecs, (ulong)DDR3_TCKE),
+                                  tclk_psecs) - 1;
+               tp0.cn78xx.tmrd =
+                   divide_roundup((DDR4_TMRD * tclk_psecs), tclk_psecs) - 1;
+               tp0.cn78xx.tmod = 25;   /* 25 is the max allowed */
+               tp0.cn78xx.tdllk = divide_roundup(DDR4_TDLLK, 256);
+       } else {
+               tp0.cn78xx.tzqinit =
+                   divide_roundup(max(512ull * tclk_psecs, 640000ull),
+                                  (256 * tclk_psecs));
+               tp0.cn78xx.tzqcs =
+                   divide_roundup(max(64ull * tclk_psecs, DDR3_ZQCS),
+                                  (16 * tclk_psecs));
+               tp0.cn78xx.tcke = divide_roundup(DDR3_TCKE, tclk_psecs) - 1;
+               tp0.cn78xx.tmrd =
+                   divide_roundup((DDR3_TMRD * tclk_psecs), tclk_psecs) - 1;
+               tp0.cn78xx.tmod =
+                   divide_roundup(max(12ull * tclk_psecs, 15000ull),
+                                  tclk_psecs) - 1;
+               tp0.cn78xx.tdllk = divide_roundup(DDR3_TDLLK, 256);
+       }
+
+       s = lookup_env_ull(priv, "ddr_timing_params0");
+       if (s)
+               tp0.u64 = simple_strtoull(s, NULL, 0);
+       debug("TIMING_PARAMS0                                : 0x%016llx\n",
+             tp0.u64);
+       lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS0(if_num), tp0.u64);
+}
+
+static void lmc_timing_params1(struct ddr_priv *priv)
+{
+       union cvmx_lmcx_timing_params1 tp1;
+       unsigned int txp, temp_trcd, trfc_dlr;
+       char *s;
+
+       tp1.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS1(if_num));
+
+       /* .cn70xx. */
+       tp1.s.tmprr = divide_roundup(DDR3_TMPRR * tclk_psecs, tclk_psecs) - 1;
+
+       tp1.cn78xx.tras = divide_roundup(tras, tclk_psecs) - 1;
+
+       temp_trcd = divide_roundup(trcd, tclk_psecs);
+       if (temp_trcd > 15) {
+               debug("TIMING_PARAMS1[trcd]: need extension bit for 0x%x\n",
+                     temp_trcd);
+       }
+       if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && temp_trcd > 15) {
+               /*
+                * Let .trcd=0 serve as a flag that the field has
+                * overflowed. Must use Additive Latency mode as a
+                * workaround.
+                */
+               temp_trcd = 0;
+       }
+       tp1.cn78xx.trcd = (temp_trcd >> 0) & 0xf;
+       tp1.cn78xx.trcd_ext = (temp_trcd >> 4) & 0x1;
+
+       tp1.cn78xx.twtr = divide_roundup(twtr, tclk_psecs) - 1;
+       tp1.cn78xx.trfc = divide_roundup(trfc, 8 * tclk_psecs);
+
+       if (ddr_type == DDR4_DRAM) {
+               /* Workaround bug 24006. Use Trrd_l. */
+               tp1.cn78xx.trrd =
+                   divide_roundup(ddr4_trrd_lmin, tclk_psecs) - 2;
+       } else {
+               tp1.cn78xx.trrd = divide_roundup(trrd, tclk_psecs) - 2;
+       }
+
+       /*
+        * tXP = max( 3nCK, 7.5 ns)     DDR3-800   tCLK = 2500 psec
+        * tXP = max( 3nCK, 7.5 ns)     DDR3-1066  tCLK = 1875 psec
+        * tXP = max( 3nCK, 6.0 ns)     DDR3-1333  tCLK = 1500 psec
+        * tXP = max( 3nCK, 6.0 ns)     DDR3-1600  tCLK = 1250 psec
+        * tXP = max( 3nCK, 6.0 ns)     DDR3-1866  tCLK = 1071 psec
+        * tXP = max( 3nCK, 6.0 ns)     DDR3-2133  tCLK =  937 psec
+        */
+       txp = (tclk_psecs < 1875) ? 6000 : 7500;
+       txp = divide_roundup(max((unsigned int)(3 * tclk_psecs), txp),
+                            tclk_psecs) - 1;
+       if (txp > 7) {
+               debug("TIMING_PARAMS1[txp]: need extension bit for 0x%x\n",
+                     txp);
+       }
+       if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && txp > 7)
+               txp = 7;        // max it out
+       tp1.cn78xx.txp = (txp >> 0) & 7;
+       tp1.cn78xx.txp_ext = (txp >> 3) & 1;
+
+       tp1.cn78xx.twlmrd = divide_roundup(DDR3_TWLMRD * tclk_psecs,
+                                          4 * tclk_psecs);
+       tp1.cn78xx.twldqsen = divide_roundup(DDR3_TWLDQSEN * tclk_psecs,
+                                            4 * tclk_psecs);
+       tp1.cn78xx.tfaw = divide_roundup(tfaw, 4 * tclk_psecs);
+       tp1.cn78xx.txpdll = divide_roundup(max(10ull * tclk_psecs, 24000ull),
+                                          tclk_psecs) - 1;
+
+       if (ddr_type == DDR4_DRAM && is_3ds_dimm) {
+               /*
+                * 4 Gb: tRFC_DLR = 90 ns
+                * 8 Gb: tRFC_DLR = 120 ns
+                * 16 Gb: tRFC_DLR = 190 ns FIXME?
+                */
+               if (die_capacity == 0x1000)     // 4 Gbit
+                       trfc_dlr = 90;
+               else if (die_capacity == 0x2000)        // 8 Gbit
+                       trfc_dlr = 120;
+               else if (die_capacity == 0x4000)        // 16 Gbit
+                       trfc_dlr = 190;
+               else
+                       trfc_dlr = 0;
+
+               if (trfc_dlr == 0) {
+                       debug("N%d.LMC%d: ERROR: tRFC_DLR: die_capacity %u Mbit is illegal\n",
+                             node, if_num, die_capacity);
+               } else {
+                       tp1.cn78xx.trfc_dlr =
+                           divide_roundup(trfc_dlr * 1000UL, 8 * tclk_psecs);
+                       debug("N%d.LMC%d: TIMING_PARAMS1[trfc_dlr] set to %u\n",
+                             node, if_num, tp1.cn78xx.trfc_dlr);
+               }
+       }
+
+       s = lookup_env_ull(priv, "ddr_timing_params1");
+       if (s)
+               tp1.u64 = simple_strtoull(s, NULL, 0);
+
+       debug("TIMING_PARAMS1                                : 0x%016llx\n",
+             tp1.u64);
+       lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS1(if_num), tp1.u64);
+}
+
+static void lmc_timing_params2(struct ddr_priv *priv)
+{
+       if (ddr_type == DDR4_DRAM) {
+               union cvmx_lmcx_timing_params1 tp1;
+               union cvmx_lmcx_timing_params2 tp2;
+               int temp_trrd_l;
+
+               tp1.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS1(if_num));
+               tp2.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS2(if_num));
+               debug("TIMING_PARAMS2                                : 0x%016llx\n",
+                     tp2.u64);
+
+               temp_trrd_l = divide_roundup(ddr4_trrd_lmin, tclk_psecs) - 2;
+               if (temp_trrd_l > 7)
+                       debug("TIMING_PARAMS2[trrd_l]: need extension bit for 0x%x\n",
+                             temp_trrd_l);
+               if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && temp_trrd_l > 7)
+                       temp_trrd_l = 7;        // max it out
+               tp2.cn78xx.trrd_l = (temp_trrd_l >> 0) & 7;
+               tp2.cn78xx.trrd_l_ext = (temp_trrd_l >> 3) & 1;
+
+               // correct for 1600-2400
+               tp2.s.twtr_l = divide_nint(max(4ull * tclk_psecs, 7500ull),
+                                          tclk_psecs) - 1;
+               tp2.s.t_rw_op_max = 7;
+               tp2.s.trtp = divide_roundup(max(4ull * tclk_psecs, 7500ull),
+                                           tclk_psecs) - 1;
+
+               debug("TIMING_PARAMS2                                : 0x%016llx\n",
+                     tp2.u64);
+               lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS2(if_num), tp2.u64);
+
+               /*
+                * Workaround Errata 25823 - LMC: Possible DDR4 tWTR_L not met
+                * for Write-to-Read operations to the same Bank Group
+                */
+               if (tp1.cn78xx.twtr < (tp2.s.twtr_l - 4)) {
+                       tp1.cn78xx.twtr = tp2.s.twtr_l - 4;
+                       debug("ERRATA 25823: NEW: TWTR: %d, TWTR_L: %d\n",
+                             tp1.cn78xx.twtr, tp2.s.twtr_l);
+                       debug("TIMING_PARAMS1                                : 0x%016llx\n",
+                             tp1.u64);
+                       lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS1(if_num), tp1.u64);
+               }
+       }
+}
+
+static void lmc_modereg_params0(struct ddr_priv *priv)
+{
+       union cvmx_lmcx_modereg_params0 mp0;
+       int param;
+       char *s;
+
+       mp0.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
+
+       if (ddr_type == DDR4_DRAM) {
+               mp0.s.cwl = 0;  /* 1600 (1250ps) */
+               if (tclk_psecs < 1250)
+                       mp0.s.cwl = 1;  /* 1866 (1072ps) */
+               if (tclk_psecs < 1072)
+                       mp0.s.cwl = 2;  /* 2133 (938ps) */
+               if (tclk_psecs < 938)
+                       mp0.s.cwl = 3;  /* 2400 (833ps) */
+               if (tclk_psecs < 833)
+                       mp0.s.cwl = 4;  /* 2666 (750ps) */
+               if (tclk_psecs < 750)
+                       mp0.s.cwl = 5;  /* 3200 (625ps) */
+       } else {
+               /*
+                ** CSR   CWL         CAS write Latency
+                ** ===   ===   =================================
+                **  0      5   (           tCK(avg) >=   2.5 ns)
+                **  1      6   (2.5 ns   > tCK(avg) >= 1.875 ns)
+                **  2      7   (1.875 ns > tCK(avg) >= 1.5   ns)
+                **  3      8   (1.5 ns   > tCK(avg) >= 1.25  ns)
+                **  4      9   (1.25 ns  > tCK(avg) >= 1.07  ns)
+                **  5     10   (1.07 ns  > tCK(avg) >= 0.935 ns)
+                **  6     11   (0.935 ns > tCK(avg) >= 0.833 ns)
+                **  7     12   (0.833 ns > tCK(avg) >= 0.75  ns)
+                */
+
+               mp0.s.cwl = 0;
+               if (tclk_psecs < 2500)
+                       mp0.s.cwl = 1;
+               if (tclk_psecs < 1875)
+                       mp0.s.cwl = 2;
+               if (tclk_psecs < 1500)
+                       mp0.s.cwl = 3;
+               if (tclk_psecs < 1250)
+                       mp0.s.cwl = 4;
+               if (tclk_psecs < 1070)
+                       mp0.s.cwl = 5;
+               if (tclk_psecs < 935)
+                       mp0.s.cwl = 6;
+               if (tclk_psecs < 833)
+                       mp0.s.cwl = 7;
+       }
+
+       s = lookup_env(priv, "ddr_cwl");
+       if (s)
+               mp0.s.cwl = simple_strtoul(s, NULL, 0) - 5;
+
+       if (ddr_type == DDR4_DRAM) {
+               debug("%-45s : %d, [0x%x]\n", "CAS Write Latency CWL, [CSR]",
+                     mp0.s.cwl + 9
+                     + ((mp0.s.cwl > 2) ? (mp0.s.cwl - 3) * 2 : 0), mp0.s.cwl);
+       } else {
+               debug("%-45s : %d, [0x%x]\n", "CAS Write Latency CWL, [CSR]",
+                     mp0.s.cwl + 5, mp0.s.cwl);
+       }
+
+       mp0.s.mprloc = 0;
+       mp0.s.mpr = 0;
+       mp0.s.dll = (ddr_type == DDR4_DRAM);    /* 0 for DDR3 and 1 for DDR4 */
+       mp0.s.al = 0;
+       mp0.s.wlev = 0;         /* Read Only */
+       if (octeon_is_cpuid(OCTEON_CN70XX) || ddr_type == DDR4_DRAM)
+               mp0.s.tdqs = 0;
+       else
+               mp0.s.tdqs = 1;
+       mp0.s.qoff = 0;
+
+       s = lookup_env(priv, "ddr_cl");
+       if (s) {
+               cl = simple_strtoul(s, NULL, 0);
+               debug("CAS Latency                                   : %6d\n",
+                     cl);
+       }
+
+       if (ddr_type == DDR4_DRAM) {
+               mp0.s.cl = 0x0;
+               if (cl > 9)
+                       mp0.s.cl = 0x1;
+               if (cl > 10)
+                       mp0.s.cl = 0x2;
+               if (cl > 11)
+                       mp0.s.cl = 0x3;
+               if (cl > 12)
+                       mp0.s.cl = 0x4;
+               if (cl > 13)
+                       mp0.s.cl = 0x5;
+               if (cl > 14)
+                       mp0.s.cl = 0x6;
+               if (cl > 15)
+                       mp0.s.cl = 0x7;
+               if (cl > 16)
+                       mp0.s.cl = 0x8;
+               if (cl > 18)
+                       mp0.s.cl = 0x9;
+               if (cl > 20)
+                       mp0.s.cl = 0xA;
+               if (cl > 24)
+                       mp0.s.cl = 0xB;
+       } else {
+               mp0.s.cl = 0x2;
+               if (cl > 5)
+                       mp0.s.cl = 0x4;
+               if (cl > 6)
+                       mp0.s.cl = 0x6;
+               if (cl > 7)
+                       mp0.s.cl = 0x8;
+               if (cl > 8)
+                       mp0.s.cl = 0xA;
+               if (cl > 9)
+                       mp0.s.cl = 0xC;
+               if (cl > 10)
+                       mp0.s.cl = 0xE;
+               if (cl > 11)
+                       mp0.s.cl = 0x1;
+               if (cl > 12)
+                       mp0.s.cl = 0x3;
+               if (cl > 13)
+                       mp0.s.cl = 0x5;
+               if (cl > 14)
+                       mp0.s.cl = 0x7;
+               if (cl > 15)
+                       mp0.s.cl = 0x9;
+       }
+
+       mp0.s.rbt = 0;          /* Read Only. */
+       mp0.s.tm = 0;
+       mp0.s.dllr = 0;
+
+       param = divide_roundup(twr, tclk_psecs);
+
+       if (ddr_type == DDR4_DRAM) {    /* DDR4 */
+               mp0.s.wrp = 1;
+               if (param > 12)
+                       mp0.s.wrp = 2;
+               if (param > 14)
+                       mp0.s.wrp = 3;
+               if (param > 16)
+                       mp0.s.wrp = 4;
+               if (param > 18)
+                       mp0.s.wrp = 5;
+               if (param > 20)
+                       mp0.s.wrp = 6;
+               if (param > 24) /* RESERVED in DDR4 spec */
+                       mp0.s.wrp = 7;
+       } else {                /* DDR3 */
+               mp0.s.wrp = 1;
+               if (param > 5)
+                       mp0.s.wrp = 2;
+               if (param > 6)
+                       mp0.s.wrp = 3;
+               if (param > 7)
+                       mp0.s.wrp = 4;
+               if (param > 8)
+                       mp0.s.wrp = 5;
+               if (param > 10)
+                       mp0.s.wrp = 6;
+               if (param > 12)
+                       mp0.s.wrp = 7;
+       }
+
+       mp0.s.ppd = 0;
+
+       s = lookup_env(priv, "ddr_wrp");
+       if (s)
+               mp0.s.wrp = simple_strtoul(s, NULL, 0);
+
+       debug("%-45s : %d, [0x%x]\n",
+             "Write recovery for auto precharge WRP, [CSR]", param, mp0.s.wrp);
+
+       s = lookup_env_ull(priv, "ddr_modereg_params0");
+       if (s)
+               mp0.u64 = simple_strtoull(s, NULL, 0);
+
+       debug("MODEREG_PARAMS0                               : 0x%016llx\n",
+             mp0.u64);
+       lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num), mp0.u64);
+}
+
+static void lmc_modereg_params1(struct ddr_priv *priv)
+{
+       union cvmx_lmcx_modereg_params1 mp1;
+       char *s;
+       int i;
+
+       mp1.u64 = odt_config[odt_idx].modereg_params1.u64;
+
+       /*
+        * Special request: mismatched DIMM support. Slot 0: 2-Rank,
+        * Slot 1: 1-Rank
+        */
+       if (rank_mask == 0x7) { /* 2-Rank, 1-Rank */
+               mp1.s.rtt_nom_00 = 0;
+               mp1.s.rtt_nom_01 = 3;   /* rttnom_40ohm */
+               mp1.s.rtt_nom_10 = 3;   /* rttnom_40ohm */
+               mp1.s.rtt_nom_11 = 0;
+               dyn_rtt_nom_mask = 0x6;
+       }
+
+       s = lookup_env(priv, "ddr_rtt_nom_mask");
+       if (s)
+               dyn_rtt_nom_mask = simple_strtoul(s, NULL, 0);
+
+       /*
+        * Save the original rtt_nom settings before sweeping through
+        * settings.
+        */
+       default_rtt_nom[0] = mp1.s.rtt_nom_00;
+       default_rtt_nom[1] = mp1.s.rtt_nom_01;
+       default_rtt_nom[2] = mp1.s.rtt_nom_10;
+       default_rtt_nom[3] = mp1.s.rtt_nom_11;
+
+       ddr_rtt_nom_auto = c_cfg->ddr_rtt_nom_auto;
+
+       for (i = 0; i < 4; ++i) {
+               u64 value;
+
+               s = lookup_env(priv, "ddr_rtt_nom_%1d%1d", !!(i & 2),
+                              !!(i & 1));
+               if (!s)
+                       s = lookup_env(priv, "ddr%d_rtt_nom_%1d%1d", if_num,
+                                      !!(i & 2), !!(i & 1));
+               if (s) {
+                       value = simple_strtoul(s, NULL, 0);
+                       mp1.u64 &= ~((u64)0x7 << (i * 12 + 9));
+                       mp1.u64 |= ((value & 0x7) << (i * 12 + 9));
+                       default_rtt_nom[i] = value;
+                       ddr_rtt_nom_auto = 0;
+               }
+       }
+
+       s = lookup_env(priv, "ddr_rtt_nom");
+       if (!s)
+               s = lookup_env(priv, "ddr%d_rtt_nom", if_num);
+       if (s) {
+               u64 value;
+
+               value = simple_strtoul(s, NULL, 0);
+
+               if (dyn_rtt_nom_mask & 1) {
+                       default_rtt_nom[0] = value;
+                       mp1.s.rtt_nom_00 = value;
+               }
+               if (dyn_rtt_nom_mask & 2) {
+                       default_rtt_nom[1] = value;
+                       mp1.s.rtt_nom_01 = value;
+               }
+               if (dyn_rtt_nom_mask & 4) {
+                       default_rtt_nom[2] = value;
+                       mp1.s.rtt_nom_10 = value;
+               }
+               if (dyn_rtt_nom_mask & 8) {
+                       default_rtt_nom[3] = value;
+                       mp1.s.rtt_nom_11 = value;
+               }
+
+               ddr_rtt_nom_auto = 0;
+       }
+
+       for (i = 0; i < 4; ++i) {
+               u64 value;
+
+               s = lookup_env(priv, "ddr_rtt_wr_%1d%1d", !!(i & 2), !!(i & 1));
+               if (!s)
+                       s = lookup_env(priv, "ddr%d_rtt_wr_%1d%1d", if_num,
+                                      !!(i & 2), !!(i & 1));
+               if (s) {
+                       value = simple_strtoul(s, NULL, 0);
+                       insrt_wr(&mp1.u64, i, value);
+               }
+       }
+
+       // Make sure 78XX pass 1 has valid RTT_WR settings, because
+       // configuration files may be set-up for later chips, and
+       // 78XX pass 1 supports no RTT_WR extension bits
+       if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
+               for (i = 0; i < 4; ++i) {
+                       // if 80 or undefined
+                       if (extr_wr(mp1.u64, i) > 3) {
+                               // FIXME? always insert 120
+                               insrt_wr(&mp1.u64, i, 1);
+                               debug("RTT_WR_%d%d set to 120 for CN78XX pass 1\n",
+                                     !!(i & 2), i & 1);
+                       }
+               }
+       }
+
+       s = lookup_env(priv, "ddr_dic");
+       if (s) {
+               u64 value = simple_strtoul(s, NULL, 0);
+
+               for (i = 0; i < 4; ++i) {
+                       mp1.u64 &= ~((u64)0x3 << (i * 12 + 7));
+                       mp1.u64 |= ((value & 0x3) << (i * 12 + 7));
+               }
+       }
+
+       for (i = 0; i < 4; ++i) {
+               u64 value;
+
+               s = lookup_env(priv, "ddr_dic_%1d%1d", !!(i & 2), !!(i & 1));
+               if (s) {
+                       value = simple_strtoul(s, NULL, 0);
+                       mp1.u64 &= ~((u64)0x3 << (i * 12 + 7));
+                       mp1.u64 |= ((value & 0x3) << (i * 12 + 7));
+               }
+       }
+
+       s = lookup_env_ull(priv, "ddr_modereg_params1");
+       if (s)
+               mp1.u64 = simple_strtoull(s, NULL, 0);
+
+       debug("RTT_NOM     %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
+             imp_val->rtt_nom_ohms[mp1.s.rtt_nom_11],
+             imp_val->rtt_nom_ohms[mp1.s.rtt_nom_10],
+             imp_val->rtt_nom_ohms[mp1.s.rtt_nom_01],
+             imp_val->rtt_nom_ohms[mp1.s.rtt_nom_00],
+             mp1.s.rtt_nom_11,
+             mp1.s.rtt_nom_10, mp1.s.rtt_nom_01, mp1.s.rtt_nom_00);
+
+       debug("RTT_WR      %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
+             imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 3)],
+             imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 2)],
+             imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 1)],
+             imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 0)],
+             extr_wr(mp1.u64, 3),
+             extr_wr(mp1.u64, 2), extr_wr(mp1.u64, 1), extr_wr(mp1.u64, 0));
+
+       debug("DIC         %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
+             imp_val->dic_ohms[mp1.s.dic_11],
+             imp_val->dic_ohms[mp1.s.dic_10],
+             imp_val->dic_ohms[mp1.s.dic_01],
+             imp_val->dic_ohms[mp1.s.dic_00],
+             mp1.s.dic_11, mp1.s.dic_10, mp1.s.dic_01, mp1.s.dic_00);
+
+       debug("MODEREG_PARAMS1                               : 0x%016llx\n",
+             mp1.u64);
+       lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num), mp1.u64);
+}
+
+static void lmc_modereg_params2(struct ddr_priv *priv)
+{
+       char *s;
+       int i;
+
+       if (ddr_type == DDR4_DRAM) {
+               union cvmx_lmcx_modereg_params2 mp2;
+
+               mp2.u64 = odt_config[odt_idx].modereg_params2.u64;
+
+               s = lookup_env(priv, "ddr_rtt_park");
+               if (s) {
+                       u64 value = simple_strtoul(s, NULL, 0);
+
+                       for (i = 0; i < 4; ++i) {
+                               mp2.u64 &= ~((u64)0x7 << (i * 10 + 0));
+                               mp2.u64 |= ((value & 0x7) << (i * 10 + 0));
+                       }
+               }
+
+               for (i = 0; i < 4; ++i) {
+                       u64 value;
+
+                       s = lookup_env(priv, "ddr_rtt_park_%1d%1d", !!(i & 2),
+                                      !!(i & 1));
+                       if (s) {
+                               value = simple_strtoul(s, NULL, 0);
+                               mp2.u64 &= ~((u64)0x7 << (i * 10 + 0));
+                               mp2.u64 |= ((value & 0x7) << (i * 10 + 0));
+                       }
+               }
+
+               s = lookup_env_ull(priv, "ddr_modereg_params2");
+               if (s)
+                       mp2.u64 = simple_strtoull(s, NULL, 0);
+
+               debug("RTT_PARK    %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
+                     imp_val->rtt_nom_ohms[mp2.s.rtt_park_11],
+                     imp_val->rtt_nom_ohms[mp2.s.rtt_park_10],
+                     imp_val->rtt_nom_ohms[mp2.s.rtt_park_01],
+                     imp_val->rtt_nom_ohms[mp2.s.rtt_park_00],
+                     mp2.s.rtt_park_11, mp2.s.rtt_park_10, mp2.s.rtt_park_01,
+                     mp2.s.rtt_park_00);
+
+               debug("%-45s :  0x%x,0x%x,0x%x,0x%x\n", "VREF_RANGE",
+                     mp2.s.vref_range_11,
+                     mp2.s.vref_range_10,
+                     mp2.s.vref_range_01, mp2.s.vref_range_00);
+
+               debug("%-45s :  0x%x,0x%x,0x%x,0x%x\n", "VREF_VALUE",
+                     mp2.s.vref_value_11,
+                     mp2.s.vref_value_10,
+                     mp2.s.vref_value_01, mp2.s.vref_value_00);
+
+               debug("MODEREG_PARAMS2                               : 0x%016llx\n",
+                     mp2.u64);
+               lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS2(if_num), mp2.u64);
+       }
+}
+
+static void lmc_modereg_params3(struct ddr_priv *priv)
+{
+       char *s;
+
+       if (ddr_type == DDR4_DRAM) {
+               union cvmx_lmcx_modereg_params3 mp3;
+
+               mp3.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS3(if_num));
+               /* Disable as workaround to Errata 20547 */
+               mp3.s.rd_dbi = 0;
+               mp3.s.tccd_l = max(divide_roundup(ddr4_tccd_lmin, tclk_psecs),
+                                  5ull) - 4;
+
+               s = lookup_env(priv, "ddr_rd_preamble");
+               if (s)
+                       mp3.s.rd_preamble = !!simple_strtoul(s, NULL, 0);
+
+               if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
+                       int delay = 0;
+
+                       if (lranks_per_prank == 4 && ddr_hertz >= 1000000000)
+                               delay = 1;
+
+                       mp3.s.xrank_add_tccd_l = delay;
+                       mp3.s.xrank_add_tccd_s = delay;
+               }
+
+               lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS3(if_num), mp3.u64);
+               debug("MODEREG_PARAMS3                               : 0x%016llx\n",
+                     mp3.u64);
+       }
+}
+
+static void lmc_nxm(struct ddr_priv *priv)
+{
+       union cvmx_lmcx_nxm lmc_nxm;
+       int num_bits = row_lsb + row_bits + lranks_bits - 26;
+       char *s;
+
+       lmc_nxm.u64 = lmc_rd(priv, CVMX_LMCX_NXM(if_num));
+
+       /* .cn78xx. */
+       if (rank_mask & 0x1)
+               lmc_nxm.cn78xx.mem_msb_d0_r0 = num_bits;
+       if (rank_mask & 0x2)
+               lmc_nxm.cn78xx.mem_msb_d0_r1 = num_bits;
+       if (rank_mask & 0x4)
+               lmc_nxm.cn78xx.mem_msb_d1_r0 = num_bits;
+       if (rank_mask & 0x8)
+               lmc_nxm.cn78xx.mem_msb_d1_r1 = num_bits;
+
+       /* Set the mask for non-existent ranks. */
+       lmc_nxm.cn78xx.cs_mask = ~rank_mask & 0xff;
+
+       s = lookup_env_ull(priv, "ddr_nxm");
+       if (s)
+               lmc_nxm.u64 = simple_strtoull(s, NULL, 0);
+
+       debug("LMC_NXM                                       : 0x%016llx\n",
+             lmc_nxm.u64);
+       lmc_wr(priv, CVMX_LMCX_NXM(if_num), lmc_nxm.u64);
+}
+
+static void lmc_wodt_mask(struct ddr_priv *priv)
+{
+       union cvmx_lmcx_wodt_mask wodt_mask;
+       char *s;
+
+       wodt_mask.u64 = odt_config[odt_idx].odt_mask;
+
+       s = lookup_env_ull(priv, "ddr_wodt_mask");
+       if (s)
+               wodt_mask.u64 = simple_strtoull(s, NULL, 0);
+
+       debug("WODT_MASK                                     : 0x%016llx\n",
+             wodt_mask.u64);
+       lmc_wr(priv, CVMX_LMCX_WODT_MASK(if_num), wodt_mask.u64);
+}
+
+static void lmc_rodt_mask(struct ddr_priv *priv)
+{
+       union cvmx_lmcx_rodt_mask rodt_mask;
+       int rankx;
+       char *s;
+
+       rodt_mask.u64 = odt_config[odt_idx].rodt_ctl;
+
+       s = lookup_env_ull(priv, "ddr_rodt_mask");
+       if (s)
+               rodt_mask.u64 = simple_strtoull(s, NULL, 0);
+
+       debug("%-45s : 0x%016llx\n", "RODT_MASK", rodt_mask.u64);
+       lmc_wr(priv, CVMX_LMCX_RODT_MASK(if_num), rodt_mask.u64);
+
+       dyn_rtt_nom_mask = 0;
+       for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+               if (!(rank_mask & (1 << rankx)))
+                       continue;
+               dyn_rtt_nom_mask |= ((rodt_mask.u64 >> (8 * rankx)) & 0xff);
+       }
+       if (num_ranks == 4) {
+               /*
+                * Normally ODT1 is wired to rank 1. For quad-ranked DIMMs
+                * ODT1 is wired to the third rank (rank 2).  The mask,
+                * dyn_rtt_nom_mask, is used to indicate for which ranks
+                * to sweep RTT_NOM during read-leveling. Shift the bit
+                * from the ODT1 position over to the "ODT2" position so
+                * that the read-leveling analysis comes out right.
+                */
+               int odt1_bit = dyn_rtt_nom_mask & 2;
+
+               dyn_rtt_nom_mask &= ~2;
+               dyn_rtt_nom_mask |= odt1_bit << 1;
+       }
+       debug("%-45s : 0x%02x\n", "DYN_RTT_NOM_MASK", dyn_rtt_nom_mask);
+}
+
+static void lmc_comp_ctl2(struct ddr_priv *priv)
+{
+       union cvmx_lmcx_comp_ctl2 cc2;
+       char *s;
+
+       cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+
+       cc2.cn78xx.dqx_ctl = odt_config[odt_idx].odt_ena;
+       /* Default 4=34.3 ohm */
+       cc2.cn78xx.ck_ctl = (c_cfg->ck_ctl == 0) ? 4 : c_cfg->ck_ctl;
+       /* Default 4=34.3 ohm */
+       cc2.cn78xx.cmd_ctl = (c_cfg->cmd_ctl == 0) ? 4 : c_cfg->cmd_ctl;
+       /* Default 4=34.3 ohm */
+       cc2.cn78xx.control_ctl = (c_cfg->ctl_ctl == 0) ? 4 : c_cfg->ctl_ctl;
+
+       ddr_rodt_ctl_auto = c_cfg->ddr_rodt_ctl_auto;
+       s = lookup_env(priv, "ddr_rodt_ctl_auto");
+       if (s)
+               ddr_rodt_ctl_auto = !!simple_strtoul(s, NULL, 0);
+
+       default_rodt_ctl = odt_config[odt_idx].qs_dic;
+       s = lookup_env(priv, "ddr_rodt_ctl");
+       if (!s)
+               s = lookup_env(priv, "ddr%d_rodt_ctl", if_num);
+       if (s) {
+               default_rodt_ctl = simple_strtoul(s, NULL, 0);
+               ddr_rodt_ctl_auto = 0;
+       }
+
+       cc2.cn70xx.rodt_ctl = default_rodt_ctl;
+
+       // if DDR4, force CK_CTL to 26 ohms if it is currently 34 ohms,
+       // and DCLK speed is 1 GHz or more...
+       if (ddr_type == DDR4_DRAM && cc2.s.ck_ctl == ddr4_driver_34_ohm &&
+           ddr_hertz >= 1000000000) {
+               // lowest for DDR4 is 26 ohms
+               cc2.s.ck_ctl = ddr4_driver_26_ohm;
+               debug("N%d.LMC%d: Forcing DDR4 COMP_CTL2[CK_CTL] to %d, %d ohms\n",
+                     node, if_num, cc2.s.ck_ctl,
+                     imp_val->drive_strength[cc2.s.ck_ctl]);
+       }
+
+       // if DDR4, 2DPC, UDIMM, force CONTROL_CTL and CMD_CTL to 26 ohms,
+       // if DCLK speed is 1 GHz or more...
+       if (ddr_type == DDR4_DRAM && dimm_count == 2 &&
+           (spd_dimm_type == 2 || spd_dimm_type == 6) &&
+           ddr_hertz >= 1000000000) {
+               // lowest for DDR4 is 26 ohms
+               cc2.cn78xx.control_ctl = ddr4_driver_26_ohm;
+               // lowest for DDR4 is 26 ohms
+               cc2.cn78xx.cmd_ctl = ddr4_driver_26_ohm;
+               debug("N%d.LMC%d: Forcing DDR4 COMP_CTL2[CONTROL_CTL,CMD_CTL] to %d, %d ohms\n",
+                     node, if_num, ddr4_driver_26_ohm,
+                     imp_val->drive_strength[ddr4_driver_26_ohm]);
+       }
+
+       s = lookup_env(priv, "ddr_ck_ctl");
+       if (s)
+               cc2.cn78xx.ck_ctl = simple_strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_cmd_ctl");
+       if (s)
+               cc2.cn78xx.cmd_ctl = simple_strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_control_ctl");
+       if (s)
+               cc2.cn70xx.control_ctl = simple_strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_dqx_ctl");
+       if (s)
+               cc2.cn78xx.dqx_ctl = simple_strtoul(s, NULL, 0);
+
+       debug("%-45s : %d, %d ohms\n", "DQX_CTL           ", cc2.cn78xx.dqx_ctl,
+             imp_val->drive_strength[cc2.cn78xx.dqx_ctl]);
+       debug("%-45s : %d, %d ohms\n", "CK_CTL            ", cc2.cn78xx.ck_ctl,
+             imp_val->drive_strength[cc2.cn78xx.ck_ctl]);
+       debug("%-45s : %d, %d ohms\n", "CMD_CTL           ", cc2.cn78xx.cmd_ctl,
+             imp_val->drive_strength[cc2.cn78xx.cmd_ctl]);
+       debug("%-45s : %d, %d ohms\n", "CONTROL_CTL       ",
+             cc2.cn78xx.control_ctl,
+             imp_val->drive_strength[cc2.cn78xx.control_ctl]);
+       debug("Read ODT_CTL                                  : 0x%x (%d ohms)\n",
+             cc2.cn78xx.rodt_ctl, imp_val->rodt_ohms[cc2.cn78xx.rodt_ctl]);
+
+       debug("%-45s : 0x%016llx\n", "COMP_CTL2", cc2.u64);
+       lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
+}
+
+static void lmc_phy_ctl(struct ddr_priv *priv)
+{
+       union cvmx_lmcx_phy_ctl phy_ctl;
+
+       phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+       phy_ctl.s.ts_stagger = 0;
+       // FIXME: are there others TBD?
+       phy_ctl.s.dsk_dbg_overwrt_ena = 0;
+
+       if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && lranks_per_prank > 1) {
+               // C0 is TEN, C1 is A17
+               phy_ctl.s.c0_sel = 2;
+               phy_ctl.s.c1_sel = 2;
+               debug("N%d.LMC%d: 3DS: setting PHY_CTL[cx_csel] = %d\n",
+                     node, if_num, phy_ctl.s.c1_sel);
+       }
+
+       debug("PHY_CTL                                       : 0x%016llx\n",
+             phy_ctl.u64);
+       lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+}
+
+static void lmc_ext_config(struct ddr_priv *priv)
+{
+       union cvmx_lmcx_ext_config ext_cfg;
+       char *s;
+
+       ext_cfg.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num));
+       ext_cfg.s.vrefint_seq_deskew = 0;
+       ext_cfg.s.read_ena_bprch = 1;
+       ext_cfg.s.read_ena_fprch = 1;
+       ext_cfg.s.drive_ena_fprch = 1;
+       ext_cfg.s.drive_ena_bprch = 1;
+       // make sure this is OFF for all current chips
+       ext_cfg.s.invert_data = 0;
+
+       s = lookup_env(priv, "ddr_read_fprch");
+       if (s)
+               ext_cfg.s.read_ena_fprch = strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_read_bprch");
+       if (s)
+               ext_cfg.s.read_ena_bprch = strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_drive_fprch");
+       if (s)
+               ext_cfg.s.drive_ena_fprch = strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_drive_bprch");
+       if (s)
+               ext_cfg.s.drive_ena_bprch = strtoul(s, NULL, 0);
+
+       if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && lranks_per_prank > 1) {
+               ext_cfg.s.dimm0_cid = lranks_bits;
+               ext_cfg.s.dimm1_cid = lranks_bits;
+               debug("N%d.LMC%d: 3DS: setting EXT_CONFIG[dimmx_cid] = %d\n",
+                     node, if_num, ext_cfg.s.dimm0_cid);
+       }
+
+       lmc_wr(priv, CVMX_LMCX_EXT_CONFIG(if_num), ext_cfg.u64);
+       debug("%-45s : 0x%016llx\n", "EXT_CONFIG", ext_cfg.u64);
+}
+
+static void lmc_ext_config2(struct ddr_priv *priv)
+{
+       char *s;
+
+       // NOTE: all chips have this register, but not necessarily the
+       // fields we modify...
+       if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) &&
+           !octeon_is_cpuid(OCTEON_CN73XX)) {
+               union cvmx_lmcx_ext_config2 ext_cfg2;
+               int value = 1;  // default to 1
+
+               ext_cfg2.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG2(if_num));
+
+               s = lookup_env(priv, "ddr_ext2_delay_unload");
+               if (s)
+                       value = !!simple_strtoul(s, NULL, 0);
+
+               ext_cfg2.s.delay_unload_r0 = value;
+               ext_cfg2.s.delay_unload_r1 = value;
+               ext_cfg2.s.delay_unload_r2 = value;
+               ext_cfg2.s.delay_unload_r3 = value;
+
+               lmc_wr(priv, CVMX_LMCX_EXT_CONFIG2(if_num), ext_cfg2.u64);
+               debug("%-45s : 0x%016llx\n", "EXT_CONFIG2", ext_cfg2.u64);
+       }
+}
+
+static void lmc_dimm01_params_loop(struct ddr_priv *priv)
+{
+       union cvmx_lmcx_dimmx_params dimm_p;
+       int dimmx = didx;
+       char *s;
+       int rc;
+       int i;
+
+       dimm_p.u64 = lmc_rd(priv, CVMX_LMCX_DIMMX_PARAMS(dimmx, if_num));
+
+       if (ddr_type == DDR4_DRAM) {
+               union cvmx_lmcx_dimmx_ddr4_params0 ddr4_p0;
+               union cvmx_lmcx_dimmx_ddr4_params1 ddr4_p1;
+               union cvmx_lmcx_ddr4_dimm_ctl ddr4_ctl;
+
+               dimm_p.s.rc0 = 0;
+               dimm_p.s.rc1 = 0;
+               dimm_p.s.rc2 = 0;
+
+               rc = read_spd(&dimm_config_table[didx], 0,
+                             DDR4_SPD_RDIMM_REGISTER_DRIVE_STRENGTH_CTL);
+               dimm_p.s.rc3 = (rc >> 4) & 0xf;
+               dimm_p.s.rc4 = ((rc >> 0) & 0x3) << 2;
+               dimm_p.s.rc4 |= ((rc >> 2) & 0x3) << 0;
+
+               rc = read_spd(&dimm_config_table[didx], 0,
+                             DDR4_SPD_RDIMM_REGISTER_DRIVE_STRENGTH_CK);
+               dimm_p.s.rc5 = ((rc >> 0) & 0x3) << 2;
+               dimm_p.s.rc5 |= ((rc >> 2) & 0x3) << 0;
+
+               dimm_p.s.rc6 = 0;
+               dimm_p.s.rc7 = 0;
+               dimm_p.s.rc8 = 0;
+               dimm_p.s.rc9 = 0;
+
+               /*
+                * rc10               DDR4 RDIMM Operating Speed
+                * ===  ===================================================
+                *  0               tclk_psecs >= 1250 psec DDR4-1600 (1250 ps)
+                *  1   1250 psec > tclk_psecs >= 1071 psec DDR4-1866 (1071 ps)
+                *  2   1071 psec > tclk_psecs >=  938 psec DDR4-2133 ( 938 ps)
+                *  3    938 psec > tclk_psecs >=  833 psec DDR4-2400 ( 833 ps)
+                *  4    833 psec > tclk_psecs >=  750 psec DDR4-2666 ( 750 ps)
+                *  5    750 psec > tclk_psecs >=  625 psec DDR4-3200 ( 625 ps)
+                */
+               dimm_p.s.rc10 = 0;
+               if (tclk_psecs < 1250)
+                       dimm_p.s.rc10 = 1;
+               if (tclk_psecs < 1071)
+                       dimm_p.s.rc10 = 2;
+               if (tclk_psecs < 938)
+                       dimm_p.s.rc10 = 3;
+               if (tclk_psecs < 833)
+                       dimm_p.s.rc10 = 4;
+               if (tclk_psecs < 750)
+                       dimm_p.s.rc10 = 5;
+
+               dimm_p.s.rc11 = 0;
+               dimm_p.s.rc12 = 0;
+               /* 0=LRDIMM, 1=RDIMM */
+               dimm_p.s.rc13 = (spd_dimm_type == 4) ? 0 : 4;
+               dimm_p.s.rc13 |= (ddr_type == DDR4_DRAM) ?
+                       (spd_addr_mirror << 3) : 0;
+               dimm_p.s.rc14 = 0;
+               dimm_p.s.rc15 = 0;      /* 1 nCK latency adder */
+
+               ddr4_p0.u64 = 0;
+
+               ddr4_p0.s.rc8x = 0;
+               ddr4_p0.s.rc7x = 0;
+               ddr4_p0.s.rc6x = 0;
+               ddr4_p0.s.rc5x = 0;
+               ddr4_p0.s.rc4x = 0;
+
+               ddr4_p0.s.rc3x = compute_rc3x(tclk_psecs);
+
+               ddr4_p0.s.rc2x = 0;
+               ddr4_p0.s.rc1x = 0;
+
+               ddr4_p1.u64 = 0;
+
+               ddr4_p1.s.rcbx = 0;
+               ddr4_p1.s.rcax = 0;
+               ddr4_p1.s.rc9x = 0;
+
+               ddr4_ctl.u64 = 0;
+               ddr4_ctl.cn70xx.ddr4_dimm0_wmask = 0x004;
+               ddr4_ctl.cn70xx.ddr4_dimm1_wmask =
+                   (dimm_count > 1) ? 0x004 : 0x0000;
+
+               /*
+                * Handle any overrides from envvars here...
+                */
+               s = lookup_env(priv, "ddr_ddr4_params0");
+               if (s)
+                       ddr4_p0.u64 = simple_strtoul(s, NULL, 0);
+
+               s = lookup_env(priv, "ddr_ddr4_params1");
+               if (s)
+                       ddr4_p1.u64 = simple_strtoul(s, NULL, 0);
+
+               s = lookup_env(priv, "ddr_ddr4_dimm_ctl");
+               if (s)
+                       ddr4_ctl.u64 = simple_strtoul(s, NULL, 0);
+
+               for (i = 0; i < 11; ++i) {
+                       u64 value;
+
+                       s = lookup_env(priv, "ddr_ddr4_rc%1xx", i + 1);
+                       if (s) {
+                               value = simple_strtoul(s, NULL, 0);
+                               if (i < 8) {
+                                       ddr4_p0.u64 &= ~((u64)0xff << (i * 8));
+                                       ddr4_p0.u64 |= (value << (i * 8));
+                               } else {
+                                       ddr4_p1.u64 &=
+                                           ~((u64)0xff << ((i - 8) * 8));
+                                       ddr4_p1.u64 |= (value << ((i - 8) * 8));
+                               }
+                       }
+               }
+
+               /*
+                * write the final CSR values
+                */
+               lmc_wr(priv, CVMX_LMCX_DIMMX_DDR4_PARAMS0(dimmx, if_num),
+                      ddr4_p0.u64);
+
+               lmc_wr(priv, CVMX_LMCX_DDR4_DIMM_CTL(if_num), ddr4_ctl.u64);
+
+               lmc_wr(priv, CVMX_LMCX_DIMMX_DDR4_PARAMS1(dimmx, if_num),
+                      ddr4_p1.u64);
+
+               debug("DIMM%d Register Control Words        RCBx:RC1x : %x %x %x %x %x %x %x %x %x %x %x\n",
+                     dimmx, ddr4_p1.s.rcbx, ddr4_p1.s.rcax,
+                     ddr4_p1.s.rc9x, ddr4_p0.s.rc8x,
+                     ddr4_p0.s.rc7x, ddr4_p0.s.rc6x,
+                     ddr4_p0.s.rc5x, ddr4_p0.s.rc4x,
+                     ddr4_p0.s.rc3x, ddr4_p0.s.rc2x, ddr4_p0.s.rc1x);
+
+       } else {
+               rc = read_spd(&dimm_config_table[didx], 0, 69);
+               dimm_p.s.rc0 = (rc >> 0) & 0xf;
+               dimm_p.s.rc1 = (rc >> 4) & 0xf;
+
+               rc = read_spd(&dimm_config_table[didx], 0, 70);
+               dimm_p.s.rc2 = (rc >> 0) & 0xf;
+               dimm_p.s.rc3 = (rc >> 4) & 0xf;
+
+               rc = read_spd(&dimm_config_table[didx], 0, 71);
+               dimm_p.s.rc4 = (rc >> 0) & 0xf;
+               dimm_p.s.rc5 = (rc >> 4) & 0xf;
+
+               rc = read_spd(&dimm_config_table[didx], 0, 72);
+               dimm_p.s.rc6 = (rc >> 0) & 0xf;
+               dimm_p.s.rc7 = (rc >> 4) & 0xf;
+
+               rc = read_spd(&dimm_config_table[didx], 0, 73);
+               dimm_p.s.rc8 = (rc >> 0) & 0xf;
+               dimm_p.s.rc9 = (rc >> 4) & 0xf;
+
+               rc = read_spd(&dimm_config_table[didx], 0, 74);
+               dimm_p.s.rc10 = (rc >> 0) & 0xf;
+               dimm_p.s.rc11 = (rc >> 4) & 0xf;
+
+               rc = read_spd(&dimm_config_table[didx], 0, 75);
+               dimm_p.s.rc12 = (rc >> 0) & 0xf;
+               dimm_p.s.rc13 = (rc >> 4) & 0xf;
+
+               rc = read_spd(&dimm_config_table[didx], 0, 76);
+               dimm_p.s.rc14 = (rc >> 0) & 0xf;
+               dimm_p.s.rc15 = (rc >> 4) & 0xf;
+
+               s = ddr_getenv_debug(priv, "ddr_clk_drive");
+               if (s) {
+                       if (strcmp(s, "light") == 0)
+                               dimm_p.s.rc5 = 0x0;     /* Light Drive */
+                       if (strcmp(s, "moderate") == 0)
+                               dimm_p.s.rc5 = 0x5;     /* Moderate Drive */
+                       if (strcmp(s, "strong") == 0)
+                               dimm_p.s.rc5 = 0xA;     /* Strong Drive */
+                       printf("Parameter found in environment. ddr_clk_drive = %s\n",
+                              s);
+               }
+
+               s = ddr_getenv_debug(priv, "ddr_cmd_drive");
+               if (s) {
+                       if (strcmp(s, "light") == 0)
+                               dimm_p.s.rc3 = 0x0;     /* Light Drive */
+                       if (strcmp(s, "moderate") == 0)
+                               dimm_p.s.rc3 = 0x5;     /* Moderate Drive */
+                       if (strcmp(s, "strong") == 0)
+                               dimm_p.s.rc3 = 0xA;     /* Strong Drive */
+                       printf("Parameter found in environment. ddr_cmd_drive = %s\n",
+                              s);
+               }
+
+               s = ddr_getenv_debug(priv, "ddr_ctl_drive");
+               if (s) {
+                       if (strcmp(s, "light") == 0)
+                               dimm_p.s.rc4 = 0x0;     /* Light Drive */
+                       if (strcmp(s, "moderate") == 0)
+                               dimm_p.s.rc4 = 0x5;     /* Moderate Drive */
+                       printf("Parameter found in environment. ddr_ctl_drive = %s\n",
+                              s);
+               }
+
+               /*
+                * rc10               DDR3 RDIMM Operating Speed
+                * ==   =====================================================
+                *  0               tclk_psecs >= 2500 psec DDR3/DDR3L-800 def
+                *  1   2500 psec > tclk_psecs >= 1875 psec DDR3/DDR3L-1066
+                *  2   1875 psec > tclk_psecs >= 1500 psec DDR3/DDR3L-1333
+                *  3   1500 psec > tclk_psecs >= 1250 psec DDR3/DDR3L-1600
+                *  4   1250 psec > tclk_psecs >= 1071 psec DDR3-1866
+                */
+               dimm_p.s.rc10 = 0;
+               if (tclk_psecs < 2500)
+                       dimm_p.s.rc10 = 1;
+               if (tclk_psecs < 1875)
+                       dimm_p.s.rc10 = 2;
+               if (tclk_psecs < 1500)
+                       dimm_p.s.rc10 = 3;
+               if (tclk_psecs < 1250)
+                       dimm_p.s.rc10 = 4;
+       }
+
+       s = lookup_env(priv, "ddr_dimmx_params", i);
+       if (s)
+               dimm_p.u64 = simple_strtoul(s, NULL, 0);
+
+       for (i = 0; i < 16; ++i) {
+               u64 value;
+
+               s = lookup_env(priv, "ddr_rc%d", i);
+               if (s) {
+                       value = simple_strtoul(s, NULL, 0);
+                       dimm_p.u64 &= ~((u64)0xf << (i * 4));
+                       dimm_p.u64 |= (value << (i * 4));
+               }
+       }
+
+       lmc_wr(priv, CVMX_LMCX_DIMMX_PARAMS(dimmx, if_num), dimm_p.u64);
+
+       debug("DIMM%d Register Control Words         RC15:RC0 : %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",
+             dimmx, dimm_p.s.rc15, dimm_p.s.rc14, dimm_p.s.rc13,
+             dimm_p.s.rc12, dimm_p.s.rc11, dimm_p.s.rc10,
+             dimm_p.s.rc9, dimm_p.s.rc8, dimm_p.s.rc7,
+             dimm_p.s.rc6, dimm_p.s.rc5, dimm_p.s.rc4,
+             dimm_p.s.rc3, dimm_p.s.rc2, dimm_p.s.rc1, dimm_p.s.rc0);
+
+       // FIXME: recognize a DDR3 RDIMM with 4 ranks and 2 registers,
+       // and treat it specially
+       if (ddr_type == DDR3_DRAM && num_ranks == 4 &&
+           spd_rdimm_registers == 2 && dimmx == 0) {
+               debug("DDR3: Copying DIMM0_PARAMS to DIMM1_PARAMS for pseudo-DIMM #1...\n");
+               lmc_wr(priv, CVMX_LMCX_DIMMX_PARAMS(1, if_num), dimm_p.u64);
+       }
+}
+
+static void lmc_dimm01_params(struct ddr_priv *priv)
+{
+       union cvmx_lmcx_dimm_ctl dimm_ctl;
+       char *s;
+
+       if (spd_rdimm) {
+               for (didx = 0; didx < (unsigned int)dimm_count; ++didx)
+                       lmc_dimm01_params_loop(priv);
+
+               if (ddr_type == DDR4_DRAM) {
+                       /* LMC0_DIMM_CTL */
+                       dimm_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DIMM_CTL(if_num));
+                       dimm_ctl.s.dimm0_wmask = 0xdf3f;
+                       dimm_ctl.s.dimm1_wmask =
+                           (dimm_count > 1) ? 0xdf3f : 0x0000;
+                       dimm_ctl.s.tcws = 0x4e0;
+                       dimm_ctl.s.parity = c_cfg->parity;
+
+                       s = lookup_env(priv, "ddr_dimm0_wmask");
+                       if (s) {
+                               dimm_ctl.s.dimm0_wmask =
+                                   simple_strtoul(s, NULL, 0);
+                       }
+
+                       s = lookup_env(priv, "ddr_dimm1_wmask");
+                       if (s) {
+                               dimm_ctl.s.dimm1_wmask =
+                                   simple_strtoul(s, NULL, 0);
+                       }
+
+                       s = lookup_env(priv, "ddr_dimm_ctl_parity");
+                       if (s)
+                               dimm_ctl.s.parity = simple_strtoul(s, NULL, 0);
+
+                       s = lookup_env(priv, "ddr_dimm_ctl_tcws");
+                       if (s)
+                               dimm_ctl.s.tcws = simple_strtoul(s, NULL, 0);
+
+                       debug("LMC DIMM_CTL                                  : 0x%016llx\n",
+                             dimm_ctl.u64);
+                       lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), dimm_ctl.u64);
+
+                       /* Init RCW */
+                       oct3_ddr3_seq(priv, rank_mask, if_num, 0x7);
+
+                       /* Write RC0D last */
+                       dimm_ctl.s.dimm0_wmask = 0x2000;
+                       dimm_ctl.s.dimm1_wmask = (dimm_count > 1) ?
+                               0x2000 : 0x0000;
+                       debug("LMC DIMM_CTL                                  : 0x%016llx\n",
+                             dimm_ctl.u64);
+                       lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), dimm_ctl.u64);
+
+                       /*
+                        * Don't write any extended registers the second time
+                        */
+                       lmc_wr(priv, CVMX_LMCX_DDR4_DIMM_CTL(if_num), 0);
+
+                       /* Init RCW */
+                       oct3_ddr3_seq(priv, rank_mask, if_num, 0x7);
+               } else {
+                       /* LMC0_DIMM_CTL */
+                       dimm_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DIMM_CTL(if_num));
+                       dimm_ctl.s.dimm0_wmask = 0xffff;
+                       // FIXME: recognize a DDR3 RDIMM with 4 ranks and 2
+                       // registers, and treat it specially
+                       if (num_ranks == 4 && spd_rdimm_registers == 2) {
+                               debug("DDR3: Activating DIMM_CTL[dimm1_mask] bits...\n");
+                               dimm_ctl.s.dimm1_wmask = 0xffff;
+                       } else {
+                               dimm_ctl.s.dimm1_wmask =
+                                   (dimm_count > 1) ? 0xffff : 0x0000;
+                       }
+                       dimm_ctl.s.tcws = 0x4e0;
+                       dimm_ctl.s.parity = c_cfg->parity;
+
+                       s = lookup_env(priv, "ddr_dimm0_wmask");
+                       if (s) {
+                               dimm_ctl.s.dimm0_wmask =
+                                   simple_strtoul(s, NULL, 0);
+                       }
+
+                       s = lookup_env(priv, "ddr_dimm1_wmask");
+                       if (s) {
+                               dimm_ctl.s.dimm1_wmask =
+                                   simple_strtoul(s, NULL, 0);
+                       }
+
+                       s = lookup_env(priv, "ddr_dimm_ctl_parity");
+                       if (s)
+                               dimm_ctl.s.parity = simple_strtoul(s, NULL, 0);
+
+                       s = lookup_env(priv, "ddr_dimm_ctl_tcws");
+                       if (s)
+                               dimm_ctl.s.tcws = simple_strtoul(s, NULL, 0);
+
+                       debug("LMC DIMM_CTL                                  : 0x%016llx\n",
+                             dimm_ctl.u64);
+                       lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), dimm_ctl.u64);
+
+                       /* Init RCW */
+                       oct3_ddr3_seq(priv, rank_mask, if_num, 0x7);
+               }
+
+       } else {
+               /* Disable register control writes for unbuffered */
+               union cvmx_lmcx_dimm_ctl dimm_ctl;
+
+               dimm_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DIMM_CTL(if_num));
+               dimm_ctl.s.dimm0_wmask = 0;
+               dimm_ctl.s.dimm1_wmask = 0;
+               lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), dimm_ctl.u64);
+       }
+}
+
+static int lmc_rank_init(struct ddr_priv *priv)
+{
+       char *s;
+
+       if (enable_by_rank_init) {
+               by_rank = 3;
+               saved_rank_mask = rank_mask;
+       }
+
+start_by_rank_init:
+
+       if (enable_by_rank_init) {
+               rank_mask = (1 << by_rank);
+               if (!(rank_mask & saved_rank_mask))
+                       goto end_by_rank_init;
+               if (by_rank == 0)
+                       rank_mask = saved_rank_mask;
+
+               debug("\n>>>>> BY_RANK: starting rank %d with mask 0x%02x\n\n",
+                     by_rank, rank_mask);
+       }
+
+       /*
+        * Comments (steps 3 through 5) continue in oct3_ddr3_seq()
+        */
+       union cvmx_lmcx_modereg_params0 mp0;
+
+       if (ddr_memory_preserved(priv)) {
+               /*
+                * Contents are being preserved. Take DRAM out of self-refresh
+                * first. Then init steps can procede normally
+                */
+               /* self-refresh exit */
+               oct3_ddr3_seq(priv, rank_mask, if_num, 3);
+       }
+
+       mp0.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
+       mp0.s.dllr = 1;         /* Set during first init sequence */
+       lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num), mp0.u64);
+
+       ddr_init_seq(priv, rank_mask, if_num);
+
+       mp0.s.dllr = 0;         /* Clear for normal operation */
+       lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num), mp0.u64);
+
+       if (spd_rdimm && ddr_type == DDR4_DRAM &&
+           octeon_is_cpuid(OCTEON_CN7XXX)) {
+               debug("Running init sequence 1\n");
+               change_rdimm_mpr_pattern(priv, rank_mask, if_num, dimm_count);
+       }
+
+       memset(lanes, 0, sizeof(lanes));
+       for (lane = 0; lane < last_lane; lane++) {
+               // init all lanes to reset value
+               dac_settings[lane] = 127;
+       }
+
+       // FIXME: disable internal VREF if deskew is disabled?
+       if (disable_deskew_training) {
+               debug("N%d.LMC%d: internal VREF Training disabled, leaving them in RESET.\n",
+                     node, if_num);
+               num_samples = 0;
+       } else if (ddr_type == DDR4_DRAM &&
+                  !octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
+               num_samples = DEFAULT_DAC_SAMPLES;
+       } else {
+               // if DDR3 or no ability to write DAC values
+               num_samples = 1;
+       }
+
+perform_internal_vref_training:
+
+       total_dac_eval_retries = 0;
+       dac_eval_exhausted = 0;
+
+       for (sample = 0; sample < num_samples; sample++) {
+               dac_eval_retries = 0;
+
+               // make offset and internal vref training repeatable
+               do {
+                       /*
+                        * 6.9.8 LMC Offset Training
+                        * LMC requires input-receiver offset training.
+                        */
+                       perform_offset_training(priv, rank_mask, if_num);
+
+                       /*
+                        * 6.9.9 LMC Internal vref Training
+                        * LMC requires input-reference-voltage training.
+                        */
+                       perform_internal_vref_training(priv, rank_mask, if_num);
+
+                       // read and maybe display the DAC values for a sample
+                       read_dac_dbi_settings(priv, if_num, /*DAC*/ 1,
+                                             dac_settings);
+                       if (num_samples == 1 || ddr_verbose(priv)) {
+                               display_dac_dbi_settings(if_num, /*DAC*/ 1,
+                                                        use_ecc, dac_settings,
+                                                        "Internal VREF");
+                       }
+
+                       // for DDR4, evaluate the DAC settings and retry
+                       // if any issues
+                       if (ddr_type == DDR4_DRAM) {
+                               if (evaluate_dac_settings
+                                   (if_64b, use_ecc, dac_settings)) {
+                                       dac_eval_retries += 1;
+                                       if (dac_eval_retries >
+                                           DAC_RETRIES_LIMIT) {
+                                               debug("N%d.LMC%d: DDR4 internal VREF DAC settings: retries exhausted; continuing...\n",
+                                                     node, if_num);
+                                               dac_eval_exhausted += 1;
+                                       } else {
+                                               debug("N%d.LMC%d: DDR4 internal VREF DAC settings inconsistent; retrying....\n",
+                                                     node, if_num);
+                                               total_dac_eval_retries += 1;
+                                               // try another sample
+                                               continue;
+                                       }
+                               }
+
+                               // taking multiple samples, otherwise do nothing
+                               if (num_samples > 1) {
+                                       // good sample or exhausted retries,
+                                       // record it
+                                       for (lane = 0; lane < last_lane;
+                                            lane++) {
+                                               lanes[lane].bytes[sample] =
+                                                   dac_settings[lane];
+                                       }
+                               }
+                       }
+                       // done if DDR3, or good sample, or exhausted retries
+                       break;
+               } while (1);
+       }
+
+       if (ddr_type == DDR4_DRAM && dac_eval_exhausted > 0) {
+               debug("N%d.LMC%d: DDR internal VREF DAC settings: total retries %d, exhausted %d\n",
+                     node, if_num, total_dac_eval_retries, dac_eval_exhausted);
+       }
+
+       if (num_samples > 1) {
+               debug("N%d.LMC%d: DDR4 internal VREF DAC settings: processing multiple samples...\n",
+                     node, if_num);
+
+               for (lane = 0; lane < last_lane; lane++) {
+                       dac_settings[lane] =
+                           process_samples_average(&lanes[lane].bytes[0],
+                                                   num_samples, if_num, lane);
+               }
+               display_dac_dbi_settings(if_num, /*DAC*/ 1, use_ecc,
+                                        dac_settings, "Averaged VREF");
+
+               // finally, write the final DAC values
+               for (lane = 0; lane < last_lane; lane++) {
+                       load_dac_override(priv, if_num, dac_settings[lane],
+                                         lane);
+               }
+       }
+
+       // allow override of any byte-lane internal VREF
+       int overrode_vref_dac = 0;
+
+       for (lane = 0; lane < last_lane; lane++) {
+               s = lookup_env(priv, "ddr%d_vref_dac_byte%d", if_num, lane);
+               if (s) {
+                       dac_settings[lane] = simple_strtoul(s, NULL, 0);
+                       overrode_vref_dac = 1;
+                       // finally, write the new DAC value
+                       load_dac_override(priv, if_num, dac_settings[lane],
+                                         lane);
+               }
+       }
+       if (overrode_vref_dac) {
+               display_dac_dbi_settings(if_num, /*DAC*/ 1, use_ecc,
+                                        dac_settings, "Override VREF");
+       }
+
+       // as a second step, after internal VREF training, before starting
+       // deskew training:
+       // for DDR3 and OCTEON3 not O78 pass 1.x, override the DAC setting
+       // to 127
+       if (ddr_type == DDR3_DRAM && !octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) &&
+           !disable_deskew_training) {
+               load_dac_override(priv, if_num, 127, /* all */ 0x0A);
+               debug("N%d.LMC%d: Overriding DDR3 internal VREF DAC settings to 127.\n",
+                     node, if_num);
+       }
+
+       /*
+        * 4.8.8 LMC Deskew Training
+        *
+        * LMC requires input-read-data deskew training.
+        */
+       if (!disable_deskew_training) {
+               deskew_training_errors =
+                   perform_deskew_training(priv, rank_mask, if_num,
+                                           spd_rawcard_aorb);
+
+               // All the Deskew lock and saturation retries (may) have
+               // been done, but we ended up with nibble errors; so,
+               // as a last ditch effort, try the Internal vref
+               // Training again...
+               if (deskew_training_errors) {
+                       if (internal_retries <
+                           DEFAULT_INTERNAL_VREF_TRAINING_LIMIT) {
+                               internal_retries++;
+                               debug("N%d.LMC%d: Deskew training results still unsettled - retrying internal vref training (%d)\n",
+                                     node, if_num, internal_retries);
+                               goto perform_internal_vref_training;
+                       } else {
+                               if (restart_if_dsk_incomplete) {
+                                       debug("N%d.LMC%d: INFO: Deskew training incomplete - %d retries exhausted, Restarting LMC init...\n",
+                                             node, if_num, internal_retries);
+                                       return -EAGAIN;
+                               }
+                               debug("N%d.LMC%d: Deskew training incomplete - %d retries exhausted, but continuing...\n",
+                                     node, if_num, internal_retries);
+                       }
+               }               /* if (deskew_training_errors) */
+
+               // FIXME: treat this as the final DSK print from now on,
+               // and print if VBL_NORM or above also, save the results
+               // of the original training in case we want them later
+               validate_deskew_training(priv, rank_mask, if_num,
+                                        &deskew_training_results, 1);
+       } else {                /* if (! disable_deskew_training) */
+               debug("N%d.LMC%d: Deskew Training disabled, printing settings before HWL.\n",
+                     node, if_num);
+               validate_deskew_training(priv, rank_mask, if_num,
+                                        &deskew_training_results, 1);
+       }                       /* if (! disable_deskew_training) */
+
+       if (enable_by_rank_init) {
+               read_dac_dbi_settings(priv, if_num, /*dac */ 1,
+                                     &rank_dac[by_rank].bytes[0]);
+               get_deskew_settings(priv, if_num, &rank_dsk[by_rank]);
+               debug("\n>>>>> BY_RANK: ending rank %d\n\n", by_rank);
+       }
+
+end_by_rank_init:
+
+       if (enable_by_rank_init) {
+               //debug("\n>>>>> BY_RANK: ending rank %d\n\n", by_rank);
+
+               by_rank--;
+               if (by_rank >= 0)
+                       goto start_by_rank_init;
+
+               rank_mask = saved_rank_mask;
+               ddr_init_seq(priv, rank_mask, if_num);
+
+               process_by_rank_dac(priv, if_num, rank_mask, rank_dac);
+               process_by_rank_dsk(priv, if_num, rank_mask, rank_dsk);
+
+               // FIXME: set this to prevent later checking!!!
+               disable_deskew_training = 1;
+
+               debug("\n>>>>> BY_RANK: FINISHED!!\n\n");
+       }
+
+       return 0;
+}
+
+static void lmc_config_2(struct ddr_priv *priv)
+{
+       union cvmx_lmcx_config lmc_config;
+       int save_ref_zqcs_int;
+       u64 temp_delay_usecs;
+
+       lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+
+       /*
+        * Temporarily select the minimum ZQCS interval and wait
+        * long enough for a few ZQCS calibrations to occur.  This
+        * should ensure that the calibration circuitry is
+        * stabilized before read/write leveling occurs.
+        */
+       if (octeon_is_cpuid(OCTEON_CN7XXX)) {
+               save_ref_zqcs_int = lmc_config.cn78xx.ref_zqcs_int;
+               /* set smallest interval */
+               lmc_config.cn78xx.ref_zqcs_int = 1 | (32 << 7);
+       } else {
+               save_ref_zqcs_int = lmc_config.cn63xx.ref_zqcs_int;
+               /* set smallest interval */
+               lmc_config.cn63xx.ref_zqcs_int = 1 | (32 << 7);
+       }
+       lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
+       lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+
+       /*
+        * Compute an appropriate delay based on the current ZQCS
+        * interval. The delay should be long enough for the
+        * current ZQCS delay counter to expire plus ten of the
+        * minimum intarvals to ensure that some calibrations
+        * occur.
+        */
+       temp_delay_usecs = (((u64)save_ref_zqcs_int >> 7) * tclk_psecs *
+                           100 * 512 * 128) / (10000 * 10000) + 10 *
+               ((u64)32 * tclk_psecs * 100 * 512 * 128) / (10000 * 10000);
+
+       debug("Waiting %lld usecs for ZQCS calibrations to start\n",
+             temp_delay_usecs);
+       udelay(temp_delay_usecs);
+
+       if (octeon_is_cpuid(OCTEON_CN7XXX)) {
+               /* Restore computed interval */
+               lmc_config.cn78xx.ref_zqcs_int = save_ref_zqcs_int;
+       } else {
+               /* Restore computed interval */
+               lmc_config.cn63xx.ref_zqcs_int = save_ref_zqcs_int;
+       }
+
+       lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
+       lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+}
+
+static union cvmx_lmcx_wlevel_ctl wl_ctl __section(".data");
+static union cvmx_lmcx_wlevel_rankx wl_rank __section(".data");
+static union cvmx_lmcx_modereg_params1 mp1 __section(".data");
+
+static int wl_mask[9] __section(".data");
+static int byte_idx __section(".data");
+static int ecc_ena __section(".data");
+static int wl_roundup __section(".data");
+static int save_mode32b __section(".data");
+static int disable_hwl_validity __section(".data");
+static int default_wl_rtt_nom __section(".data");
+static int wl_pbm_pump __section(".data");
+
+static void lmc_write_leveling_loop(struct ddr_priv *priv, int rankx)
+{
+       int wloop = 0;
+       // retries per sample for HW-related issues with bitmasks or values
+       int wloop_retries = 0;
+       int wloop_retries_total = 0;
+       int wloop_retries_exhausted = 0;
+#define WLOOP_RETRIES_DEFAULT 5
+       int wl_val_err;
+       int wl_mask_err_rank = 0;
+       int wl_val_err_rank = 0;
+       // array to collect counts of byte-lane values
+       // assume low-order 3 bits and even, so really only 2-bit values
+       struct wlevel_bitcnt wl_bytes[9], wl_bytes_extra[9];
+       int extra_bumps, extra_mask;
+       int rank_nom = 0;
+
+       if (!(rank_mask & (1 << rankx)))
+               return;
+
+       if (match_wl_rtt_nom) {
+               if (rankx == 0)
+                       rank_nom = mp1.s.rtt_nom_00;
+               if (rankx == 1)
+                       rank_nom = mp1.s.rtt_nom_01;
+               if (rankx == 2)
+                       rank_nom = mp1.s.rtt_nom_10;
+               if (rankx == 3)
+                       rank_nom = mp1.s.rtt_nom_11;
+
+               debug("N%d.LMC%d.R%d: Setting WLEVEL_CTL[rtt_nom] to %d (%d)\n",
+                     node, if_num, rankx, rank_nom,
+                     imp_val->rtt_nom_ohms[rank_nom]);
+       }
+
+       memset(wl_bytes, 0, sizeof(wl_bytes));
+       memset(wl_bytes_extra, 0, sizeof(wl_bytes_extra));
+
+       // restructure the looping so we can keep trying until we get the
+       // samples we want
+       while (wloop < wl_loops) {
+               wl_ctl.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_CTL(if_num));
+
+               wl_ctl.cn78xx.rtt_nom =
+                   (default_wl_rtt_nom > 0) ? (default_wl_rtt_nom - 1) : 7;
+
+               if (match_wl_rtt_nom) {
+                       wl_ctl.cn78xx.rtt_nom =
+                           (rank_nom > 0) ? (rank_nom - 1) : 7;
+               }
+
+               /* Clear write-level delays */
+               lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num), 0);
+
+               wl_mask_err = 0;        /* Reset error counters */
+               wl_val_err = 0;
+
+               for (byte_idx = 0; byte_idx < 9; ++byte_idx)
+                       wl_mask[byte_idx] = 0;  /* Reset bitmasks */
+
+               // do all the byte-lanes at the same time
+               wl_ctl.cn78xx.lanemask = 0x1ff;
+
+               lmc_wr(priv, CVMX_LMCX_WLEVEL_CTL(if_num), wl_ctl.u64);
+
+               /*
+                * Read and write values back in order to update the
+                * status field. This insures that we read the updated
+                * values after write-leveling has completed.
+                */
+               lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
+                      lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num)));
+
+               /* write-leveling */
+               oct3_ddr3_seq(priv, 1 << rankx, if_num, 6);
+
+               do {
+                       wl_rank.u64 = lmc_rd(priv,
+                                            CVMX_LMCX_WLEVEL_RANKX(rankx,
+                                                                   if_num));
+               } while (wl_rank.cn78xx.status != 3);
+
+               wl_rank.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx,
+                                                                 if_num));
+
+               for (byte_idx = 0; byte_idx < (8 + ecc_ena); ++byte_idx) {
+                       wl_mask[byte_idx] = lmc_ddr3_wl_dbg_read(priv,
+                                                                if_num,
+                                                                byte_idx);
+                       if (wl_mask[byte_idx] == 0)
+                               ++wl_mask_err;
+               }
+
+               // check validity only if no bitmask errors
+               if (wl_mask_err == 0) {
+                       if ((spd_dimm_type == 1 || spd_dimm_type == 2) &&
+                           dram_width != 16 && if_64b &&
+                           !disable_hwl_validity) {
+                               // bypass if [mini|SO]-[RU]DIMM or x16 or
+                               // 32-bit
+                               wl_val_err =
+                                   validate_hw_wl_settings(if_num,
+                                                           &wl_rank,
+                                                           spd_rdimm, ecc_ena);
+                               wl_val_err_rank += (wl_val_err != 0);
+                       }
+               } else {
+                       wl_mask_err_rank++;
+               }
+
+               // before we print, if we had bitmask or validity errors,
+               // do a retry...
+               if (wl_mask_err != 0 || wl_val_err != 0) {
+                       if (wloop_retries < WLOOP_RETRIES_DEFAULT) {
+                               wloop_retries++;
+                               wloop_retries_total++;
+                               // this printout is per-retry: only when VBL
+                               // is high enough (DEV?)
+                               // FIXME: do we want to show the bad bitmaps
+                               // or delays here also?
+                               debug("N%d.LMC%d.R%d: H/W Write-Leveling had %s errors - retrying...\n",
+                                     node, if_num, rankx,
+                                     (wl_mask_err) ? "Bitmask" : "Validity");
+                               // this takes us back to the top without
+                               // counting a sample
+                               return;
+                       }
+
+                       // retries exhausted, do not print at normal VBL
+                       debug("N%d.LMC%d.R%d: H/W Write-Leveling issues: %s errors\n",
+                             node, if_num, rankx,
+                             (wl_mask_err) ? "Bitmask" : "Validity");
+                       wloop_retries_exhausted++;
+               }
+               // no errors or exhausted retries, use this sample
+               wloop_retries = 0;      //reset for next sample
+
+               // when only 1 sample or forced, print the bitmasks then
+               // current HW WL
+               if (wl_loops == 1 || wl_print) {
+                       if (wl_print > 1)
+                               display_wl_bm(if_num, rankx, wl_mask);
+                       display_wl(if_num, wl_rank, rankx);
+               }
+
+               if (wl_roundup) {       /* Round up odd bitmask delays */
+                       for (byte_idx = 0; byte_idx < (8 + ecc_ena);
+                            ++byte_idx) {
+                               if (!(if_bytemask & (1 << byte_idx)))
+                                       return;
+                               upd_wl_rank(&wl_rank, byte_idx,
+                                           roundup_ddr3_wlevel_bitmask
+                                           (wl_mask[byte_idx]));
+                       }
+                       lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
+                              wl_rank.u64);
+                       display_wl(if_num, wl_rank, rankx);
+               }
+
+               // OK, we have a decent sample, no bitmask or validity errors
+               extra_bumps = 0;
+               extra_mask = 0;
+               for (byte_idx = 0; byte_idx < (8 + ecc_ena); ++byte_idx) {
+                       int ix;
+
+                       if (!(if_bytemask & (1 << byte_idx)))
+                               return;
+
+                       // increment count of byte-lane value
+                       // only 4 values
+                       ix = (get_wl_rank(&wl_rank, byte_idx) >> 1) & 3;
+                       wl_bytes[byte_idx].bitcnt[ix]++;
+                       wl_bytes_extra[byte_idx].bitcnt[ix]++;
+                       // if perfect...
+                       if (__builtin_popcount(wl_mask[byte_idx]) == 4) {
+                               wl_bytes_extra[byte_idx].bitcnt[ix] +=
+                                   wl_pbm_pump;
+                               extra_bumps++;
+                               extra_mask |= 1 << byte_idx;
+                       }
+               }
+
+               if (extra_bumps) {
+                       if (wl_print > 1) {
+                               debug("N%d.LMC%d.R%d: HWL sample had %d bumps (0x%02x).\n",
+                                     node, if_num, rankx, extra_bumps,
+                                     extra_mask);
+                       }
+               }
+
+               // if we get here, we have taken a decent sample
+               wloop++;
+
+       }                       /* while (wloop < wl_loops) */
+
+       // if we did sample more than once, try to pick a majority vote
+       if (wl_loops > 1) {
+               // look for the majority in each byte-lane
+               for (byte_idx = 0; byte_idx < (8 + ecc_ena); ++byte_idx) {
+                       int mx, mc, xc, cc;
+                       int ix, alts;
+                       int maj, xmaj, xmx, xmc, xxc, xcc;
+
+                       if (!(if_bytemask & (1 << byte_idx)))
+                               return;
+                       maj = find_wl_majority(&wl_bytes[byte_idx], &mx,
+                                              &mc, &xc, &cc);
+                       xmaj = find_wl_majority(&wl_bytes_extra[byte_idx],
+                                               &xmx, &xmc, &xxc, &xcc);
+                       if (maj != xmaj) {
+                               if (wl_print) {
+                                       debug("N%d.LMC%d.R%d: Byte %d: HWL maj %d(%d), USING xmaj %d(%d)\n",
+                                             node, if_num, rankx,
+                                             byte_idx, maj, xc, xmaj, xxc);
+                               }
+                               mx = xmx;
+                               mc = xmc;
+                               xc = xxc;
+                               cc = xcc;
+                       }
+
+                       // see if there was an alternate
+                       // take out the majority choice
+                       alts = (mc & ~(1 << mx));
+                       if (alts != 0) {
+                               for (ix = 0; ix < 4; ix++) {
+                                       // FIXME: could be done multiple times?
+                                       // bad if so
+                                       if (alts & (1 << ix)) {
+                                               // set the mask
+                                               hwl_alts[rankx].hwl_alt_mask |=
+                                                       (1 << byte_idx);
+                                               // record the value
+                                               hwl_alts[rankx].hwl_alt_delay[byte_idx] =
+                                                       ix << 1;
+                                               if (wl_print > 1) {
+                                                       debug("N%d.LMC%d.R%d: SWL_TRY_HWL_ALT: Byte %d maj %d (%d) alt %d (%d).\n",
+                                                             node,
+                                                             if_num,
+                                                             rankx,
+                                                             byte_idx,
+                                                             mx << 1,
+                                                             xc,
+                                                             ix << 1,
+                                                             wl_bytes
+                                                             [byte_idx].bitcnt
+                                                             [ix]);
+                                               }
+                                       }
+                               }
+                       }
+
+                       if (cc > 2) {   // unlikely, but...
+                               // assume: counts for 3 indices are all 1
+                               // possiblities are: 0/2/4, 2/4/6, 0/4/6, 0/2/6
+                               // and the desired?:   2  ,   4  ,     6, 0
+                               // we choose the middle, assuming one of the
+                               // outliers is bad
+                               // NOTE: this is an ugly hack at the moment;
+                               // there must be a better way
+                               switch (mc) {
+                               case 0x7:
+                                       mx = 1;
+                                       break;  // was 0/2/4, choose 2
+                               case 0xb:
+                                       mx = 0;
+                                       break;  // was 0/2/6, choose 0
+                               case 0xd:
+                                       mx = 3;
+                                       break;  // was 0/4/6, choose 6
+                               case 0xe:
+                                       mx = 2;
+                                       break;  // was 2/4/6, choose 4
+                               default:
+                               case 0xf:
+                                       mx = 1;
+                                       break;  // was 0/2/4/6, choose 2?
+                               }
+                               printf("N%d.LMC%d.R%d: HW WL MAJORITY: bad byte-lane %d (0x%x), using %d.\n",
+                                      node, if_num, rankx, byte_idx, mc,
+                                      mx << 1);
+                       }
+                       upd_wl_rank(&wl_rank, byte_idx, mx << 1);
+               }
+
+               lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
+                      wl_rank.u64);
+               display_wl_with_final(if_num, wl_rank, rankx);
+
+               // FIXME: does this help make the output a little easier
+               // to focus?
+               if (wl_print > 0)
+                       debug("-----------\n");
+
+       }                       /* if (wl_loops > 1) */
+
+       // maybe print an error summary for the rank
+       if (wl_mask_err_rank != 0 || wl_val_err_rank != 0) {
+               debug("N%d.LMC%d.R%d: H/W Write-Leveling errors - %d bitmask, %d validity, %d retries, %d exhausted\n",
+                     node, if_num, rankx, wl_mask_err_rank,
+                     wl_val_err_rank, wloop_retries_total,
+                     wloop_retries_exhausted);
+       }
+}
+
+static void lmc_write_leveling(struct ddr_priv *priv)
+{
+       union cvmx_lmcx_config cfg;
+       int rankx;
+       char *s;
+
+       /*
+        * 4.8.9 LMC Write Leveling
+        *
+        * LMC supports an automatic write leveling like that described in the
+        * JEDEC DDR3 specifications separately per byte-lane.
+        *
+        * All of DDR PLL, LMC CK, LMC DRESET, and early LMC initializations
+        * must be completed prior to starting this LMC write-leveling sequence.
+        *
+        * There are many possible procedures that will write-level all the
+        * attached DDR3 DRAM parts. One possibility is for software to simply
+        * write the desired values into LMC(0)_WLEVEL_RANK(0..3). This section
+        * describes one possible sequence that uses LMC's autowrite-leveling
+        * capabilities.
+        *
+        * 1. If the DQS/DQ delays on the board may be more than the ADD/CMD
+        *    delays, then ensure that LMC(0)_CONFIG[EARLY_DQX] is set at this
+        *    point.
+        *
+        * Do the remaining steps 2-7 separately for each rank i with attached
+        * DRAM.
+        *
+        * 2. Write LMC(0)_WLEVEL_RANKi = 0.
+        *
+        * 3. For x8 parts:
+        *
+        *    Without changing any other fields in LMC(0)_WLEVEL_CTL, write
+        *    LMC(0)_WLEVEL_CTL[LANEMASK] to select all byte lanes with attached
+        *    DRAM.
+        *
+        *    For x16 parts:
+        *
+        *    Without changing any other fields in LMC(0)_WLEVEL_CTL, write
+        *    LMC(0)_WLEVEL_CTL[LANEMASK] to select all even byte lanes with
+        *    attached DRAM.
+        *
+        * 4. Without changing any other fields in LMC(0)_CONFIG,
+        *
+        *    o write LMC(0)_SEQ_CTL[SEQ_SEL] to select write-leveling
+        *
+        *    o write LMC(0)_CONFIG[RANKMASK] = (1 << i)
+        *
+        *    o write LMC(0)_SEQ_CTL[INIT_START] = 1
+        *
+        *    LMC will initiate write-leveling at this point. Assuming
+        *    LMC(0)_WLEVEL_CTL [SSET] = 0, LMC first enables write-leveling on
+        *    the selected DRAM rank via a DDR3 MR1 write, then sequences
+        *    through
+        *    and accumulates write-leveling results for eight different delay
+        *    settings twice, starting at a delay of zero in this case since
+        *    LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] = 0, increasing by 1/8 CK each
+        *    setting, covering a total distance of one CK, then disables the
+        *    write-leveling via another DDR3 MR1 write.
+        *
+        *    After the sequence through 16 delay settings is complete:
+        *
+        *    o LMC sets LMC(0)_WLEVEL_RANKi[STATUS] = 3
+        *
+        *    o LMC sets LMC(0)_WLEVEL_RANKi[BYTE*<2:0>] (for all ranks selected
+        *      by LMC(0)_WLEVEL_CTL[LANEMASK]) to indicate the first write
+        *      leveling result of 1 that followed result of 0 during the
+        *      sequence, except that the LMC always writes
+        *      LMC(0)_WLEVEL_RANKi[BYTE*<0>]=0.
+        *
+        *    o Software can read the eight write-leveling results from the
+        *      first pass through the delay settings by reading
+        *      LMC(0)_WLEVEL_DBG[BITMASK] (after writing
+        *      LMC(0)_WLEVEL_DBG[BYTE]). (LMC does not retain the writeleveling
+        *      results from the second pass through the eight delay
+        *      settings. They should often be identical to the
+        *      LMC(0)_WLEVEL_DBG[BITMASK] results, though.)
+        *
+        * 5. Wait until LMC(0)_WLEVEL_RANKi[STATUS] != 2.
+        *
+        *    LMC will have updated LMC(0)_WLEVEL_RANKi[BYTE*<2:0>] for all byte
+        *    lanes selected by LMC(0)_WLEVEL_CTL[LANEMASK] at this point.
+        *    LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] will still be the value that
+        *    software wrote in substep 2 above, which is 0.
+        *
+        * 6. For x16 parts:
+        *
+        *    Without changing any other fields in LMC(0)_WLEVEL_CTL, write
+        *    LMC(0)_WLEVEL_CTL[LANEMASK] to select all odd byte lanes with
+        *    attached DRAM.
+        *
+        *    Repeat substeps 4 and 5 with this new LMC(0)_WLEVEL_CTL[LANEMASK]
+        *    setting. Skip to substep 7 if this has already been done.
+        *
+        *    For x8 parts:
+        *
+        *    Skip this substep. Go to substep 7.
+        *
+        * 7. Calculate LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] settings for all byte
+        *    lanes on all ranks with attached DRAM.
+        *
+        *    At this point, all byte lanes on rank i with attached DRAM should
+        *    have been write-leveled, and LMC(0)_WLEVEL_RANKi[BYTE*<2:0>] has
+        *    the result for each byte lane.
+        *
+        *    But note that the DDR3 write-leveling sequence will only determine
+        *    the delay modulo the CK cycle time, and cannot determine how many
+        *    additional CK cycles of delay are present. Software must calculate
+        *    the number of CK cycles, or equivalently, the
+        *    LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] settings.
+        *
+        *    This BYTE*<4:3> calculation is system/board specific.
+        *
+        * Many techniques can be used to calculate write-leveling BYTE*<4:3>
+        * values, including:
+        *
+        *    o Known values for some byte lanes.
+        *
+        *    o Relative values for some byte lanes relative to others.
+        *
+        *    For example, suppose lane X is likely to require a larger
+        *    write-leveling delay than lane Y. A BYTEX<2:0> value that is much
+        *    smaller than the BYTEY<2:0> value may then indicate that the
+        *    required lane X delay wrapped into the next CK, so BYTEX<4:3>
+        *    should be set to BYTEY<4:3>+1.
+        *
+        *    When ECC DRAM is not present (i.e. when DRAM is not attached to
+        *    the DDR_CBS_0_* and DDR_CB<7:0> chip signals, or the
+        *    DDR_DQS_<4>_* and DDR_DQ<35:32> chip signals), write
+        *    LMC(0)_WLEVEL_RANK*[BYTE8] = LMC(0)_WLEVEL_RANK*[BYTE0],
+        *    using the final calculated BYTE0 value.
+        *    Write LMC(0)_WLEVEL_RANK*[BYTE4] = LMC(0)_WLEVEL_RANK*[BYTE0],
+        *    using the final calculated BYTE0 value.
+        *
+        * 8. Initialize LMC(0)_WLEVEL_RANK* values for all unused ranks.
+        *
+        *    Let rank i be a rank with attached DRAM.
+        *
+        *    For all ranks j that do not have attached DRAM, set
+        *    LMC(0)_WLEVEL_RANKj = LMC(0)_WLEVEL_RANKi.
+        */
+
+       rankx = 0;
+       wl_roundup = 0;
+       disable_hwl_validity = 0;
+
+       // wl_pbm_pump: weight for write-leveling PBMs...
+       // 0 causes original behavior
+       // 1 allows a minority of 2 pbms to outscore a majority of 3 non-pbms
+       // 4 would allow a minority of 1 pbm to outscore a majority of 4
+       // non-pbms
+       wl_pbm_pump = 4;        // FIXME: is 4 too much?
+
+       if (wl_loops) {
+               debug("N%d.LMC%d: Performing Hardware Write-Leveling\n", node,
+                     if_num);
+       } else {
+               /* Force software write-leveling to run */
+               wl_mask_err = 1;
+               debug("N%d.LMC%d: Forcing software Write-Leveling\n", node,
+                     if_num);
+       }
+
+       default_wl_rtt_nom = (ddr_type == DDR3_DRAM) ?
+               rttnom_20ohm : ddr4_rttnom_40ohm;
+
+       cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+       ecc_ena = cfg.s.ecc_ena;
+       save_mode32b = cfg.cn78xx.mode32b;
+       cfg.cn78xx.mode32b = (!if_64b);
+       lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64);
+       debug("%-45s : %d\n", "MODE32B", cfg.cn78xx.mode32b);
+
+       s = lookup_env(priv, "ddr_wlevel_roundup");
+       if (s)
+               wl_roundup = simple_strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_wlevel_printall");
+       if (s)
+               wl_print = strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_wlevel_pbm_bump");
+       if (s)
+               wl_pbm_pump = strtoul(s, NULL, 0);
+
+       // default to disable when RL sequential delay check is disabled
+       disable_hwl_validity = disable_sequential_delay_check;
+       s = lookup_env(priv, "ddr_disable_hwl_validity");
+       if (s)
+               disable_hwl_validity = !!strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_wl_rtt_nom");
+       if (s)
+               default_wl_rtt_nom = simple_strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_match_wl_rtt_nom");
+       if (s)
+               match_wl_rtt_nom = !!simple_strtoul(s, NULL, 0);
+
+       if (match_wl_rtt_nom)
+               mp1.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num));
+
+       // For DDR3, we do not touch WLEVEL_CTL fields OR_DIS or BITMASK
+       // For DDR4, we touch WLEVEL_CTL fields OR_DIS or BITMASK here
+       if (ddr_type == DDR4_DRAM) {
+               int default_or_dis = 1;
+               int default_bitmask = 0xff;
+
+               // when x4, use only the lower nibble
+               if (dram_width == 4) {
+                       default_bitmask = 0x0f;
+                       if (wl_print) {
+                               debug("N%d.LMC%d: WLEVEL_CTL: default bitmask is 0x%02x for DDR4 x4\n",
+                                     node, if_num, default_bitmask);
+                       }
+               }
+
+               wl_ctl.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_CTL(if_num));
+               wl_ctl.s.or_dis = default_or_dis;
+               wl_ctl.s.bitmask = default_bitmask;
+
+               // allow overrides
+               s = lookup_env(priv, "ddr_wlevel_ctl_or_dis");
+               if (s)
+                       wl_ctl.s.or_dis = !!strtoul(s, NULL, 0);
+
+               s = lookup_env(priv, "ddr_wlevel_ctl_bitmask");
+               if (s)
+                       wl_ctl.s.bitmask = simple_strtoul(s, NULL, 0);
+
+               // print only if not defaults
+               if (wl_ctl.s.or_dis != default_or_dis ||
+                   wl_ctl.s.bitmask != default_bitmask) {
+                       debug("N%d.LMC%d: WLEVEL_CTL: or_dis=%d, bitmask=0x%02x\n",
+                             node, if_num, wl_ctl.s.or_dis, wl_ctl.s.bitmask);
+               }
+
+               // always write
+               lmc_wr(priv, CVMX_LMCX_WLEVEL_CTL(if_num), wl_ctl.u64);
+       }
+
+       // Start the hardware write-leveling loop per rank
+       for (rankx = 0; rankx < dimm_count * 4; rankx++)
+               lmc_write_leveling_loop(priv, rankx);
+
+       cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+       cfg.cn78xx.mode32b = save_mode32b;
+       lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64);
+       debug("%-45s : %d\n", "MODE32B", cfg.cn78xx.mode32b);
+
+       // At the end of HW Write Leveling, check on some DESKEW things...
+       if (!disable_deskew_training) {
+               struct deskew_counts dsk_counts;
+               int retry_count = 0;
+
+               debug("N%d.LMC%d: Check Deskew Settings before Read-Leveling.\n",
+                     node, if_num);
+
+               do {
+                       validate_deskew_training(priv, rank_mask, if_num,
+                                                &dsk_counts, 1);
+
+                       // only RAWCARD A or B will not benefit from
+                       // retraining if there's only saturation
+                       // or any rawcard if there is a nibble error
+                       if ((!spd_rawcard_aorb && dsk_counts.saturated > 0) ||
+                           (dsk_counts.nibrng_errs != 0 ||
+                            dsk_counts.nibunl_errs != 0)) {
+                               retry_count++;
+                               debug("N%d.LMC%d: Deskew Status indicates saturation or nibble errors - retry %d Training.\n",
+                                     node, if_num, retry_count);
+                               perform_deskew_training(priv, rank_mask, if_num,
+                                                       spd_rawcard_aorb);
+                       } else {
+                               break;
+                       }
+               } while (retry_count < 5);
+       }
+}
+
+static void lmc_workaround(struct ddr_priv *priv)
+{
+       /* Workaround Trcd overflow by using Additive latency. */
+       if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
+               union cvmx_lmcx_modereg_params0 mp0;
+               union cvmx_lmcx_timing_params1 tp1;
+               union cvmx_lmcx_control ctrl;
+               int rankx;
+
+               tp1.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS1(if_num));
+               mp0.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
+               ctrl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+
+               if (tp1.cn78xx.trcd == 0) {
+                       debug("Workaround Trcd overflow by using Additive latency.\n");
+                       /* Hard code this to 12 and enable additive latency */
+                       tp1.cn78xx.trcd = 12;
+                       mp0.s.al = 2;   /* CL-2 */
+                       ctrl.s.pocas = 1;
+
+                       debug("MODEREG_PARAMS0                               : 0x%016llx\n",
+                             mp0.u64);
+                       lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num),
+                              mp0.u64);
+                       debug("TIMING_PARAMS1                                : 0x%016llx\n",
+                             tp1.u64);
+                       lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS1(if_num), tp1.u64);
+
+                       debug("LMC_CONTROL                                   : 0x%016llx\n",
+                             ctrl.u64);
+                       lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctrl.u64);
+
+                       for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+                               if (!(rank_mask & (1 << rankx)))
+                                       continue;
+
+                               /* MR1 */
+                               ddr4_mrw(priv, if_num, rankx, -1, 1, 0);
+                       }
+               }
+       }
+
+       // this is here just for output, to allow check of the Deskew
+       // settings one last time...
+       if (!disable_deskew_training) {
+               struct deskew_counts dsk_counts;
+
+               debug("N%d.LMC%d: Check Deskew Settings before software Write-Leveling.\n",
+                     node, if_num);
+               validate_deskew_training(priv, rank_mask, if_num, &dsk_counts,
+                                        3);
+       }
+
+       /*
+        * Workaround Errata 26304 (T88@2.0, O75@1.x, O78@2.x)
+        *
+        * When the CSRs LMCX_DLL_CTL3[WR_DESKEW_ENA] = 1 AND
+        * LMCX_PHY_CTL2[DQS[0..8]_DSK_ADJ] > 4, set
+        * LMCX_EXT_CONFIG[DRIVE_ENA_BPRCH] = 1.
+        */
+       if (octeon_is_cpuid(OCTEON_CN78XX_PASS2_X) ||
+           octeon_is_cpuid(OCTEON_CNF75XX_PASS1_X)) {
+               union cvmx_lmcx_dll_ctl3 dll_ctl3;
+               union cvmx_lmcx_phy_ctl2 phy_ctl2;
+               union cvmx_lmcx_ext_config ext_cfg;
+               int increased_dsk_adj = 0;
+               int byte;
+
+               phy_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL2(if_num));
+               ext_cfg.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num));
+               dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
+
+               for (byte = 0; byte < 8; ++byte) {
+                       if (!(if_bytemask & (1 << byte)))
+                               continue;
+                       increased_dsk_adj |=
+                           (((phy_ctl2.u64 >> (byte * 3)) & 0x7) > 4);
+               }
+
+               if (dll_ctl3.s.wr_deskew_ena == 1 && increased_dsk_adj) {
+                       ext_cfg.s.drive_ena_bprch = 1;
+                       lmc_wr(priv, CVMX_LMCX_EXT_CONFIG(if_num), ext_cfg.u64);
+                       debug("LMC%d: Forcing DRIVE_ENA_BPRCH for Workaround Errata 26304.\n",
+                             if_num);
+               }
+       }
+}
+
+// Software Write-Leveling block
+
+#define VREF_RANGE1_LIMIT 0x33 // range1 is valid for 0x00 - 0x32
+#define VREF_RANGE2_LIMIT 0x18 // range2 is valid for 0x00 - 0x17
+// full window is valid for 0x00 to 0x4A
+// let 0x00 - 0x17 be range2, 0x18 - 0x4a be range 1
+#define VREF_LIMIT        (VREF_RANGE1_LIMIT + VREF_RANGE2_LIMIT)
+#define VREF_FINAL        (VREF_LIMIT - 1)
+
+enum sw_wl_status {
+       WL_ESTIMATED = 0, /* HW/SW wleveling failed. Reslt estimated */
+       WL_HARDWARE = 1,        /* H/W wleveling succeeded */
+       WL_SOFTWARE = 2, /* S/W wleveling passed 2 contiguous setting */
+       WL_SOFTWARE1 = 3, /* S/W wleveling passed 1 marginal setting */
+};
+
+static u64 rank_addr __section(".data");
+static int vref_val __section(".data");
+static int final_vref_val __section(".data");
+static int final_vref_range __section(".data");
+static int start_vref_val __section(".data");
+static int computed_final_vref_val __section(".data");
+static char best_vref_val_count __section(".data");
+static char vref_val_count __section(".data");
+static char best_vref_val_start __section(".data");
+static char vref_val_start __section(".data");
+static int bytes_failed __section(".data");
+static enum sw_wl_status byte_test_status[9] __section(".data");
+static enum sw_wl_status sw_wl_rank_status __section(".data");
+static int sw_wl_failed __section(".data");
+static int sw_wl_hw __section(".data");
+static int measured_vref_flag __section(".data");
+
+static void ddr4_vref_loop(struct ddr_priv *priv, int rankx)
+{
+       char *s;
+
+       if (vref_val < VREF_FINAL) {
+               int vrange, vvalue;
+
+               if (vref_val < VREF_RANGE2_LIMIT) {
+                       vrange = 1;
+                       vvalue = vref_val;
+               } else {
+                       vrange = 0;
+                       vvalue = vref_val - VREF_RANGE2_LIMIT;
+               }
+
+               set_vref(priv, if_num, rankx, vrange, vvalue);
+       } else {                /* if (vref_val < VREF_FINAL) */
+               /* Print the final vref value first. */
+
+               /* Always print the computed first if its valid */
+               if (computed_final_vref_val >= 0) {
+                       debug("N%d.LMC%d.R%d: vref Computed Summary                 :              %2d (0x%02x)\n",
+                             node, if_num, rankx,
+                             computed_final_vref_val, computed_final_vref_val);
+               }
+
+               if (!measured_vref_flag) {      // setup to use the computed
+                       best_vref_val_count = 1;
+                       final_vref_val = computed_final_vref_val;
+               } else {        // setup to use the measured
+                       if (best_vref_val_count > 0) {
+                               best_vref_val_count =
+                                   max(best_vref_val_count, (char)2);
+                               final_vref_val = best_vref_val_start +
+                                       divide_nint(best_vref_val_count - 1, 2);
+
+                               if (final_vref_val < VREF_RANGE2_LIMIT) {
+                                       final_vref_range = 1;
+                               } else {
+                                       final_vref_range = 0;
+                                       final_vref_val -= VREF_RANGE2_LIMIT;
+                               }
+
+                               int vvlo = best_vref_val_start;
+                               int vrlo;
+                               int vvhi = best_vref_val_start +
+                                       best_vref_val_count - 1;
+                               int vrhi;
+
+                               if (vvlo < VREF_RANGE2_LIMIT) {
+                                       vrlo = 2;
+                               } else {
+                                       vrlo = 1;
+                                       vvlo -= VREF_RANGE2_LIMIT;
+                               }
+
+                               if (vvhi < VREF_RANGE2_LIMIT) {
+                                       vrhi = 2;
+                               } else {
+                                       vrhi = 1;
+                                       vvhi -= VREF_RANGE2_LIMIT;
+                               }
+                               debug("N%d.LMC%d.R%d: vref Training Summary                 :  0x%02x/%1d <----- 0x%02x/%1d -----> 0x%02x/%1d, range: %2d\n",
+                                     node, if_num, rankx, vvlo, vrlo,
+                                     final_vref_val,
+                                     final_vref_range + 1, vvhi, vrhi,
+                                     best_vref_val_count - 1);
+
+                       } else {
+                               /*
+                                * If nothing passed use the default vref
+                                * value for this rank
+                                */
+                               union cvmx_lmcx_modereg_params2 mp2;
+
+                               mp2.u64 =
+                                       lmc_rd(priv,
+                                              CVMX_LMCX_MODEREG_PARAMS2(if_num));
+                               final_vref_val = (mp2.u64 >>
+                                                 (rankx * 10 + 3)) & 0x3f;
+                               final_vref_range = (mp2.u64 >>
+                                                   (rankx * 10 + 9)) & 0x01;
+
+                               debug("N%d.LMC%d.R%d: vref Using Default                    :    %2d <----- %2d (0x%02x) -----> %2d, range%1d\n",
+                                     node, if_num, rankx, final_vref_val,
+                                     final_vref_val, final_vref_val,
+                                     final_vref_val, final_vref_range + 1);
+                       }
+               }
+
+               // allow override
+               s = lookup_env(priv, "ddr%d_vref_val_%1d%1d",
+                              if_num, !!(rankx & 2), !!(rankx & 1));
+               if (s)
+                       final_vref_val = strtoul(s, NULL, 0);
+
+               set_vref(priv, if_num, rankx, final_vref_range, final_vref_val);
+       }
+}
+
+#define WL_MIN_NO_ERRORS_COUNT 3       // FIXME? three passes without errors
+
+static int errors __section(".data");
+static int byte_delay[9] __section(".data");
+static u64 bytemask __section(".data");
+static int bytes_todo __section(".data");
+static int no_errors_count __section(".data");
+static u64 bad_bits[2] __section(".data");
+static u64 sum_dram_dclk __section(".data");
+static u64 sum_dram_ops __section(".data");
+static u64 start_dram_dclk __section(".data");
+static u64 stop_dram_dclk __section(".data");
+static u64 start_dram_ops __section(".data");
+static u64 stop_dram_ops __section(".data");
+
+static void lmc_sw_write_leveling_loop(struct ddr_priv *priv, int rankx)
+{
+       int delay;
+       int b;
+
+       // write the current set of WL delays
+       lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num), wl_rank.u64);
+       wl_rank.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num));
+
+       // do the test
+       if (sw_wl_hw) {
+               errors = run_best_hw_patterns(priv, if_num, rank_addr,
+                                             DBTRAIN_TEST, bad_bits);
+               errors &= bytes_todo;   // keep only the ones we are still doing
+       } else {
+               start_dram_dclk = lmc_rd(priv, CVMX_LMCX_DCLK_CNT(if_num));
+               start_dram_ops = lmc_rd(priv, CVMX_LMCX_OPS_CNT(if_num));
+               errors = test_dram_byte64(priv, if_num, rank_addr, bytemask,
+                                         bad_bits);
+
+               stop_dram_dclk = lmc_rd(priv, CVMX_LMCX_DCLK_CNT(if_num));
+               stop_dram_ops = lmc_rd(priv, CVMX_LMCX_OPS_CNT(if_num));
+               sum_dram_dclk += stop_dram_dclk - start_dram_dclk;
+               sum_dram_ops += stop_dram_ops - start_dram_ops;
+       }
+
+       debug("WL pass1: test_dram_byte returned 0x%x\n", errors);
+
+       // remember, errors will not be returned for byte-lanes that have
+       // maxxed out...
+       if (errors == 0) {
+               no_errors_count++;      // bump
+               // bypass check/update completely
+               if (no_errors_count > 1)
+                       return; // to end of do-while
+       } else {
+               no_errors_count = 0;    // reset
+       }
+
+       // check errors by byte
+       for (b = 0; b < 9; ++b) {
+               if (!(bytes_todo & (1 << b)))
+                       continue;
+
+               delay = byte_delay[b];
+               // yes, an error in this byte lane
+               if (errors & (1 << b)) {
+                       debug("        byte %d delay %2d Errors\n", b, delay);
+                       // since this byte had an error, we move to the next
+                       // delay value, unless done with it
+                       delay += 8;     // incr by 8 to do delay high-order bits
+                       if (delay < 32) {
+                               upd_wl_rank(&wl_rank, b, delay);
+                               debug("        byte %d delay %2d New\n",
+                                     b, delay);
+                               byte_delay[b] = delay;
+                       } else {
+                               // reached max delay, maybe really done with
+                               // this byte
+                               // consider an alt only for computed VREF and
+                               if (!measured_vref_flag &&
+                                   (hwl_alts[rankx].hwl_alt_mask & (1 << b))) {
+                                       // if an alt exists...
+                                       // just orig low-3 bits
+                                       int bad_delay = delay & 0x6;
+
+                                       // yes, use it
+                                       delay = hwl_alts[rankx].hwl_alt_delay[b];
+                                       // clear that flag
+                                       hwl_alts[rankx].hwl_alt_mask &=
+                                               ~(1 << b);
+                                       upd_wl_rank(&wl_rank, b, delay);
+                                       byte_delay[b] = delay;
+                                       debug("        byte %d delay %2d ALTERNATE\n",
+                                             b, delay);
+                                       debug("N%d.LMC%d.R%d: SWL: Byte %d: %d FAIL, trying ALTERNATE %d\n",
+                                             node, if_num,
+                                             rankx, b, bad_delay, delay);
+
+                               } else {
+                                       unsigned int bits_bad;
+
+                                       if (b < 8) {
+                                               // test no longer, remove from
+                                               // byte mask
+                                               bytemask &=
+                                                       ~(0xffULL << (8 * b));
+                                               bits_bad = (unsigned int)
+                                                       ((bad_bits[0] >>
+                                                         (8 * b)) & 0xffUL);
+                                       } else {
+                                               bits_bad = (unsigned int)
+                                                   (bad_bits[1] & 0xffUL);
+                                       }
+
+                                       // remove from bytes to do
+                                       bytes_todo &= ~(1 << b);
+                                       // make sure this is set for this case
+                                       byte_test_status[b] = WL_ESTIMATED;
+                                       debug("        byte %d delay %2d Exhausted\n",
+                                             b, delay);
+                                       if (!measured_vref_flag) {
+                                               // this is too noisy when doing
+                                               // measured VREF
+                                               debug("N%d.LMC%d.R%d: SWL: Byte %d (0x%02x): delay %d EXHAUSTED\n",
+                                                     node, if_num, rankx,
+                                                     b, bits_bad, delay);
+                                       }
+                               }
+                       }
+               } else {
+                       // no error, stay with current delay, but keep testing
+                       // it...
+                       debug("        byte %d delay %2d Passed\n", b, delay);
+                       byte_test_status[b] = WL_HARDWARE;      // change status
+               }
+       }                       /* for (b = 0; b < 9; ++b) */
+}
+
+static void sw_write_lvl_use_ecc(struct ddr_priv *priv, int rankx)
+{
+       int save_byte8 = wl_rank.s.byte8;
+
+       byte_test_status[8] = WL_HARDWARE;      /* H/W delay value */
+
+       if (save_byte8 != wl_rank.s.byte3 &&
+           save_byte8 != wl_rank.s.byte4) {
+               int test_byte8 = save_byte8;
+               int test_byte8_error;
+               int byte8_error = 0x1f;
+               int adder;
+               int avg_bytes = divide_nint(wl_rank.s.byte3 + wl_rank.s.byte4,
+                                           2);
+
+               for (adder = 0; adder <= 32; adder += 8) {
+                       test_byte8_error = abs((adder + save_byte8) -
+                                              avg_bytes);
+                       if (test_byte8_error < byte8_error) {
+                               byte8_error = test_byte8_error;
+                               test_byte8 = save_byte8 + adder;
+                       }
+               }
+
+               // only do the check if we are not using measured VREF
+               if (!measured_vref_flag) {
+                       /* Use only even settings, rounding down... */
+                       test_byte8 &= ~1;
+
+                       // do validity check on the calculated ECC delay value
+                       // this depends on the DIMM type
+                       if (spd_rdimm) {        // RDIMM
+                               // but not mini-RDIMM
+                               if (spd_dimm_type != 5) {
+                                       // it can be > byte4, but should never
+                                       // be > byte3
+                                       if (test_byte8 > wl_rank.s.byte3) {
+                                               /* say it is still estimated */
+                                               byte_test_status[8] =
+                                                       WL_ESTIMATED;
+                                       }
+                               }
+                       } else {        // UDIMM
+                               if (test_byte8 < wl_rank.s.byte3 ||
+                                   test_byte8 > wl_rank.s.byte4) {
+                                       // should never be outside the
+                                       // byte 3-4 range
+                                       /* say it is still estimated */
+                                       byte_test_status[8] = WL_ESTIMATED;
+                               }
+                       }
+                       /*
+                        * Report whenever the calculation appears bad.
+                        * This happens if some of the original values were off,
+                        * or unexpected geometry from DIMM type, or custom
+                        * circuitry (NIC225E, I am looking at you!).
+                        * We will trust the calculated value, and depend on
+                        * later testing to catch any instances when that
+                        * value is truly bad.
+                        */
+                       // ESTIMATED means there may be an issue
+                       if (byte_test_status[8] == WL_ESTIMATED) {
+                               debug("N%d.LMC%d.R%d: SWL: (%cDIMM): calculated ECC delay unexpected (%d/%d/%d)\n",
+                                     node, if_num, rankx,
+                                     (spd_rdimm ? 'R' : 'U'), wl_rank.s.byte4,
+                                     test_byte8, wl_rank.s.byte3);
+                               byte_test_status[8] = WL_HARDWARE;
+                       }
+               }
+               /* Use only even settings */
+               wl_rank.s.byte8 = test_byte8 & ~1;
+       }
+
+       if (wl_rank.s.byte8 != save_byte8) {
+               /* Change the status if s/w adjusted the delay */
+               byte_test_status[8] = WL_SOFTWARE;      /* Estimated delay */
+       }
+}
+
+static __maybe_unused void parallel_wl_block_delay(struct ddr_priv *priv,
+                                                  int rankx)
+{
+       int errors;
+       int byte_delay[8];
+       int byte_passed[8];
+       u64 bytemask;
+       u64 bitmask;
+       int wl_offset;
+       int bytes_todo;
+       int sw_wl_offset = 1;
+       int delay;
+       int b;
+
+       for (b = 0; b < 8; ++b)
+               byte_passed[b] = 0;
+
+       bytes_todo = if_bytemask;
+
+       for (wl_offset = sw_wl_offset; wl_offset >= 0; --wl_offset) {
+               debug("Starting wl_offset for-loop: %d\n", wl_offset);
+
+               bytemask = 0;
+
+               for (b = 0; b < 8; ++b) {
+                       byte_delay[b] = 0;
+                       // this does not contain fully passed bytes
+                       if (!(bytes_todo & (1 << b)))
+                               continue;
+
+                       // reset across passes if not fully passed
+                       byte_passed[b] = 0;
+                       upd_wl_rank(&wl_rank, b, 0);    // all delays start at 0
+                       bitmask = ((!if_64b) && (b == 4)) ? 0x0f : 0xff;
+                       // set the bytes bits in the bytemask
+                       bytemask |= bitmask << (8 * b);
+               }               /* for (b = 0; b < 8; ++b) */
+
+               // start a pass if there is any byte lane to test
+               while (bytemask != 0) {
+                       debug("Starting bytemask while-loop: 0x%llx\n",
+                             bytemask);
+
+                       // write this set of WL delays
+                       lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
+                              wl_rank.u64);
+                       wl_rank.u64 = lmc_rd(priv,
+                                            CVMX_LMCX_WLEVEL_RANKX(rankx,
+                                                                   if_num));
+
+                       // do the test
+                       if (sw_wl_hw) {
+                               errors = run_best_hw_patterns(priv, if_num,
+                                                             rank_addr,
+                                                             DBTRAIN_TEST,
+                                                             NULL) & 0xff;
+                       } else {
+                               errors = test_dram_byte64(priv, if_num,
+                                                         rank_addr, bytemask,
+                                                         NULL);
+                       }
+
+                       debug("test_dram_byte returned 0x%x\n", errors);
+
+                       // check errors by byte
+                       for (b = 0; b < 8; ++b) {
+                               if (!(bytes_todo & (1 << b)))
+                                       continue;
+
+                               delay = byte_delay[b];
+                               if (errors & (1 << b)) {        // yes, an error
+                                       debug("        byte %d delay %2d Errors\n",
+                                             b, delay);
+                                       byte_passed[b] = 0;
+                               } else {        // no error
+                                       byte_passed[b] += 1;
+                                       // Look for consecutive working settings
+                                       if (byte_passed[b] == (1 + wl_offset)) {
+                                               debug("        byte %d delay %2d FULLY Passed\n",
+                                                     b, delay);
+                                               if (wl_offset == 1) {
+                                                       byte_test_status[b] =
+                                                               WL_SOFTWARE;
+                                               } else if (wl_offset == 0) {
+                                                       byte_test_status[b] =
+                                                               WL_SOFTWARE1;
+                                               }
+
+                                               // test no longer, remove
+                                               // from byte mask this pass
+                                               bytemask &= ~(0xffULL <<
+                                                             (8 * b));
+                                               // remove completely from
+                                               // concern
+                                               bytes_todo &= ~(1 << b);
+                                               // on to the next byte, bypass
+                                               // delay updating!!
+                                               continue;
+                                       } else {
+                                               debug("        byte %d delay %2d Passed\n",
+                                                     b, delay);
+                                       }
+                               }
+
+                               // error or no, here we move to the next delay
+                               // value for this byte, unless done all delays
+                               // only a byte that has "fully passed" will
+                               // bypass around this,
+                               delay += 2;
+                               if (delay < 32) {
+                                       upd_wl_rank(&wl_rank, b, delay);
+                                       debug("        byte %d delay %2d New\n",
+                                             b, delay);
+                                       byte_delay[b] = delay;
+                               } else {
+                                       // reached max delay, done with this
+                                       // byte
+                                       debug("        byte %d delay %2d Exhausted\n",
+                                             b, delay);
+                                       // test no longer, remove from byte
+                                       // mask this pass
+                                       bytemask &= ~(0xffULL << (8 * b));
+                               }
+                       }       /* for (b = 0; b < 8; ++b) */
+                       debug("End of for-loop: bytemask 0x%llx\n", bytemask);
+               }               /* while (bytemask != 0) */
+       }
+
+       for (b = 0; b < 8; ++b) {
+               // any bytes left in bytes_todo did not pass
+               if (bytes_todo & (1 << b)) {
+                       union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank;
+
+                       /*
+                        * Last resort. Use Rlevel settings to estimate
+                        * Wlevel if software write-leveling fails
+                        */
+                       debug("Using RLEVEL as WLEVEL estimate for byte %d\n",
+                             b);
+                       lmc_rlevel_rank.u64 =
+                               lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx,
+                                                                   if_num));
+                       rlevel_to_wlevel(&lmc_rlevel_rank, &wl_rank, b);
+               }
+       }                       /* for (b = 0; b < 8; ++b) */
+}
+
+static int lmc_sw_write_leveling(struct ddr_priv *priv)
+{
+       /* Try to determine/optimize write-level delays experimentally. */
+       union cvmx_lmcx_wlevel_rankx wl_rank_hw_res;
+       union cvmx_lmcx_config cfg;
+       int rankx;
+       int byte;
+       char *s;
+       int i;
+
+       int active_rank;
+       int sw_wl_enable = 1;   /* FIX... Should be customizable. */
+       int interfaces;
+
+       static const char * const wl_status_strings[] = {
+               "(e)",
+               "   ",
+               "   ",
+               "(1)"
+       };
+
+       // FIXME: make HW-assist the default now?
+       int sw_wl_hw_default = SW_WLEVEL_HW_DEFAULT;
+       int dram_connection = c_cfg->dram_connection;
+
+       s = lookup_env(priv, "ddr_sw_wlevel_hw");
+       if (s)
+               sw_wl_hw_default = !!strtoul(s, NULL, 0);
+       if (!if_64b)            // must use SW algo if 32-bit mode
+               sw_wl_hw_default = 0;
+
+       // can never use hw-assist
+       if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X))
+               sw_wl_hw_default = 0;
+
+       s = lookup_env(priv, "ddr_software_wlevel");
+       if (s)
+               sw_wl_enable = strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr%d_dram_connection", if_num);
+       if (s)
+               dram_connection = !!strtoul(s, NULL, 0);
+
+       cvmx_rng_enable();
+
+       /*
+        * Get the measured_vref setting from the config, check for an
+        * override...
+        */
+       /* NOTE: measured_vref=1 (ON) means force use of MEASURED vref... */
+       // NOTE: measured VREF can only be done for DDR4
+       if (ddr_type == DDR4_DRAM) {
+               measured_vref_flag = c_cfg->measured_vref;
+               s = lookup_env(priv, "ddr_measured_vref");
+               if (s)
+                       measured_vref_flag = !!strtoul(s, NULL, 0);
+       } else {
+               measured_vref_flag = 0; // OFF for DDR3
+       }
+
+       /*
+        * Ensure disabled ECC for DRAM tests using the SW algo, else leave
+        * it untouched
+        */
+       if (!sw_wl_hw_default) {
+               cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+               cfg.cn78xx.ecc_ena = 0;
+               lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64);
+       }
+
+       /*
+        * We need to track absolute rank number, as well as how many
+        * active ranks we have.  Two single rank DIMMs show up as
+        * ranks 0 and 2, but only 2 ranks are active.
+        */
+       active_rank = 0;
+
+       interfaces = __builtin_popcount(if_mask);
+
+       for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+               final_vref_range = 0;
+               start_vref_val = 0;
+               computed_final_vref_val = -1;
+               sw_wl_rank_status = WL_HARDWARE;
+               sw_wl_failed = 0;
+               sw_wl_hw = sw_wl_hw_default;
+
+               if (!sw_wl_enable)
+                       break;
+
+               if (!(rank_mask & (1 << rankx)))
+                       continue;
+
+               debug("N%d.LMC%d.R%d: Performing Software Write-Leveling %s\n",
+                     node, if_num, rankx,
+                     (sw_wl_hw) ? "with H/W assist" :
+                     "with S/W algorithm");
+
+               if (ddr_type == DDR4_DRAM && num_ranks != 4) {
+                       // always compute when we can...
+                       computed_final_vref_val =
+                           compute_vref_val(priv, if_num, rankx, dimm_count,
+                                            num_ranks, imp_val,
+                                            is_stacked_die, dram_connection);
+
+                       // but only use it if allowed
+                       if (!measured_vref_flag) {
+                               // skip all the measured vref processing,
+                               // just the final setting
+                               start_vref_val = VREF_FINAL;
+                       }
+               }
+
+               /* Save off the h/w wl results */
+               wl_rank_hw_res.u64 = lmc_rd(priv,
+                                           CVMX_LMCX_WLEVEL_RANKX(rankx,
+                                                                  if_num));
+
+               vref_val_count = 0;
+               vref_val_start = 0;
+               best_vref_val_count = 0;
+               best_vref_val_start = 0;
+
+               /* Loop one extra time using the Final vref value. */
+               for (vref_val = start_vref_val; vref_val < VREF_LIMIT;
+                    ++vref_val) {
+                       if (ddr_type == DDR4_DRAM)
+                               ddr4_vref_loop(priv, rankx);
+
+                       /* Restore the saved value */
+                       wl_rank.u64 = wl_rank_hw_res.u64;
+
+                       for (byte = 0; byte < 9; ++byte)
+                               byte_test_status[byte] = WL_ESTIMATED;
+
+                       if (wl_mask_err == 0) {
+                               /*
+                                * Determine address of DRAM to test for
+                                * pass 1 of software write leveling.
+                                */
+                               rank_addr = active_rank *
+                                       (1ull << (pbank_lsb - bunk_enable +
+                                                 (interfaces / 2)));
+
+                               /*
+                                * Adjust address for boot bus hole in memory
+                                * map.
+                                */
+                               if (rank_addr > 0x10000000)
+                                       rank_addr += 0x10000000;
+
+                               debug("N%d.LMC%d.R%d: Active Rank %d Address: 0x%llx\n",
+                                     node, if_num, rankx, active_rank,
+                                     rank_addr);
+
+                               // start parallel write-leveling block for
+                               // delay high-order bits
+                               errors = 0;
+                               no_errors_count = 0;
+                               sum_dram_dclk = 0;
+                               sum_dram_ops = 0;
+
+                               if (if_64b) {
+                                       bytes_todo = (sw_wl_hw) ?
+                                               if_bytemask : 0xFF;
+                                       bytemask = ~0ULL;
+                               } else {
+                                       // 32-bit, must be using SW algo,
+                                       // only data bytes
+                                       bytes_todo = 0x0f;
+                                       bytemask = 0x00000000ffffffffULL;
+                               }
+
+                               for (byte = 0; byte < 9; ++byte) {
+                                       if (!(bytes_todo & (1 << byte))) {
+                                               byte_delay[byte] = 0;
+                                       } else {
+                                               byte_delay[byte] =
+                                                   get_wl_rank(&wl_rank, byte);
+                                       }
+                               }       /* for (byte = 0; byte < 9; ++byte) */
+
+                               do {
+                                       lmc_sw_write_leveling_loop(priv, rankx);
+                               } while (no_errors_count <
+                                        WL_MIN_NO_ERRORS_COUNT);
+
+                               if (!sw_wl_hw) {
+                                       u64 percent_x10;
+
+                                       if (sum_dram_dclk == 0)
+                                               sum_dram_dclk = 1;
+                                       percent_x10 = sum_dram_ops * 1000 /
+                                               sum_dram_dclk;
+                                       debug("N%d.LMC%d.R%d: ops %llu, cycles %llu, used %llu.%llu%%\n",
+                                             node, if_num, rankx, sum_dram_ops,
+                                             sum_dram_dclk, percent_x10 / 10,
+                                             percent_x10 % 10);
+                               }
+                               if (errors) {
+                                       debug("End WLEV_64 while loop: vref_val %d(0x%x), errors 0x%02x\n",
+                                             vref_val, vref_val, errors);
+                               }
+                               // end parallel write-leveling block for
+                               // delay high-order bits
+
+                               // if we used HW-assist, we did the ECC byte
+                               // when approp.
+                               if (sw_wl_hw) {
+                                       if (wl_print) {
+                                               debug("N%d.LMC%d.R%d: HW-assisted SWL - ECC estimate not needed.\n",
+                                                     node, if_num, rankx);
+                                       }
+                                       goto no_ecc_estimate;
+                               }
+
+                               if ((if_bytemask & 0xff) == 0xff) {
+                                       if (use_ecc) {
+                                               sw_write_lvl_use_ecc(priv,
+                                                                    rankx);
+                                       } else {
+                                               /* H/W delay value */
+                                               byte_test_status[8] =
+                                                       WL_HARDWARE;
+                                               /* ECC is not used */
+                                               wl_rank.s.byte8 =
+                                                       wl_rank.s.byte0;
+                                       }
+                               } else {
+                                       if (use_ecc) {
+                                               /* Estimate the ECC byte dly */
+                                               // add hi-order to b4
+                                               wl_rank.s.byte4 |=
+                                                       (wl_rank.s.byte3 &
+                                                        0x38);
+                                               if ((wl_rank.s.byte4 & 0x06) <
+                                                   (wl_rank.s.byte3 & 0x06)) {
+                                                       // must be next clock
+                                                       wl_rank.s.byte4 += 8;
+                                               }
+                                       } else {
+                                               /* ECC is not used */
+                                               wl_rank.s.byte4 =
+                                                       wl_rank.s.byte0;
+                                       }
+
+                                       /*
+                                        * Change the status if s/w adjusted
+                                        * the delay
+                                        */
+                                       /* Estimated delay */
+                                       byte_test_status[4] = WL_SOFTWARE;
+                               }       /* if ((if_bytemask & 0xff) == 0xff) */
+                       }       /* if (wl_mask_err == 0) */
+
+no_ecc_estimate:
+
+                       bytes_failed = 0;
+                       for (byte = 0; byte < 9; ++byte) {
+                               /* Don't accumulate errors for untested bytes */
+                               if (!(if_bytemask & (1 << byte)))
+                                       continue;
+                               bytes_failed +=
+                                   (byte_test_status[byte] == WL_ESTIMATED);
+                       }
+
+                       /* vref training loop is only used for DDR4  */
+                       if (ddr_type != DDR4_DRAM)
+                               break;
+
+                       if (bytes_failed == 0) {
+                               if (vref_val_count == 0)
+                                       vref_val_start = vref_val;
+
+                               ++vref_val_count;
+                               if (vref_val_count > best_vref_val_count) {
+                                       best_vref_val_count = vref_val_count;
+                                       best_vref_val_start = vref_val_start;
+                                       debug("N%d.LMC%d.R%d: vref Training                    (%2d) :    0x%02x <----- ???? -----> 0x%02x\n",
+                                             node, if_num, rankx, vref_val,
+                                             best_vref_val_start,
+                                             best_vref_val_start +
+                                             best_vref_val_count - 1);
+                               }
+                       } else {
+                               vref_val_count = 0;
+                               debug("N%d.LMC%d.R%d: vref Training                    (%2d) :    failed\n",
+                                     node, if_num, rankx, vref_val);
+                       }
+               }
+
+               /*
+                * Determine address of DRAM to test for software write
+                * leveling.
+                */
+               rank_addr = active_rank * (1ull << (pbank_lsb - bunk_enable +
+                                                   (interfaces / 2)));
+               /* Adjust address for boot bus hole in memory map. */
+               if (rank_addr > 0x10000000)
+                       rank_addr += 0x10000000;
+
+               debug("Rank Address: 0x%llx\n", rank_addr);
+
+               if (bytes_failed) {
+                       // FIXME? the big hammer, did not even try SW WL pass2,
+                       // assume only chip reset will help
+                       debug("N%d.LMC%d.R%d: S/W write-leveling pass 1 failed\n",
+                             node, if_num, rankx);
+                       sw_wl_failed = 1;
+               } else {        /* if (bytes_failed) */
+                       // SW WL pass 1 was OK, write the settings
+                       lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
+                              wl_rank.u64);
+                       wl_rank.u64 = lmc_rd(priv,
+                                            CVMX_LMCX_WLEVEL_RANKX(rankx,
+                                                                   if_num));
+
+                       // do validity check on the delay values by running
+                       // the test 1 more time...
+                       // FIXME: we really need to check the ECC byte setting
+                       // here as well, so we need to enable ECC for this test!
+                       // if there are any errors, claim SW WL failure
+                       u64 datamask = (if_64b) ? 0xffffffffffffffffULL :
+                               0x00000000ffffffffULL;
+                       int errors;
+
+                       // do the test
+                       if (sw_wl_hw) {
+                               errors = run_best_hw_patterns(priv, if_num,
+                                                             rank_addr,
+                                                             DBTRAIN_TEST,
+                                                             NULL) & 0xff;
+                       } else {
+                               errors = test_dram_byte64(priv, if_num,
+                                                         rank_addr, datamask,
+                                                         NULL);
+                       }
+
+                       if (errors) {
+                               debug("N%d.LMC%d.R%d: Wlevel Rank Final Test errors 0x%03x\n",
+                                     node, if_num, rankx, errors);
+                               sw_wl_failed = 1;
+                       }
+               }               /* if (bytes_failed) */
+
+               // FIXME? dump the WL settings, so we get more of a clue
+               // as to what happened where
+               debug("N%d.LMC%d.R%d: Wlevel Rank %#4x, 0x%016llX  : %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %s\n",
+                     node, if_num, rankx, wl_rank.s.status, wl_rank.u64,
+                     wl_rank.s.byte8, wl_status_strings[byte_test_status[8]],
+                     wl_rank.s.byte7, wl_status_strings[byte_test_status[7]],
+                     wl_rank.s.byte6, wl_status_strings[byte_test_status[6]],
+                     wl_rank.s.byte5, wl_status_strings[byte_test_status[5]],
+                     wl_rank.s.byte4, wl_status_strings[byte_test_status[4]],
+                     wl_rank.s.byte3, wl_status_strings[byte_test_status[3]],
+                     wl_rank.s.byte2, wl_status_strings[byte_test_status[2]],
+                     wl_rank.s.byte1, wl_status_strings[byte_test_status[1]],
+                     wl_rank.s.byte0, wl_status_strings[byte_test_status[0]],
+                     (sw_wl_rank_status == WL_HARDWARE) ? "" : "(s)");
+
+               // finally, check for fatal conditions: either chip reset
+               // right here, or return error flag
+               if ((ddr_type == DDR4_DRAM && best_vref_val_count == 0) ||
+                   sw_wl_failed) {
+                       if (!ddr_disable_chip_reset) {  // do chip RESET
+                               printf("N%d.LMC%d.R%d: INFO: Short memory test indicates a retry is needed. Resetting node...\n",
+                                      node, if_num, rankx);
+                               mdelay(500);
+                               do_reset(NULL, 0, 0, NULL);
+                       } else {
+                               // return error flag so LMC init can be retried.
+                               debug("N%d.LMC%d.R%d: INFO: Short memory test indicates a retry is needed. Restarting LMC init...\n",
+                                     node, if_num, rankx);
+                               return -EAGAIN; // 0 indicates restart possible.
+                       }
+               }
+               active_rank++;
+       }
+
+       for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+               int parameter_set = 0;
+               u64 value;
+
+               if (!(rank_mask & (1 << rankx)))
+                       continue;
+
+               wl_rank.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx,
+                                                                 if_num));
+
+               for (i = 0; i < 9; ++i) {
+                       s = lookup_env(priv, "ddr%d_wlevel_rank%d_byte%d",
+                                      if_num, rankx, i);
+                       if (s) {
+                               parameter_set |= 1;
+                               value = strtoul(s, NULL, 0);
+
+                               upd_wl_rank(&wl_rank, i, value);
+                       }
+               }
+
+               s = lookup_env_ull(priv, "ddr%d_wlevel_rank%d", if_num, rankx);
+               if (s) {
+                       parameter_set |= 1;
+                       value = strtoull(s, NULL, 0);
+                       wl_rank.u64 = value;
+               }
+
+               if (parameter_set) {
+                       lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
+                              wl_rank.u64);
+                       wl_rank.u64 =
+                           lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num));
+                       display_wl(if_num, wl_rank, rankx);
+               }
+               // if there are unused entries to be filled
+               if ((rank_mask & 0x0F) != 0x0F) {
+                       if (rankx < 3) {
+                               debug("N%d.LMC%d.R%d: checking for WLEVEL_RANK unused entries.\n",
+                                     node, if_num, rankx);
+
+                               // if rank 0, write ranks 1 and 2 here if empty
+                               if (rankx == 0) {
+                                       // check that rank 1 is empty
+                                       if (!(rank_mask & (1 << 1))) {
+                                               debug("N%d.LMC%d.R%d: writing WLEVEL_RANK unused entry R%d.\n",
+                                                     node, if_num, rankx, 1);
+                                               lmc_wr(priv,
+                                                      CVMX_LMCX_WLEVEL_RANKX(1,
+                                                               if_num),
+                                                      wl_rank.u64);
+                                       }
+
+                                       // check that rank 2 is empty
+                                       if (!(rank_mask & (1 << 2))) {
+                                               debug("N%d.LMC%d.R%d: writing WLEVEL_RANK unused entry R%d.\n",
+                                                     node, if_num, rankx, 2);
+                                               lmc_wr(priv,
+                                                      CVMX_LMCX_WLEVEL_RANKX(2,
+                                                               if_num),
+                                                      wl_rank.u64);
+                                       }
+                               }
+
+                               // if rank 0, 1 or 2, write rank 3 here if empty
+                               // check that rank 3 is empty
+                               if (!(rank_mask & (1 << 3))) {
+                                       debug("N%d.LMC%d.R%d: writing WLEVEL_RANK unused entry R%d.\n",
+                                             node, if_num, rankx, 3);
+                                       lmc_wr(priv,
+                                              CVMX_LMCX_WLEVEL_RANKX(3,
+                                                                     if_num),
+                                              wl_rank.u64);
+                               }
+                       }
+               }
+       }
+
+       /* Enable 32-bit mode if required. */
+       cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+       cfg.cn78xx.mode32b = (!if_64b);
+       debug("%-45s : %d\n", "MODE32B", cfg.cn78xx.mode32b);
+
+       /* Restore the ECC configuration */
+       if (!sw_wl_hw_default)
+               cfg.cn78xx.ecc_ena = use_ecc;
+
+       lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64);
+
+       return 0;
+}
+
+static void lmc_dll(struct ddr_priv *priv)
+{
+       union cvmx_lmcx_dll_ctl3 ddr_dll_ctl3;
+       int setting[9];
+       int i;
+
+       ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
+
+       for (i = 0; i < 9; ++i) {
+               SET_DDR_DLL_CTL3(dll90_byte_sel, ENCODE_DLL90_BYTE_SEL(i));
+               lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
+               lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
+               ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
+               setting[i] = GET_DDR_DLL_CTL3(dll90_setting);
+               debug("%d. LMC%d_DLL_CTL3[%d] = %016llx %d\n", i, if_num,
+                     GET_DDR_DLL_CTL3(dll90_byte_sel), ddr_dll_ctl3.u64,
+                     setting[i]);
+       }
+
+       debug("N%d.LMC%d: %-36s : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",
+             node, if_num, "DLL90 Setting 8:0",
+             setting[8], setting[7], setting[6], setting[5], setting[4],
+             setting[3], setting[2], setting[1], setting[0]);
+
+       process_custom_dll_offsets(priv, if_num, "ddr_dll_write_offset",
+                                  c_cfg->dll_write_offset,
+                                  "ddr%d_dll_write_offset_byte%d", 1);
+       process_custom_dll_offsets(priv, if_num, "ddr_dll_read_offset",
+                                  c_cfg->dll_read_offset,
+                                  "ddr%d_dll_read_offset_byte%d", 2);
+}
+
+#define SLOT_CTL_INCR(csr, chip, field, incr)                          \
+       csr.chip.field = (csr.chip.field < (64 - incr)) ?               \
+               (csr.chip.field + incr) : 63
+
+#define INCR(csr, chip, field, incr)                                    \
+       csr.chip.field = (csr.chip.field < (64 - incr)) ?               \
+               (csr.chip.field + incr) : 63
+
+static void lmc_workaround_2(struct ddr_priv *priv)
+{
+       /* Workaround Errata 21063 */
+       if (octeon_is_cpuid(OCTEON_CN78XX) ||
+           octeon_is_cpuid(OCTEON_CN70XX_PASS1_X)) {
+               union cvmx_lmcx_slot_ctl0 slot_ctl0;
+               union cvmx_lmcx_slot_ctl1 slot_ctl1;
+               union cvmx_lmcx_slot_ctl2 slot_ctl2;
+               union cvmx_lmcx_ext_config ext_cfg;
+
+               slot_ctl0.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL0(if_num));
+               slot_ctl1.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL1(if_num));
+               slot_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL2(if_num));
+
+               ext_cfg.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num));
+
+               /* When ext_cfg.s.read_ena_bprch is set add 1 */
+               if (ext_cfg.s.read_ena_bprch) {
+                       SLOT_CTL_INCR(slot_ctl0, cn78xx, r2w_init, 1);
+                       SLOT_CTL_INCR(slot_ctl0, cn78xx, r2w_l_init, 1);
+                       SLOT_CTL_INCR(slot_ctl1, cn78xx, r2w_xrank_init, 1);
+                       SLOT_CTL_INCR(slot_ctl2, cn78xx, r2w_xdimm_init, 1);
+               }
+
+               /* Always add 2 */
+               SLOT_CTL_INCR(slot_ctl1, cn78xx, w2r_xrank_init, 2);
+               SLOT_CTL_INCR(slot_ctl2, cn78xx, w2r_xdimm_init, 2);
+
+               lmc_wr(priv, CVMX_LMCX_SLOT_CTL0(if_num), slot_ctl0.u64);
+               lmc_wr(priv, CVMX_LMCX_SLOT_CTL1(if_num), slot_ctl1.u64);
+               lmc_wr(priv, CVMX_LMCX_SLOT_CTL2(if_num), slot_ctl2.u64);
+       }
+
+       /* Workaround Errata 21216 */
+       if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) ||
+           octeon_is_cpuid(OCTEON_CN70XX_PASS1_X)) {
+               union cvmx_lmcx_slot_ctl1 slot_ctl1;
+               union cvmx_lmcx_slot_ctl2 slot_ctl2;
+
+               slot_ctl1.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL1(if_num));
+               slot_ctl1.cn78xx.w2w_xrank_init =
+                   max(10, (int)slot_ctl1.cn78xx.w2w_xrank_init);
+               lmc_wr(priv, CVMX_LMCX_SLOT_CTL1(if_num), slot_ctl1.u64);
+
+               slot_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL2(if_num));
+               slot_ctl2.cn78xx.w2w_xdimm_init =
+                   max(10, (int)slot_ctl2.cn78xx.w2w_xdimm_init);
+               lmc_wr(priv, CVMX_LMCX_SLOT_CTL2(if_num), slot_ctl2.u64);
+       }
+}
+
+static void lmc_final(struct ddr_priv *priv)
+{
+       /*
+        * 4.8.11 Final LMC Initialization
+        *
+        * Early LMC initialization, LMC write-leveling, and LMC read-leveling
+        * must be completed prior to starting this final LMC initialization.
+        *
+        * LMC hardware updates the LMC(0)_SLOT_CTL0, LMC(0)_SLOT_CTL1,
+        * LMC(0)_SLOT_CTL2 CSRs with minimum values based on the selected
+        * readleveling and write-leveling settings. Software should not write
+        * the final LMC(0)_SLOT_CTL0, LMC(0)_SLOT_CTL1, and LMC(0)_SLOT_CTL2
+        * values until after the final read-leveling and write-leveling
+        * settings are written.
+        *
+        * Software must ensure the LMC(0)_SLOT_CTL0, LMC(0)_SLOT_CTL1, and
+        * LMC(0)_SLOT_CTL2 CSR values are appropriate for this step. These CSRs
+        * select the minimum gaps between read operations and write operations
+        * of various types.
+        *
+        * Software must not reduce the values in these CSR fields below the
+        * values previously selected by the LMC hardware (during write-leveling
+        * and read-leveling steps above).
+        *
+        * All sections in this chapter may be used to derive proper settings
+        * for these registers.
+        *
+        * For minimal read latency, L2C_CTL[EF_ENA,EF_CNT] should be programmed
+        * properly. This should be done prior to the first read.
+        */
+
+       /* Clear any residual ECC errors */
+       int num_tads = 1;
+       int tad;
+       int num_mcis = 1;
+       int mci;
+
+       if (octeon_is_cpuid(OCTEON_CN78XX)) {
+               num_tads = 8;
+               num_mcis = 4;
+       } else if (octeon_is_cpuid(OCTEON_CN70XX)) {
+               num_tads = 1;
+               num_mcis = 1;
+       } else if (octeon_is_cpuid(OCTEON_CN73XX) ||
+                  octeon_is_cpuid(OCTEON_CNF75XX)) {
+               num_tads = 4;
+               num_mcis = 3;
+       }
+
+       lmc_wr(priv, CVMX_LMCX_INT(if_num), -1ULL);
+       lmc_rd(priv, CVMX_LMCX_INT(if_num));
+
+       for (tad = 0; tad < num_tads; tad++) {
+               l2c_wr(priv, CVMX_L2C_TADX_INT(tad),
+                      l2c_rd(priv, CVMX_L2C_TADX_INT(tad)));
+               debug("%-45s : (%d) 0x%08llx\n", "CVMX_L2C_TAD_INT", tad,
+                     l2c_rd(priv, CVMX_L2C_TADX_INT(tad)));
+       }
+
+       for (mci = 0; mci < num_mcis; mci++) {
+               l2c_wr(priv, CVMX_L2C_MCIX_INT(mci),
+                      l2c_rd(priv, CVMX_L2C_MCIX_INT(mci)));
+               debug("%-45s : (%d) 0x%08llx\n", "L2C_MCI_INT", mci,
+                     l2c_rd(priv, CVMX_L2C_MCIX_INT(mci)));
+       }
+
+       debug("%-45s : 0x%08llx\n", "LMC_INT",
+             lmc_rd(priv, CVMX_LMCX_INT(if_num)));
+}
+
+static void lmc_scrambling(struct ddr_priv *priv)
+{
+       // Make sure scrambling is disabled during init...
+       union cvmx_lmcx_control ctrl;
+       union cvmx_lmcx_scramble_cfg0 lmc_scramble_cfg0;
+       union cvmx_lmcx_scramble_cfg1 lmc_scramble_cfg1;
+       union cvmx_lmcx_scramble_cfg2 lmc_scramble_cfg2;
+       union cvmx_lmcx_ns_ctl lmc_ns_ctl;
+       int use_scramble = 0;   // default OFF
+       char *s;
+
+       ctrl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+       lmc_scramble_cfg0.u64 = lmc_rd(priv, CVMX_LMCX_SCRAMBLE_CFG0(if_num));
+       lmc_scramble_cfg1.u64 = lmc_rd(priv, CVMX_LMCX_SCRAMBLE_CFG1(if_num));
+       lmc_scramble_cfg2.u64 = 0;      // quiet compiler
+       if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
+               lmc_scramble_cfg2.u64 =
+                   lmc_rd(priv, CVMX_LMCX_SCRAMBLE_CFG2(if_num));
+       }
+       lmc_ns_ctl.u64 = lmc_rd(priv, CVMX_LMCX_NS_CTL(if_num));
+
+       s = lookup_env_ull(priv, "ddr_use_scramble");
+       if (s)
+               use_scramble = simple_strtoull(s, NULL, 0);
+
+       /* Generate random values if scrambling is needed */
+       if (use_scramble) {
+               lmc_scramble_cfg0.u64 = cvmx_rng_get_random64();
+               lmc_scramble_cfg1.u64 = cvmx_rng_get_random64();
+               lmc_scramble_cfg2.u64 = cvmx_rng_get_random64();
+               lmc_ns_ctl.s.ns_scramble_dis = 0;
+               lmc_ns_ctl.s.adr_offset = 0;
+               ctrl.s.scramble_ena = 1;
+       }
+
+       s = lookup_env_ull(priv, "ddr_scramble_cfg0");
+       if (s) {
+               lmc_scramble_cfg0.u64 = simple_strtoull(s, NULL, 0);
+               ctrl.s.scramble_ena = 1;
+       }
+       debug("%-45s : 0x%016llx\n", "LMC_SCRAMBLE_CFG0",
+             lmc_scramble_cfg0.u64);
+
+       lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG0(if_num), lmc_scramble_cfg0.u64);
+
+       s = lookup_env_ull(priv, "ddr_scramble_cfg1");
+       if (s) {
+               lmc_scramble_cfg1.u64 = simple_strtoull(s, NULL, 0);
+               ctrl.s.scramble_ena = 1;
+       }
+       debug("%-45s : 0x%016llx\n", "LMC_SCRAMBLE_CFG1",
+             lmc_scramble_cfg1.u64);
+       lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG1(if_num), lmc_scramble_cfg1.u64);
+
+       if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
+               s = lookup_env_ull(priv, "ddr_scramble_cfg2");
+               if (s) {
+                       lmc_scramble_cfg2.u64 = simple_strtoull(s, NULL, 0);
+                       ctrl.s.scramble_ena = 1;
+               }
+               debug("%-45s : 0x%016llx\n", "LMC_SCRAMBLE_CFG2",
+                     lmc_scramble_cfg1.u64);
+               lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG2(if_num),
+                      lmc_scramble_cfg2.u64);
+       }
+
+       s = lookup_env_ull(priv, "ddr_ns_ctl");
+       if (s)
+               lmc_ns_ctl.u64 = simple_strtoull(s, NULL, 0);
+       debug("%-45s : 0x%016llx\n", "LMC_NS_CTL", lmc_ns_ctl.u64);
+       lmc_wr(priv, CVMX_LMCX_NS_CTL(if_num), lmc_ns_ctl.u64);
+
+       lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctrl.u64);
+}
+
+struct rl_score {
+       u64 setting;
+       int score;
+};
+
+static union cvmx_lmcx_rlevel_rankx rl_rank __section(".data");
+static union cvmx_lmcx_rlevel_ctl rl_ctl __section(".data");
+static unsigned char rodt_ctl __section(".data");
+
+static int rl_rodt_err __section(".data");
+static unsigned char rtt_nom __section(".data");
+static unsigned char rtt_idx __section(".data");
+static char min_rtt_nom_idx __section(".data");
+static char max_rtt_nom_idx __section(".data");
+static char min_rodt_ctl __section(".data");
+static char max_rodt_ctl __section(".data");
+static int rl_dbg_loops __section(".data");
+static unsigned char save_ddr2t __section(".data");
+static int rl_samples __section(".data");
+static char rl_compute __section(".data");
+static char saved_ddr__ptune __section(".data");
+static char saved_ddr__ntune __section(".data");
+static char rl_comp_offs __section(".data");
+static char saved_int_zqcs_dis __section(".data");
+static int max_adj_rl_del_inc __section(".data");
+static int print_nom_ohms __section(".data");
+static int rl_print __section(".data");
+
+#ifdef ENABLE_HARDCODED_RLEVEL
+static char part_number[21] __section(".data");
+#endif /* ENABLE_HARDCODED_RLEVEL */
+
+struct perfect_counts {
+       u16 count[9][32]; // 8+ECC by 64 values
+       u32 mask[9];      // 8+ECC, bitmask of perfect delays
+};
+
+static struct perfect_counts rank_perf[4] __section(".data");
+static struct perfect_counts rodt_perfect_counts __section(".data");
+static int pbm_lowsum_limit __section(".data");
+// FIXME: PBM skip for RODT 240 and 34
+static u32 pbm_rodt_skip __section(".data");
+
+// control rank majority processing
+static int disable_rank_majority __section(".data");
+
+// default to mask 11b ODDs for DDR4 (except 73xx), else DISABLE
+// for DDR3
+static int enable_rldelay_bump __section(".data");
+static int rldelay_bump_incr __section(".data");
+static int disable_rlv_bump_this_byte __section(".data");
+static u64 value_mask __section(".data");
+
+static struct rlevel_byte_data rl_byte[9] __section(".data");
+static int sample_loops __section(".data");
+static int max_samples __section(".data");
+static int rl_rank_errors __section(".data");
+static int rl_mask_err __section(".data");
+static int rl_nonseq_err __section(".data");
+static struct rlevel_bitmask rl_mask[9] __section(".data");
+static int rl_best_rank_score __section(".data");
+
+static int rodt_row_skip_mask __section(".data");
+
+static void rodt_loop(struct ddr_priv *priv, int rankx, struct rl_score
+                     rl_score[RTT_NOM_OHMS_COUNT][RODT_OHMS_COUNT][4])
+{
+       union cvmx_lmcx_comp_ctl2 cc2;
+       const int rl_separate_ab = 1;
+       int i;
+
+       rl_best_rank_score = DEFAULT_BEST_RANK_SCORE;
+       rl_rodt_err = 0;
+       cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+       cc2.cn78xx.rodt_ctl = rodt_ctl;
+       lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
+       cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+       udelay(1); /* Give it a little time to take affect */
+       if (rl_print > 1) {
+               debug("Read ODT_CTL                                  : 0x%x (%d ohms)\n",
+                     cc2.cn78xx.rodt_ctl,
+                     imp_val->rodt_ohms[cc2.cn78xx.rodt_ctl]);
+       }
+
+       memset(rl_byte, 0, sizeof(rl_byte));
+       memset(&rodt_perfect_counts, 0, sizeof(rodt_perfect_counts));
+
+       // when iter RODT is the target RODT, take more samples...
+       max_samples = rl_samples;
+       if (rodt_ctl == default_rodt_ctl)
+               max_samples += rl_samples + 1;
+
+       for (sample_loops = 0; sample_loops < max_samples; sample_loops++) {
+               int redoing_nonseq_errs = 0;
+
+               rl_mask_err = 0;
+
+               if (!(rl_separate_ab && spd_rdimm &&
+                     ddr_type == DDR4_DRAM)) {
+                       /* Clear read-level delays */
+                       lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), 0);
+
+                       /* read-leveling */
+                       oct3_ddr3_seq(priv, 1 << rankx, if_num, 1);
+
+                       do {
+                               rl_rank.u64 =
+                                       lmc_rd(priv,
+                                              CVMX_LMCX_RLEVEL_RANKX(rankx,
+                                                                     if_num));
+                       } while (rl_rank.cn78xx.status != 3);
+               }
+
+               rl_rank.u64 =
+                       lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num));
+
+               // start bitmask interpretation block
+
+               memset(rl_mask, 0, sizeof(rl_mask));
+
+               if (rl_separate_ab && spd_rdimm && ddr_type == DDR4_DRAM) {
+                       union cvmx_lmcx_rlevel_rankx rl_rank_aside;
+                       union cvmx_lmcx_modereg_params0 mp0;
+
+                       /* A-side */
+                       mp0.u64 =
+                               lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
+                       mp0.s.mprloc = 0; /* MPR Page 0 Location 0 */
+                       lmc_wr(priv,
+                              CVMX_LMCX_MODEREG_PARAMS0(if_num),
+                              mp0.u64);
+
+                       /* Clear read-level delays */
+                       lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), 0);
+
+                       /* read-leveling */
+                       oct3_ddr3_seq(priv, 1 << rankx, if_num, 1);
+
+                       do {
+                               rl_rank.u64 =
+                                       lmc_rd(priv,
+                                              CVMX_LMCX_RLEVEL_RANKX(rankx,
+                                                                     if_num));
+                       } while (rl_rank.cn78xx.status != 3);
+
+                       rl_rank.u64 =
+                               lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx,
+                                                                   if_num));
+
+                       rl_rank_aside.u64 = rl_rank.u64;
+
+                       rl_mask[0].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 0);
+                       rl_mask[1].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 1);
+                       rl_mask[2].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 2);
+                       rl_mask[3].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 3);
+                       rl_mask[8].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 8);
+                       /* A-side complete */
+
+                       /* B-side */
+                       mp0.u64 =
+                               lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
+                       mp0.s.mprloc = 3; /* MPR Page 0 Location 3 */
+                       lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num),
+                              mp0.u64);
+
+                       /* Clear read-level delays */
+                       lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), 0);
+
+                       /* read-leveling */
+                       oct3_ddr3_seq(priv, 1 << rankx, if_num, 1);
+
+                       do {
+                               rl_rank.u64 =
+                                       lmc_rd(priv,
+                                              CVMX_LMCX_RLEVEL_RANKX(rankx,
+                                                                     if_num));
+                       } while (rl_rank.cn78xx.status != 3);
+
+                       rl_rank.u64 =
+                               lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx,
+                                                                   if_num));
+
+                       rl_mask[4].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 4);
+                       rl_mask[5].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 5);
+                       rl_mask[6].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 6);
+                       rl_mask[7].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 7);
+                       /* B-side complete */
+
+                       upd_rl_rank(&rl_rank, 0, rl_rank_aside.s.byte0);
+                       upd_rl_rank(&rl_rank, 1, rl_rank_aside.s.byte1);
+                       upd_rl_rank(&rl_rank, 2, rl_rank_aside.s.byte2);
+                       upd_rl_rank(&rl_rank, 3, rl_rank_aside.s.byte3);
+                       /* ECC A-side */
+                       upd_rl_rank(&rl_rank, 8, rl_rank_aside.s.byte8);
+
+                       mp0.u64 =
+                               lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
+                       mp0.s.mprloc = 0; /* MPR Page 0 Location 0 */
+                       lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num),
+                              mp0.u64);
+               }
+
+               /*
+                * Evaluate the quality of the read-leveling delays from the
+                * bitmasks. Also save off a software computed read-leveling
+                * mask that may be used later to qualify the delay results
+                * from Octeon.
+                */
+               for (i = 0; i < (8 + ecc_ena); ++i) {
+                       int bmerr;
+
+                       if (!(if_bytemask & (1 << i)))
+                               continue;
+                       if (!(rl_separate_ab && spd_rdimm &&
+                             ddr_type == DDR4_DRAM)) {
+                               rl_mask[i].bm =
+                                       lmc_ddr3_rl_dbg_read(priv, if_num, i);
+                       }
+                       bmerr = validate_ddr3_rlevel_bitmask(&rl_mask[i],
+                                                            ddr_type);
+                       rl_mask[i].errs = bmerr;
+                       rl_mask_err += bmerr;
+                       // count only the "perfect" bitmasks
+                       if (ddr_type == DDR4_DRAM && !bmerr) {
+                               int delay;
+                               // FIXME: for now, simple filtering:
+                               // do NOT count PBMs for RODTs in skip mask
+                               if ((1U << rodt_ctl) & pbm_rodt_skip)
+                                       continue;
+                               // FIXME: could optimize this a bit?
+                               delay = get_rl_rank(&rl_rank, i);
+                               rank_perf[rankx].count[i][delay] += 1;
+                               rank_perf[rankx].mask[i] |=
+                                       (1ULL << delay);
+                               rodt_perfect_counts.count[i][delay] += 1;
+                               rodt_perfect_counts.mask[i] |= (1ULL << delay);
+                       }
+               }
+
+               /* Set delays for unused bytes to match byte 0. */
+               for (i = 0; i < 9; ++i) {
+                       if (if_bytemask & (1 << i))
+                               continue;
+                       upd_rl_rank(&rl_rank, i, rl_rank.s.byte0);
+               }
+
+               /*
+                * Save a copy of the byte delays in physical
+                * order for sequential evaluation.
+                */
+               unpack_rlevel_settings(if_bytemask, ecc_ena, rl_byte, rl_rank);
+
+       redo_nonseq_errs:
+
+               rl_nonseq_err  = 0;
+               if (!disable_sequential_delay_check) {
+                       for (i = 0; i < 9; ++i)
+                               rl_byte[i].sqerrs = 0;
+
+                       if ((if_bytemask & 0xff) == 0xff) {
+                               /*
+                                * Evaluate delay sequence across the whole
+                                * range of bytes for standard dimms.
+                                */
+                               /* 1=RDIMM, 5=Mini-RDIMM */
+                               if (spd_dimm_type == 1 || spd_dimm_type == 5) {
+                                       int reg_adj_del = abs(rl_byte[4].delay -
+                                                             rl_byte[5].delay);
+
+                                       /*
+                                        * Registered dimm topology routes
+                                        * from the center.
+                                        */
+                                       rl_nonseq_err +=
+                                               nonseq_del(rl_byte, 0,
+                                                          3 + ecc_ena,
+                                                          max_adj_rl_del_inc);
+                                       rl_nonseq_err +=
+                                               nonseq_del(rl_byte, 5,
+                                                          7 + ecc_ena,
+                                                          max_adj_rl_del_inc);
+                                       // byte 5 sqerrs never gets cleared
+                                       // for RDIMMs
+                                       rl_byte[5].sqerrs = 0;
+                                       if (reg_adj_del > 1) {
+                                               /*
+                                                * Assess proximity of bytes on
+                                                * opposite sides of register
+                                                */
+                                               rl_nonseq_err += (reg_adj_del -
+                                                                 1) *
+                                                       RLEVEL_ADJACENT_DELAY_ERROR;
+                                               // update byte 5 error
+                                               rl_byte[5].sqerrs +=
+                                                       (reg_adj_del - 1) *
+                                                       RLEVEL_ADJACENT_DELAY_ERROR;
+                                       }
+                               }
+
+                               /* 2=UDIMM, 6=Mini-UDIMM */
+                               if (spd_dimm_type == 2 || spd_dimm_type == 6) {
+                                       /*
+                                        * Unbuffered dimm topology routes
+                                        * from end to end.
+                                        */
+                                       rl_nonseq_err += nonseq_del(rl_byte, 0,
+                                                                   7 + ecc_ena,
+                                                                   max_adj_rl_del_inc);
+                               }
+                       } else {
+                               rl_nonseq_err += nonseq_del(rl_byte, 0,
+                                                           3 + ecc_ena,
+                                                           max_adj_rl_del_inc);
+                       }
+               } /* if (! disable_sequential_delay_check) */
+
+               rl_rank_errors = rl_mask_err + rl_nonseq_err;
+
+               // print original sample here only if we are not really
+               // averaging or picking best
+               // also do not print if we were redoing the NONSEQ score
+               // for using COMPUTED
+               if (!redoing_nonseq_errs && rl_samples < 2) {
+                       if (rl_print > 1) {
+                               display_rl_bm(if_num, rankx, rl_mask, ecc_ena);
+                               display_rl_bm_scores(if_num, rankx, rl_mask,
+                                                    ecc_ena);
+                               display_rl_seq_scores(if_num, rankx, rl_byte,
+                                                     ecc_ena);
+                       }
+                       display_rl_with_score(if_num, rl_rank, rankx,
+                                             rl_rank_errors);
+               }
+
+               if (rl_compute) {
+                       if (!redoing_nonseq_errs) {
+                               /* Recompute the delays based on the bitmask */
+                               for (i = 0; i < (8 + ecc_ena); ++i) {
+                                       if (!(if_bytemask & (1 << i)))
+                                               continue;
+
+                                       upd_rl_rank(&rl_rank, i,
+                                                   compute_ddr3_rlevel_delay(
+                                                           rl_mask[i].mstart,
+                                                           rl_mask[i].width,
+                                                           rl_ctl));
+                               }
+
+                               /*
+                                * Override the copy of byte delays with the
+                                * computed results.
+                                */
+                               unpack_rlevel_settings(if_bytemask, ecc_ena,
+                                                      rl_byte, rl_rank);
+
+                               redoing_nonseq_errs = 1;
+                               goto redo_nonseq_errs;
+
+                       } else {
+                               /*
+                                * now print this if already printed the
+                                * original sample
+                                */
+                               if (rl_samples < 2 || rl_print) {
+                                       display_rl_with_computed(if_num,
+                                                                rl_rank, rankx,
+                                                                rl_rank_errors);
+                               }
+                       }
+               } /* if (rl_compute) */
+
+               // end bitmask interpretation block
+
+               // if it is a better (lower) score, then  keep it
+               if (rl_rank_errors < rl_best_rank_score) {
+                       rl_best_rank_score = rl_rank_errors;
+
+                       // save the new best delays and best errors
+                       for (i = 0; i < (8 + ecc_ena); ++i) {
+                               rl_byte[i].best = rl_byte[i].delay;
+                               rl_byte[i].bestsq = rl_byte[i].sqerrs;
+                               // save bitmasks and their scores as well
+                               // xlate UNPACKED index to PACKED index to
+                               // get from rl_mask
+                               rl_byte[i].bm = rl_mask[XUP(i, !!ecc_ena)].bm;
+                               rl_byte[i].bmerrs =
+                                       rl_mask[XUP(i, !!ecc_ena)].errs;
+                       }
+               }
+
+               rl_rodt_err += rl_rank_errors;
+       }
+
+       /* We recorded the best score across the averaging loops */
+       rl_score[rtt_nom][rodt_ctl][rankx].score = rl_best_rank_score;
+
+       /*
+        * Restore the delays from the best fields that go with the best
+        * score
+        */
+       for (i = 0; i < 9; ++i) {
+               rl_byte[i].delay = rl_byte[i].best;
+               rl_byte[i].sqerrs = rl_byte[i].bestsq;
+       }
+
+       rl_rank.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num));
+
+       pack_rlevel_settings(if_bytemask, ecc_ena, rl_byte, &rl_rank);
+
+       if (rl_samples > 1) {
+               // restore the "best" bitmasks and their scores for printing
+               for (i = 0; i < 9; ++i) {
+                       if ((if_bytemask & (1 << i)) == 0)
+                               continue;
+                       // xlate PACKED index to UNPACKED index to get from
+                       // rl_byte
+                       rl_mask[i].bm   = rl_byte[XPU(i, !!ecc_ena)].bm;
+                       rl_mask[i].errs = rl_byte[XPU(i, !!ecc_ena)].bmerrs;
+               }
+
+               // maybe print bitmasks/scores here
+               if (rl_print > 1) {
+                       display_rl_bm(if_num, rankx, rl_mask, ecc_ena);
+                       display_rl_bm_scores(if_num, rankx, rl_mask, ecc_ena);
+                       display_rl_seq_scores(if_num, rankx, rl_byte, ecc_ena);
+
+                       display_rl_with_rodt(if_num, rl_rank, rankx,
+                                            rl_score[rtt_nom][rodt_ctl][rankx].score,
+                                            print_nom_ohms,
+                                            imp_val->rodt_ohms[rodt_ctl],
+                                            WITH_RODT_BESTSCORE);
+
+                       debug("-----------\n");
+               }
+       }
+
+       rl_score[rtt_nom][rodt_ctl][rankx].setting = rl_rank.u64;
+
+       // print out the PBMs for the current RODT
+       if (ddr_type == DDR4_DRAM && rl_print > 1) { // verbosity?
+               // FIXME: change verbosity level after debug complete...
+
+               for (i = 0; i < 9; i++) {
+                       u64 temp_mask;
+                       int num_values;
+
+                       // FIXME: PBM skip for RODTs in mask
+                       if ((1U << rodt_ctl) & pbm_rodt_skip)
+                               continue;
+
+                       temp_mask = rodt_perfect_counts.mask[i];
+                       num_values = __builtin_popcountll(temp_mask);
+                       i = __builtin_ffsll(temp_mask) - 1;
+
+                       debug("N%d.LMC%d.R%d: PERFECT: RODT %3d: Byte %d: mask 0x%02llx (%d): ",
+                             node, if_num, rankx,
+                             imp_val->rodt_ohms[rodt_ctl],
+                             i, temp_mask >> i, num_values);
+
+                       while (temp_mask != 0) {
+                               i = __builtin_ffsll(temp_mask) - 1;
+                               debug("%2d(%2d) ", i,
+                                     rodt_perfect_counts.count[i][i]);
+                               temp_mask &= ~(1UL << i);
+                       } /* while (temp_mask != 0) */
+                       debug("\n");
+               }
+       }
+}
+
+static void rank_major_loop(struct ddr_priv *priv, int rankx, struct rl_score
+                           rl_score[RTT_NOM_OHMS_COUNT][RODT_OHMS_COUNT][4])
+{
+       /* Start with an arbitrarily high score */
+       int best_rank_score = DEFAULT_BEST_RANK_SCORE;
+       int best_rank_rtt_nom = 0;
+       int best_rank_ctl = 0;
+       int best_rank_ohms = 0;
+       int best_rankx = 0;
+       int dimm_rank_mask;
+       int max_rank_score;
+       union cvmx_lmcx_rlevel_rankx saved_rl_rank;
+       int next_ohms;
+       int orankx;
+       int next_score = 0;
+       int best_byte, new_byte, temp_byte, orig_best_byte;
+       int rank_best_bytes[9];
+       int byte_sh;
+       int avg_byte;
+       int avg_diff;
+       int i;
+
+       if (!(rank_mask & (1 << rankx)))
+               return;
+
+       // some of the rank-related loops below need to operate only on
+       // the ranks of a single DIMM,
+       // so create a mask for their use here
+       if (num_ranks == 4) {
+               dimm_rank_mask = rank_mask; // should be 1111
+       } else {
+               dimm_rank_mask = rank_mask & 3; // should be 01 or 11
+               if (rankx >= 2) {
+                       // doing a rank on the second DIMM, should be
+                       // 0100 or 1100
+                       dimm_rank_mask <<= 2;
+               }
+       }
+       debug("DIMM rank mask: 0x%x, rank mask: 0x%x, rankx: %d\n",
+             dimm_rank_mask, rank_mask, rankx);
+
+       // this is the start of the BEST ROW SCORE LOOP
+
+       for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx; ++rtt_idx) {
+               rtt_nom = imp_val->rtt_nom_table[rtt_idx];
+
+               debug("N%d.LMC%d.R%d: starting RTT_NOM %d (%d)\n",
+                     node, if_num, rankx, rtt_nom,
+                     imp_val->rtt_nom_ohms[rtt_nom]);
+
+               for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl;
+                    --rodt_ctl) {
+                       next_ohms = imp_val->rodt_ohms[rodt_ctl];
+
+                       // skip RODT rows in mask, but *NOT* rows with too
+                       // high a score;
+                       // we will not use the skipped ones for printing or
+                       // evaluating, but we need to allow all the
+                       // non-skipped ones to be candidates for "best"
+                       if (((1 << rodt_ctl) & rodt_row_skip_mask) != 0) {
+                               debug("N%d.LMC%d.R%d: SKIPPING rodt:%d (%d) with rank_score:%d\n",
+                                     node, if_num, rankx, rodt_ctl,
+                                     next_ohms, next_score);
+                               continue;
+                       }
+
+                       // this is ROFFIX-0528
+                       for (orankx = 0; orankx < dimm_count * 4; orankx++) {
+                               // stay on the same DIMM
+                               if (!(dimm_rank_mask & (1 << orankx)))
+                                       continue;
+
+                               next_score = rl_score[rtt_nom][rodt_ctl][orankx].score;
+
+                               // always skip a higher score
+                               if (next_score > best_rank_score)
+                                       continue;
+
+                               // if scores are equal
+                               if (next_score == best_rank_score) {
+                                       // always skip lower ohms
+                                       if (next_ohms < best_rank_ohms)
+                                               continue;
+
+                                       // if same ohms
+                                       if (next_ohms == best_rank_ohms) {
+                                               // always skip the other rank(s)
+                                               if (orankx != rankx)
+                                                       continue;
+                                       }
+                                       // else next_ohms are greater,
+                                       // always choose it
+                               }
+                               // else next_score is less than current best,
+                               // so always choose it
+                               debug("N%d.LMC%d.R%d: new best score: rank %d, rodt %d(%3d), new best %d, previous best %d(%d)\n",
+                                     node, if_num, rankx, orankx, rodt_ctl, next_ohms, next_score,
+                                     best_rank_score, best_rank_ohms);
+                               best_rank_score     = next_score;
+                               best_rank_rtt_nom   = rtt_nom;
+                               //best_rank_nom_ohms  = rtt_nom_ohms;
+                               best_rank_ctl       = rodt_ctl;
+                               best_rank_ohms      = next_ohms;
+                               best_rankx          = orankx;
+                               rl_rank.u64 =
+                                       rl_score[rtt_nom][rodt_ctl][orankx].setting;
+                       }
+               }
+       }
+
+       // this is the end of the BEST ROW SCORE LOOP
+
+       // DANGER, Will Robinson!! Abort now if we did not find a best
+       // score at all...
+       if (best_rank_score == DEFAULT_BEST_RANK_SCORE) {
+               printf("N%d.LMC%d.R%d: WARNING: no best rank score found - resetting node...\n",
+                      node, if_num, rankx);
+               mdelay(500);
+               do_reset(NULL, 0, 0, NULL);
+       }
+
+       // FIXME: relative now, but still arbitrary...
+       max_rank_score = best_rank_score;
+       if (ddr_type == DDR4_DRAM) {
+               // halve the range if 2 DIMMs unless they are single rank...
+               max_rank_score += (MAX_RANK_SCORE_LIMIT / ((num_ranks > 1) ?
+                                                          dimm_count : 1));
+       } else {
+               // Since DDR3 typically has a wider score range,
+               // keep more of them always
+               max_rank_score += MAX_RANK_SCORE_LIMIT;
+       }
+
+       if (!ecc_ena) {
+               /* ECC is not used */
+               rl_rank.s.byte8 = rl_rank.s.byte0;
+       }
+
+       // at the end, write the best row settings to the current rank
+       lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), rl_rank.u64);
+       rl_rank.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num));
+
+       saved_rl_rank.u64 = rl_rank.u64;
+
+       // this is the start of the PRINT LOOP
+       int pass;
+
+       // for pass==0, print current rank, pass==1 print other rank(s)
+       // this is done because we want to show each ranks RODT values
+       // together, not interlaced
+       // keep separates for ranks - pass=0 target rank, pass=1 other
+       // rank on DIMM
+       int mask_skipped[2] = {0, 0};
+       int score_skipped[2] = {0, 0};
+       int selected_rows[2] = {0, 0};
+       int zero_scores[2] = {0, 0};
+       for (pass = 0; pass < 2; pass++) {
+               for (orankx = 0; orankx < dimm_count * 4; orankx++) {
+                       // stay on the same DIMM
+                       if (!(dimm_rank_mask & (1 << orankx)))
+                               continue;
+
+                       if ((pass == 0 && orankx != rankx) ||
+                           (pass != 0 && orankx == rankx))
+                               continue;
+
+                       for (rtt_idx = min_rtt_nom_idx;
+                            rtt_idx <= max_rtt_nom_idx; ++rtt_idx) {
+                               rtt_nom = imp_val->rtt_nom_table[rtt_idx];
+                               if (dyn_rtt_nom_mask == 0) {
+                                       print_nom_ohms = -1;
+                               } else {
+                                       print_nom_ohms =
+                                               imp_val->rtt_nom_ohms[rtt_nom];
+                               }
+
+                               // cycle through all the RODT values...
+                               for (rodt_ctl = max_rodt_ctl;
+                                    rodt_ctl >= min_rodt_ctl; --rodt_ctl) {
+                                       union cvmx_lmcx_rlevel_rankx
+                                               temp_rl_rank;
+                                       int temp_score =
+                                               rl_score[rtt_nom][rodt_ctl][orankx].score;
+                                       int skip_row;
+
+                                       temp_rl_rank.u64 =
+                                               rl_score[rtt_nom][rodt_ctl][orankx].setting;
+
+                                       // skip RODT rows in mask, or rows
+                                       // with too high a score;
+                                       // we will not use them for printing
+                                       // or evaluating...
+                                       if ((1 << rodt_ctl) &
+                                           rodt_row_skip_mask) {
+                                               skip_row = WITH_RODT_SKIPPING;
+                                               ++mask_skipped[pass];
+                                       } else if (temp_score >
+                                                  max_rank_score) {
+                                               skip_row = WITH_RODT_SKIPPING;
+                                               ++score_skipped[pass];
+                                       } else {
+                                               skip_row = WITH_RODT_BLANK;
+                                               ++selected_rows[pass];
+                                               if (temp_score == 0)
+                                                       ++zero_scores[pass];
+                                       }
+
+                                       // identify and print the BEST ROW
+                                       // when it comes up
+                                       if (skip_row == WITH_RODT_BLANK &&
+                                           best_rankx == orankx &&
+                                           best_rank_rtt_nom == rtt_nom &&
+                                           best_rank_ctl == rodt_ctl)
+                                               skip_row = WITH_RODT_BESTROW;
+
+                                       if (rl_print) {
+                                               display_rl_with_rodt(if_num,
+                                                                    temp_rl_rank, orankx, temp_score,
+                                                                    print_nom_ohms,
+                                                                    imp_val->rodt_ohms[rodt_ctl],
+                                                                    skip_row);
+                                       }
+                               }
+                       }
+               }
+       }
+       debug("N%d.LMC%d.R%d: RLROWS: selected %d+%d, zero_scores %d+%d, mask_skipped %d+%d, score_skipped %d+%d\n",
+             node, if_num, rankx, selected_rows[0], selected_rows[1],
+             zero_scores[0], zero_scores[1], mask_skipped[0], mask_skipped[1],
+             score_skipped[0], score_skipped[1]);
+       // this is the end of the PRINT LOOP
+
+       // now evaluate which bytes need adjusting
+       // collect the new byte values; first init with current best for
+       // neighbor use
+       for (i = 0, byte_sh = 0; i < 8 + ecc_ena; i++, byte_sh += 6) {
+               rank_best_bytes[i] = (int)(rl_rank.u64 >> byte_sh) &
+                       RLEVEL_BYTE_MSK;
+       }
+
+       // this is the start of the BEST BYTE LOOP
+
+       for (i = 0, byte_sh = 0; i < 8 + ecc_ena; i++, byte_sh += 6) {
+               int sum = 0, count = 0;
+               int count_less = 0, count_same = 0, count_more = 0;
+               int count_byte; // save the value we counted around
+               // for rank majority use
+               int rank_less = 0, rank_same = 0, rank_more = 0;
+               int neighbor;
+               int neigh_byte;
+
+               best_byte = rank_best_bytes[i];
+               orig_best_byte = rank_best_bytes[i];
+
+               // this is the start of the BEST BYTE AVERAGING LOOP
+
+               // validate the initial "best" byte by looking at the
+               // average of the unskipped byte-column entries
+               // we want to do this before we go further, so we can
+               // try to start with a better initial value
+               // this is the so-called "BESTBUY" patch set
+
+               for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx;
+                    ++rtt_idx) {
+                       rtt_nom = imp_val->rtt_nom_table[rtt_idx];
+
+                       for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl;
+                            --rodt_ctl) {
+                               union cvmx_lmcx_rlevel_rankx temp_rl_rank;
+                               int temp_score;
+
+                               // average over all the ranks
+                               for (orankx = 0; orankx < dimm_count * 4;
+                                    orankx++) {
+                                       // stay on the same DIMM
+                                       if (!(dimm_rank_mask & (1 << orankx)))
+                                               continue;
+
+                                       temp_score =
+                                               rl_score[rtt_nom][rodt_ctl][orankx].score;
+                                       // skip RODT rows in mask, or rows with
+                                       // too high a score;
+                                       // we will not use them for printing or
+                                       // evaluating...
+
+                                       if (!((1 << rodt_ctl) &
+                                             rodt_row_skip_mask) &&
+                                           temp_score <= max_rank_score) {
+                                               temp_rl_rank.u64 =
+                                                       rl_score[rtt_nom][rodt_ctl][orankx].setting;
+                                               temp_byte =
+                                                       (int)(temp_rl_rank.u64 >> byte_sh) &
+                                                       RLEVEL_BYTE_MSK;
+                                               sum += temp_byte;
+                                               count++;
+                                       }
+                               }
+                       }
+               }
+
+               // this is the end of the BEST BYTE AVERAGING LOOP
+
+               // FIXME: validate count and sum??
+               avg_byte = (int)divide_nint(sum, count);
+               avg_diff = best_byte - avg_byte;
+               new_byte = best_byte;
+               if (avg_diff != 0) {
+                       // bump best up/dn by 1, not necessarily all the
+                       // way to avg
+                       new_byte = best_byte + ((avg_diff > 0) ? -1 : 1);
+               }
+
+               if (rl_print) {
+                       debug("N%d.LMC%d.R%d: START:   Byte %d: best %d is different by %d from average %d, using %d.\n",
+                             node, if_num, rankx,
+                             i, best_byte, avg_diff, avg_byte, new_byte);
+               }
+               best_byte = new_byte;
+               count_byte = new_byte; // save the value we will count around
+
+               // At this point best_byte is either:
+               // 1. the original byte-column value from the best scoring
+               //    RODT row, OR
+               // 2. that value bumped toward the average of all the
+               //    byte-column values
+               //
+               // best_byte will not change from here on...
+
+               // this is the start of the BEST BYTE COUNTING LOOP
+
+               // NOTE: we do this next loop separately from above, because
+               // we count relative to "best_byte"
+               // which may have been modified by the above averaging
+               // operation...
+
+               for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx;
+                    ++rtt_idx) {
+                       rtt_nom = imp_val->rtt_nom_table[rtt_idx];
+
+                       for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl;
+                            --rodt_ctl) {
+                               union cvmx_lmcx_rlevel_rankx temp_rl_rank;
+                               int temp_score;
+
+                               for (orankx = 0; orankx < dimm_count * 4;
+                                    orankx++) { // count over all the ranks
+                                       // stay on the same DIMM
+                                       if (!(dimm_rank_mask & (1 << orankx)))
+                                               continue;
+
+                                       temp_score =
+                                               rl_score[rtt_nom][rodt_ctl][orankx].score;
+                                       // skip RODT rows in mask, or rows
+                                       // with too high a score;
+                                       // we will not use them for printing
+                                       // or evaluating...
+                                       if (((1 << rodt_ctl) &
+                                            rodt_row_skip_mask) ||
+                                           temp_score > max_rank_score)
+                                               continue;
+
+                                       temp_rl_rank.u64 =
+                                               rl_score[rtt_nom][rodt_ctl][orankx].setting;
+                                       temp_byte = (temp_rl_rank.u64 >>
+                                                    byte_sh) & RLEVEL_BYTE_MSK;
+
+                                       if (temp_byte == 0)
+                                               ;  // do not count it if illegal
+                                       else if (temp_byte == best_byte)
+                                               count_same++;
+                                       else if (temp_byte == best_byte - 1)
+                                               count_less++;
+                                       else if (temp_byte == best_byte + 1)
+                                               count_more++;
+                                       // else do not count anything more
+                                       // than 1 away from the best
+
+                                       // no rank counting if disabled
+                                       if (disable_rank_majority)
+                                               continue;
+
+                                       // FIXME? count is relative to
+                                       // best_byte; should it be rank-based?
+                                       // rank counts only on main rank
+                                       if (orankx != rankx)
+                                               continue;
+                                       else if (temp_byte == best_byte)
+                                               rank_same++;
+                                       else if (temp_byte == best_byte - 1)
+                                               rank_less++;
+                                       else if (temp_byte == best_byte + 1)
+                                               rank_more++;
+                               }
+                       }
+               }
+
+               if (rl_print) {
+                       debug("N%d.LMC%d.R%d: COUNT:   Byte %d: orig %d now %d, more %d same %d less %d (%d/%d/%d)\n",
+                             node, if_num, rankx,
+                             i, orig_best_byte, best_byte,
+                             count_more, count_same, count_less,
+                             rank_more, rank_same, rank_less);
+               }
+
+               // this is the end of the BEST BYTE COUNTING LOOP
+
+               // choose the new byte value
+               // we need to check that there is no gap greater than 2
+               // between adjacent bytes (adjacency depends on DIMM type)
+               // use the neighbor value to help decide
+               // initially, the rank_best_bytes[] will contain values from
+               // the chosen lowest score rank
+               new_byte = 0;
+
+               // neighbor is index-1 unless we are index 0 or index 8 (ECC)
+               neighbor = (i == 8) ? 3 : ((i == 0) ? 1 : i - 1);
+               neigh_byte = rank_best_bytes[neighbor];
+
+               // can go up or down or stay the same, so look at a numeric
+               // average to help
+               new_byte = (int)divide_nint(((count_more * (best_byte + 1)) +
+                                            (count_same * (best_byte + 0)) +
+                                            (count_less * (best_byte - 1))),
+                                           max(1, (count_more + count_same +
+                                                   count_less)));
+
+               // use neighbor to help choose with average
+               if (i > 0 && (abs(neigh_byte - new_byte) > 2) &&
+                   !disable_sequential_delay_check) {
+                       // but not for byte 0
+                       int avg_pick = new_byte;
+
+                       if ((new_byte - best_byte) != 0) {
+                               // back to best, average did not get better
+                               new_byte = best_byte;
+                       } else {
+                               // avg was the same, still too far, now move
+                               // it towards the neighbor
+                               new_byte += (neigh_byte > new_byte) ? 1 : -1;
+                       }
+
+                       if (rl_print) {
+                               debug("N%d.LMC%d.R%d: AVERAGE: Byte %d: neighbor %d too different %d from average %d, picking %d.\n",
+                                     node, if_num, rankx,
+                                     i, neighbor, neigh_byte, avg_pick,
+                                     new_byte);
+                       }
+               } else {
+                       // NOTE:
+                       // For now, we let the neighbor processing above trump
+                       // the new simple majority processing here.
+                       // This is mostly because we have seen no smoking gun
+                       // for a neighbor bad choice (yet?).
+                       // Also note that we will ALWAYS be using byte 0
+                       // majority, because of the if clause above.
+
+                       // majority is dependent on the counts, which are
+                       // relative to best_byte, so start there
+                       int maj_byte = best_byte;
+                       int rank_maj;
+                       int rank_sum;
+
+                       if (count_more > count_same &&
+                           count_more > count_less) {
+                               maj_byte++;
+                       } else if (count_less > count_same &&
+                                  count_less > count_more) {
+                               maj_byte--;
+                       }
+
+                       if (maj_byte != new_byte) {
+                               // print only when majority choice is
+                               // different from average
+                               if (rl_print) {
+                                       debug("N%d.LMC%d.R%d: MAJORTY: Byte %d: picking majority of %d over average %d.\n",
+                                             node, if_num, rankx, i, maj_byte,
+                                             new_byte);
+                               }
+                               new_byte = maj_byte;
+                       } else {
+                               if (rl_print) {
+                                       debug("N%d.LMC%d.R%d: AVERAGE: Byte %d: picking average of %d.\n",
+                                             node, if_num, rankx, i, new_byte);
+                               }
+                       }
+
+                       if (!disable_rank_majority) {
+                               // rank majority is dependent on the rank
+                               // counts, which are relative to best_byte,
+                               // so start there, and adjust according to the
+                               // rank counts majority
+                               rank_maj = best_byte;
+                               if (rank_more > rank_same &&
+                                   rank_more > rank_less) {
+                                       rank_maj++;
+                               } else if (rank_less > rank_same &&
+                                          rank_less > rank_more) {
+                                       rank_maj--;
+                               }
+                               rank_sum = rank_more + rank_same + rank_less;
+
+                               // now, let rank majority possibly rule over
+                               // the current new_byte however we got it
+                               if (rank_maj != new_byte) { // only if different
+                                       // Here is where we decide whether to
+                                       // completely apply RANK_MAJORITY or not
+                                       // ignore if less than
+                                       if (rank_maj < new_byte) {
+                                               if (rl_print) {
+                                                       debug("N%d.LMC%d.R%d: RANKMAJ: Byte %d: LESS: NOT using %d over %d.\n",
+                                                             node, if_num,
+                                                             rankx, i,
+                                                             rank_maj,
+                                                             new_byte);
+                                               }
+                                       } else {
+                                               // For the moment, we do it
+                                               // ONLY when running 2-slot
+                                               // configs
+                                               //  OR when rank_sum is big
+                                               // enough
+                                               if (dimm_count > 1 ||
+                                                   rank_sum > 2) {
+                                                       // print only when rank
+                                                       // majority choice is
+                                                       // selected
+                                                       if (rl_print) {
+                                                               debug("N%d.LMC%d.R%d: RANKMAJ: Byte %d: picking %d over %d.\n",
+                                                                     node,
+                                                                     if_num,
+                                                                     rankx,
+                                                                     i,
+                                                                     rank_maj,
+                                                                     new_byte);
+                                                       }
+                                                       new_byte = rank_maj;
+                                               } else {
+                                                       // FIXME: print some
+                                                       // info when we could
+                                                       // have chosen RANKMAJ
+                                                       // but did not
+                                                       if (rl_print) {
+                                                               debug("N%d.LMC%d.R%d: RANKMAJ: Byte %d: NOT using %d over %d (best=%d,sum=%d).\n",
+                                                                     node,
+                                                                     if_num,
+                                                                     rankx,
+                                                                     i,
+                                                                     rank_maj,
+                                                                     new_byte,
+                                                                     best_byte,
+                                                                     rank_sum);
+                                                       }
+                                               }
+                                       }
+                               }
+                       } /* if (!disable_rank_majority) */
+               }
+               // one last check:
+               // if new_byte is still count_byte, BUT there was no count
+               // for that value, DO SOMETHING!!!
+               // FIXME: go back to original best byte from the best row
+               if (new_byte == count_byte && count_same == 0) {
+                       new_byte = orig_best_byte;
+                       if (rl_print) {
+                               debug("N%d.LMC%d.R%d: FAILSAF: Byte %d: going back to original %d.\n",
+                                     node, if_num, rankx, i, new_byte);
+                       }
+               }
+               // Look at counts for "perfect" bitmasks (PBMs) if we had
+               // any for this byte-lane.
+               // Remember, we only counted for DDR4, so zero means none
+               // or DDR3, and we bypass this...
+               value_mask = rank_perf[rankx].mask[i];
+               disable_rlv_bump_this_byte = 0;
+
+               if (value_mask != 0 && rl_ctl.cn78xx.offset == 1) {
+                       int i, delay_count, delay_max = 0, del_val = 0;
+                       int num_values = __builtin_popcountll(value_mask);
+                       int sum_counts = 0;
+                       u64 temp_mask = value_mask;
+
+                       disable_rlv_bump_this_byte = 1;
+                       i = __builtin_ffsll(temp_mask) - 1;
+                       if (rl_print)
+                               debug("N%d.LMC%d.R%d: PERFECT: Byte %d: OFF1: mask 0x%02llx (%d): ",
+                                     node, if_num, rankx, i, value_mask >> i,
+                                     num_values);
+
+                       while (temp_mask != 0) {
+                               i = __builtin_ffsll(temp_mask) - 1;
+                               delay_count = rank_perf[rankx].count[i][i];
+                               sum_counts += delay_count;
+                               if (rl_print)
+                                       debug("%2d(%2d) ", i, delay_count);
+                               if (delay_count >= delay_max) {
+                                       delay_max = delay_count;
+                                       del_val = i;
+                               }
+                               temp_mask &= ~(1UL << i);
+                       } /* while (temp_mask != 0) */
+
+                       // if sum_counts is small, just use NEW_BYTE
+                       if (sum_counts < pbm_lowsum_limit) {
+                               if (rl_print)
+                                       debug(": LOWSUM (%2d), choose ORIG ",
+                                             sum_counts);
+                               del_val = new_byte;
+                               delay_max = rank_perf[rankx].count[i][del_val];
+                       }
+
+                       // finish printing here...
+                       if (rl_print) {
+                               debug(": USING %2d (%2d) D%d\n", del_val,
+                                     delay_max, disable_rlv_bump_this_byte);
+                       }
+
+                       new_byte = del_val; // override with best PBM choice
+
+               } else if ((value_mask != 0) && (rl_ctl.cn78xx.offset == 2)) {
+                       //                        if (value_mask != 0) {
+                       int i, delay_count, del_val;
+                       int num_values = __builtin_popcountll(value_mask);
+                       int sum_counts = 0;
+                       u64 temp_mask = value_mask;
+
+                       i = __builtin_ffsll(temp_mask) - 1;
+                       if (rl_print)
+                               debug("N%d.LMC%d.R%d: PERFECT: Byte %d: mask 0x%02llx (%d): ",
+                                     node, if_num, rankx, i, value_mask >> i,
+                                     num_values);
+                       while (temp_mask != 0) {
+                               i = __builtin_ffsll(temp_mask) - 1;
+                               delay_count = rank_perf[rankx].count[i][i];
+                               sum_counts += delay_count;
+                               if (rl_print)
+                                       debug("%2d(%2d) ", i, delay_count);
+                               temp_mask &= ~(1UL << i);
+                       } /* while (temp_mask != 0) */
+
+                       del_val = __builtin_ffsll(value_mask) - 1;
+                       delay_count =
+                               rank_perf[rankx].count[i][del_val];
+
+                       // overkill, normally only 1-4 bits
+                       i = (value_mask >> del_val) & 0x1F;
+
+                       // if sum_counts is small, treat as special and use
+                       // NEW_BYTE
+                       if (sum_counts < pbm_lowsum_limit) {
+                               if (rl_print)
+                                       debug(": LOWSUM (%2d), choose ORIG",
+                                             sum_counts);
+                               i = 99; // SPECIAL case...
+                       }
+
+                       switch (i) {
+                       case 0x01 /* 00001b */:
+                               // allow BUMP
+                               break;
+
+                       case 0x13 /* 10011b */:
+                       case 0x0B /* 01011b */:
+                       case 0x03 /* 00011b */:
+                               del_val += 1; // take the second
+                               disable_rlv_bump_this_byte = 1; // allow no BUMP
+                               break;
+
+                       case 0x0D /* 01101b */:
+                       case 0x05 /* 00101b */:
+                               // test count of lowest and all
+                               if (delay_count >= 5 || sum_counts <= 5)
+                                       del_val += 1; // take the hole
+                               else
+                                       del_val += 2; // take the next set
+                               disable_rlv_bump_this_byte = 1; // allow no BUMP
+                               break;
+
+                       case 0x0F /* 01111b */:
+                       case 0x17 /* 10111b */:
+                       case 0x07 /* 00111b */:
+                               del_val += 1; // take the second
+                               if (delay_count < 5) { // lowest count is small
+                                       int second =
+                                               rank_perf[rankx].count[i][del_val];
+                                       int third =
+                                               rank_perf[rankx].count[i][del_val + 1];
+                                       // test if middle is more than 1 OR
+                                       // top is more than 1;
+                                       // this means if they are BOTH 1,
+                                       // then we keep the second...
+                                       if (second > 1 || third > 1) {
+                                               // if middle is small OR top
+                                               // is large
+                                               if (second < 5 ||
+                                                   third > 1) {
+                                                       // take the top
+                                                       del_val += 1;
+                                                       if (rl_print)
+                                                               debug(": TOP7 ");
+                                               }
+                                       }
+                               }
+                               disable_rlv_bump_this_byte = 1; // allow no BUMP
+                               break;
+
+                       default: // all others...
+                               if (rl_print)
+                                       debug(": ABNORMAL, choose ORIG");
+
+                       case 99: // special
+                                // FIXME: choose original choice?
+                               del_val = new_byte;
+                               disable_rlv_bump_this_byte = 1; // allow no BUMP
+                               break;
+                       }
+                       delay_count =
+                               rank_perf[rankx].count[i][del_val];
+
+                       // finish printing here...
+                       if (rl_print)
+                               debug(": USING %2d (%2d) D%d\n", del_val,
+                                     delay_count, disable_rlv_bump_this_byte);
+                       new_byte = del_val; // override with best PBM choice
+               } else {
+                       if (ddr_type == DDR4_DRAM) { // only report when DDR4
+                               // FIXME: remove or increase VBL for this
+                               // output...
+                               if (rl_print)
+                                       debug("N%d.LMC%d.R%d: PERFECT: Byte %d: ZERO PBMs, USING %d\n",
+                                             node, if_num, rankx, i,
+                                             new_byte);
+                               // prevent ODD bump, rely on original
+                               disable_rlv_bump_this_byte = 1;
+                       }
+               } /* if (value_mask != 0) */
+
+               // optionally bump the delay value
+               if (enable_rldelay_bump && !disable_rlv_bump_this_byte) {
+                       if ((new_byte & enable_rldelay_bump) ==
+                           enable_rldelay_bump) {
+                               int bump_value = new_byte + rldelay_bump_incr;
+
+                               if (rl_print) {
+                                       debug("N%d.LMC%d.R%d: RLVBUMP: Byte %d: CHANGING %d to %d (%s)\n",
+                                             node, if_num, rankx, i,
+                                             new_byte, bump_value,
+                                             (value_mask &
+                                              (1 << bump_value)) ?
+                                             "PBM" : "NOPBM");
+                               }
+                               new_byte = bump_value;
+                       }
+               }
+
+               // last checks for count-related purposes
+               if (new_byte == best_byte && count_more > 0 &&
+                   count_less == 0) {
+                       // we really should take best_byte + 1
+                       if (rl_print) {
+                               debug("N%d.LMC%d.R%d: CADJMOR: Byte %d: CHANGING %d to %d\n",
+                                     node, if_num, rankx, i,
+                                     new_byte, best_byte + 1);
+                               new_byte = best_byte + 1;
+                       }
+               } else if ((new_byte < best_byte) && (count_same > 0)) {
+                       // we really should take best_byte
+                       if (rl_print) {
+                               debug("N%d.LMC%d.R%d: CADJSAM: Byte %d: CHANGING %d to %d\n",
+                                     node, if_num, rankx, i,
+                                     new_byte, best_byte);
+                               new_byte = best_byte;
+                       }
+               } else if (new_byte > best_byte) {
+                       if ((new_byte == (best_byte + 1)) &&
+                           count_more == 0 && count_less > 0) {
+                               // we really should take best_byte
+                               if (rl_print) {
+                                       debug("N%d.LMC%d.R%d: CADJLE1: Byte %d: CHANGING %d to %d\n",
+                                             node, if_num, rankx, i,
+                                             new_byte, best_byte);
+                                       new_byte = best_byte;
+                               }
+                       } else if ((new_byte >= (best_byte + 2)) &&
+                                  ((count_more > 0) || (count_same > 0))) {
+                               if (rl_print) {
+                                       debug("N%d.LMC%d.R%d: CADJLE2: Byte %d: CHANGING %d to %d\n",
+                                             node, if_num, rankx, i,
+                                             new_byte, best_byte + 1);
+                                       new_byte = best_byte + 1;
+                               }
+                       }
+               }
+
+               if (rl_print) {
+                       debug("N%d.LMC%d.R%d: SUMMARY: Byte %d: orig %d now %d, more %d same %d less %d, using %d\n",
+                             node, if_num, rankx, i, orig_best_byte,
+                             best_byte, count_more, count_same, count_less,
+                             new_byte);
+               }
+
+               // update the byte with the new value (NOTE: orig value in
+               // the CSR may not be current "best")
+               upd_rl_rank(&rl_rank, i, new_byte);
+
+               // save new best for neighbor use
+               rank_best_bytes[i] = new_byte;
+       } /* for (i = 0; i < 8+ecc_ena; i++) */
+
+       ////////////////// this is the end of the BEST BYTE LOOP
+
+       if (saved_rl_rank.u64 != rl_rank.u64) {
+               lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num),
+                      rl_rank.u64);
+               rl_rank.u64 = lmc_rd(priv,
+                                    CVMX_LMCX_RLEVEL_RANKX(rankx, if_num));
+               debug("Adjusting Read-Leveling per-RANK settings.\n");
+       } else {
+               debug("Not Adjusting Read-Leveling per-RANK settings.\n");
+       }
+       display_rl_with_final(if_num, rl_rank, rankx);
+
+       // FIXME: does this help make the output a little easier to focus?
+       if (rl_print > 0)
+               debug("-----------\n");
+
+#define RLEVEL_RANKX_EXTRAS_INCR  0
+       // if there are unused entries to be filled
+       if ((rank_mask & 0x0f) != 0x0f) {
+               // copy the current rank
+               union cvmx_lmcx_rlevel_rankx temp_rl_rank = rl_rank;
+
+               if (rankx < 3) {
+#if RLEVEL_RANKX_EXTRAS_INCR > 0
+                       int byte, delay;
+
+                       // modify the copy in prep for writing to empty slot(s)
+                       for (byte = 0; byte < 9; byte++) {
+                               delay = get_rl_rank(&temp_rl_rank, byte) +
+                                       RLEVEL_RANKX_EXTRAS_INCR;
+                               if (delay > RLEVEL_BYTE_MSK)
+                                       delay = RLEVEL_BYTE_MSK;
+                               upd_rl_rank(&temp_rl_rank, byte, delay);
+                       }
+#endif
+
+                       // if rank 0, write rank 1 and rank 2 here if empty
+                       if (rankx == 0) {
+                               // check that rank 1 is empty
+                               if (!(rank_mask & (1 << 1))) {
+                                       debug("N%d.LMC%d.R%d: writing RLEVEL_RANK unused entry R%d.\n",
+                                             node, if_num, rankx, 1);
+                                       lmc_wr(priv,
+                                              CVMX_LMCX_RLEVEL_RANKX(1,
+                                                                     if_num),
+                                              temp_rl_rank.u64);
+                               }
+
+                               // check that rank 2 is empty
+                               if (!(rank_mask & (1 << 2))) {
+                                       debug("N%d.LMC%d.R%d: writing RLEVEL_RANK unused entry R%d.\n",
+                                             node, if_num, rankx, 2);
+                                       lmc_wr(priv,
+                                              CVMX_LMCX_RLEVEL_RANKX(2,
+                                                                     if_num),
+                                              temp_rl_rank.u64);
+                               }
+                       }
+
+                       // if ranks 0, 1 or 2, write rank 3 here if empty
+                       // check that rank 3 is empty
+                       if (!(rank_mask & (1 << 3))) {
+                               debug("N%d.LMC%d.R%d: writing RLEVEL_RANK unused entry R%d.\n",
+                                     node, if_num, rankx, 3);
+                               lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(3, if_num),
+                                      temp_rl_rank.u64);
+                       }
+               }
+       }
+}
+
+static void lmc_read_leveling(struct ddr_priv *priv)
+{
+       struct rl_score rl_score[RTT_NOM_OHMS_COUNT][RODT_OHMS_COUNT][4];
+       union cvmx_lmcx_control ctl;
+       union cvmx_lmcx_config cfg;
+       int rankx;
+       char *s;
+       int i;
+
+       /*
+        * 4.8.10 LMC Read Leveling
+        *
+        * LMC supports an automatic read-leveling separately per byte-lane
+        * using the DDR3 multipurpose register predefined pattern for system
+        * calibration defined in the JEDEC DDR3 specifications.
+        *
+        * All of DDR PLL, LMC CK, and LMC DRESET, and early LMC initializations
+        * must be completed prior to starting this LMC read-leveling sequence.
+        *
+        * Software could simply write the desired read-leveling values into
+        * LMC(0)_RLEVEL_RANK(0..3). This section describes a sequence that uses
+        * LMC's autoread-leveling capabilities.
+        *
+        * When LMC does the read-leveling sequence for a rank, it first enables
+        * the DDR3 multipurpose register predefined pattern for system
+        * calibration on the selected DRAM rank via a DDR3 MR3 write, then
+        * executes 64 RD operations at different internal delay settings, then
+        * disables the predefined pattern via another DDR3 MR3 write
+        * operation. LMC determines the pass or fail of each of the 64 settings
+        * independently for each byte lane, then writes appropriate
+        * LMC(0)_RLEVEL_RANK(0..3)[BYTE*] values for the rank.
+        *
+        * After read-leveling for a rank, software can read the 64 pass/fail
+        * indications for one byte lane via LMC(0)_RLEVEL_DBG[BITMASK].
+        * Software can observe all pass/fail results for all byte lanes in a
+        * rank via separate read-leveling sequences on the rank with different
+        * LMC(0)_RLEVEL_CTL[BYTE] values.
+        *
+        * The 64 pass/fail results will typically have failures for the low
+        * delays, followed by a run of some passing settings, followed by more
+        * failures in the remaining high delays.  LMC sets
+        * LMC(0)_RLEVEL_RANK(0..3)[BYTE*] to one of the passing settings.
+        * First, LMC selects the longest run of successes in the 64 results.
+        * (In the unlikely event that there is more than one longest run, LMC
+        * selects the first one.) Then if LMC(0)_RLEVEL_CTL[OFFSET_EN] = 1 and
+        * the selected run has more than LMC(0)_RLEVEL_CTL[OFFSET] successes,
+        * LMC selects the last passing setting in the run minus
+        * LMC(0)_RLEVEL_CTL[OFFSET]. Otherwise LMC selects the middle setting
+        * in the run (rounding earlier when necessary). We expect the
+        * read-leveling sequence to produce good results with the reset values
+        * LMC(0)_RLEVEL_CTL [OFFSET_EN]=1, LMC(0)_RLEVEL_CTL[OFFSET] = 2.
+        *
+        * The read-leveling sequence has the following steps:
+        *
+        * 1. Select desired LMC(0)_RLEVEL_CTL[OFFSET_EN,OFFSET,BYTE] settings.
+        *    Do the remaining substeps 2-4 separately for each rank i with
+        *    attached DRAM.
+        *
+        * 2. Without changing any other fields in LMC(0)_CONFIG,
+        *
+        *    o write LMC(0)_SEQ_CTL[SEQ_SEL] to select read-leveling
+        *
+        *    o write LMC(0)_CONFIG[RANKMASK] = (1 << i)
+        *
+        *    o write LMC(0)_SEQ_CTL[INIT_START] = 1
+        *
+        *    This initiates the previously-described read-leveling.
+        *
+        * 3. Wait until LMC(0)_RLEVEL_RANKi[STATUS] != 2
+        *
+        *    LMC will have updated LMC(0)_RLEVEL_RANKi[BYTE*] for all byte
+        *    lanes at this point.
+        *
+        *    If ECC DRAM is not present (i.e. when DRAM is not attached to the
+        *    DDR_CBS_0_* and DDR_CB<7:0> chip signals, or the DDR_DQS_<4>_* and
+        *    DDR_DQ<35:32> chip signals), write LMC(0)_RLEVEL_RANK*[BYTE8] =
+        *    LMC(0)_RLEVEL_RANK*[BYTE0]. Write LMC(0)_RLEVEL_RANK*[BYTE4] =
+        *    LMC(0)_RLEVEL_RANK*[BYTE0].
+        *
+        * 4. If desired, consult LMC(0)_RLEVEL_DBG[BITMASK] and compare to
+        *    LMC(0)_RLEVEL_RANKi[BYTE*] for the lane selected by
+        *    LMC(0)_RLEVEL_CTL[BYTE]. If desired, modify
+        *    LMC(0)_RLEVEL_CTL[BYTE] to a new value and repeat so that all
+        *    BITMASKs can be observed.
+        *
+        * 5. Initialize LMC(0)_RLEVEL_RANK* values for all unused ranks.
+        *
+        *    Let rank i be a rank with attached DRAM.
+        *
+        *    For all ranks j that do not have attached DRAM, set
+        *    LMC(0)_RLEVEL_RANKj = LMC(0)_RLEVEL_RANKi.
+        *
+        * This read-leveling sequence can help select the proper CN70XX ODT
+        * resistance value (LMC(0)_COMP_CTL2[RODT_CTL]). A hardware-generated
+        * LMC(0)_RLEVEL_RANKi[BYTEj] value (for a used byte lane j) that is
+        * drastically different from a neighboring LMC(0)_RLEVEL_RANKi[BYTEk]
+        * (for a used byte lane k) can indicate that the CN70XX ODT value is
+        * bad. It is possible to simultaneously optimize both
+        * LMC(0)_COMP_CTL2[RODT_CTL] and LMC(0)_RLEVEL_RANKn[BYTE*] values by
+        * performing this read-leveling sequence for several
+        * LMC(0)_COMP_CTL2[RODT_CTL] values and selecting the one with the
+        * best LMC(0)_RLEVEL_RANKn[BYTE*] profile for the ranks.
+        */
+
+       rl_rodt_err = 0;
+       rl_dbg_loops = 1;
+       saved_int_zqcs_dis = 0;
+       max_adj_rl_del_inc = 0;
+       rl_print = RLEVEL_PRINTALL_DEFAULT;
+
+#ifdef ENABLE_HARDCODED_RLEVEL
+       part_number[21] = {0};
+#endif /* ENABLE_HARDCODED_RLEVEL */
+
+       pbm_lowsum_limit = 5; // FIXME: is this a good default?
+       // FIXME: PBM skip for RODT 240 and 34
+       pbm_rodt_skip = (1U << ddr4_rodt_ctl_240_ohm) |
+               (1U << ddr4_rodt_ctl_34_ohm);
+
+       disable_rank_majority = 0; // control rank majority processing
+
+       // default to mask 11b ODDs for DDR4 (except 73xx), else DISABLE
+       // for DDR3
+       rldelay_bump_incr = 0;
+       disable_rlv_bump_this_byte = 0;
+
+       enable_rldelay_bump = (ddr_type == DDR4_DRAM) ?
+               ((octeon_is_cpuid(OCTEON_CN73XX)) ? 1 : 3) : 0;
+
+       s = lookup_env(priv, "ddr_disable_rank_majority");
+       if (s)
+               disable_rank_majority = !!simple_strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_pbm_lowsum_limit");
+       if (s)
+               pbm_lowsum_limit = simple_strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_pbm_rodt_skip");
+       if (s)
+               pbm_rodt_skip = simple_strtoul(s, NULL, 0);
+       memset(rank_perf, 0, sizeof(rank_perf));
+
+       ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+       save_ddr2t = ctl.cn78xx.ddr2t;
+
+       cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
+       ecc_ena = cfg.cn78xx.ecc_ena;
+
+       s = lookup_env(priv, "ddr_rlevel_2t");
+       if (s)
+               ctl.cn78xx.ddr2t = simple_strtoul(s, NULL, 0);
+
+       lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64);
+
+       debug("LMC%d: Performing Read-Leveling\n", if_num);
+
+       rl_ctl.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_CTL(if_num));
+
+       rl_samples = c_cfg->rlevel_average_loops;
+       if (rl_samples == 0) {
+               rl_samples = RLEVEL_SAMPLES_DEFAULT;
+               // up the samples for these cases
+               if (dimm_count == 1 || num_ranks == 1)
+                       rl_samples = rl_samples * 2 + 1;
+       }
+
+       rl_compute = c_cfg->rlevel_compute;
+       rl_ctl.cn78xx.offset_en = c_cfg->offset_en;
+       rl_ctl.cn78xx.offset    = spd_rdimm
+               ? c_cfg->offset_rdimm
+               : c_cfg->offset_udimm;
+
+       int value = 1; // should ALWAYS be set
+
+       s = lookup_env(priv, "ddr_rlevel_delay_unload");
+       if (s)
+               value = !!simple_strtoul(s, NULL, 0);
+       rl_ctl.cn78xx.delay_unload_0 = value;
+       rl_ctl.cn78xx.delay_unload_1 = value;
+       rl_ctl.cn78xx.delay_unload_2 = value;
+       rl_ctl.cn78xx.delay_unload_3 = value;
+
+       // use OR_DIS=1 to try for better results
+       rl_ctl.cn78xx.or_dis = 1;
+
+       /*
+        * If we will be switching to 32bit mode level based on only
+        * four bits because there are only 4 ECC bits.
+        */
+       rl_ctl.cn78xx.bitmask = (if_64b) ? 0xFF : 0x0F;
+
+       // allow overrides
+       s = lookup_env(priv, "ddr_rlevel_ctl_or_dis");
+       if (s)
+               rl_ctl.cn78xx.or_dis = simple_strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_rlevel_ctl_bitmask");
+       if (s)
+               rl_ctl.cn78xx.bitmask = simple_strtoul(s, NULL, 0);
+
+       rl_comp_offs = spd_rdimm
+               ? c_cfg->rlevel_comp_offset_rdimm
+               : c_cfg->rlevel_comp_offset_udimm;
+       s = lookup_env(priv, "ddr_rlevel_comp_offset");
+       if (s)
+               rl_comp_offs = strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_rlevel_offset");
+       if (s)
+               rl_ctl.cn78xx.offset   = simple_strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_rlevel_offset_en");
+       if (s)
+               rl_ctl.cn78xx.offset_en   = simple_strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_rlevel_ctl");
+       if (s)
+               rl_ctl.u64   = simple_strtoul(s, NULL, 0);
+
+       lmc_wr(priv,
+              CVMX_LMCX_RLEVEL_CTL(if_num),
+              rl_ctl.u64);
+
+       // do this here so we can look at final RLEVEL_CTL[offset] setting...
+       s = lookup_env(priv, "ddr_enable_rldelay_bump");
+       if (s) {
+               // also use as mask bits
+               enable_rldelay_bump = strtoul(s, NULL, 0);
+       }
+
+       if (enable_rldelay_bump != 0)
+               rldelay_bump_incr = (rl_ctl.cn78xx.offset == 1) ? -1 : 1;
+
+       s = lookup_env(priv, "ddr%d_rlevel_debug_loops", if_num);
+       if (s)
+               rl_dbg_loops = simple_strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_rtt_nom_auto");
+       if (s)
+               ddr_rtt_nom_auto = !!simple_strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_rlevel_average");
+       if (s)
+               rl_samples = simple_strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_rlevel_compute");
+       if (s)
+               rl_compute = simple_strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_rlevel_printall");
+       if (s)
+               rl_print = simple_strtoul(s, NULL, 0);
+
+       debug("RLEVEL_CTL                                    : 0x%016llx\n",
+             rl_ctl.u64);
+       debug("RLEVEL_OFFSET                                 : %6d\n",
+             rl_ctl.cn78xx.offset);
+       debug("RLEVEL_OFFSET_EN                              : %6d\n",
+             rl_ctl.cn78xx.offset_en);
+
+       /*
+        * The purpose for the indexed table is to sort the settings
+        * by the ohm value to simplify the testing when incrementing
+        * through the settings.  (index => ohms) 1=120, 2=60, 3=40,
+        * 4=30, 5=20
+        */
+       min_rtt_nom_idx = (c_cfg->min_rtt_nom_idx == 0) ?
+               1 : c_cfg->min_rtt_nom_idx;
+       max_rtt_nom_idx = (c_cfg->max_rtt_nom_idx == 0) ?
+               5 : c_cfg->max_rtt_nom_idx;
+
+       min_rodt_ctl = (c_cfg->min_rodt_ctl == 0) ? 1 : c_cfg->min_rodt_ctl;
+       max_rodt_ctl = (c_cfg->max_rodt_ctl == 0) ? 5 : c_cfg->max_rodt_ctl;
+
+       s = lookup_env(priv, "ddr_min_rodt_ctl");
+       if (s)
+               min_rodt_ctl = simple_strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_max_rodt_ctl");
+       if (s)
+               max_rodt_ctl = simple_strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_min_rtt_nom_idx");
+       if (s)
+               min_rtt_nom_idx = simple_strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_max_rtt_nom_idx");
+       if (s)
+               max_rtt_nom_idx = simple_strtoul(s, NULL, 0);
+
+#ifdef ENABLE_HARDCODED_RLEVEL
+       if (c_cfg->rl_tbl) {
+               /* Check for hard-coded read-leveling settings */
+               get_dimm_part_number(part_number, &dimm_config_table[0],
+                                    0, ddr_type);
+               for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+                       if (!(rank_mask & (1 << rankx)))
+                               continue;
+
+                       rl_rank.u64 = lmc_rd(priv,
+                                            CVMX_LMCX_RLEVEL_RANKX(rankx,
+                                                                   if_num));
+
+                       i = 0;
+                       while (c_cfg->rl_tbl[i].part) {
+                               debug("DIMM part number:\"%s\", SPD: \"%s\"\n",
+                                     c_cfg->rl_tbl[i].part, part_number);
+                               if ((strcmp(part_number,
+                                           c_cfg->rl_tbl[i].part) == 0) &&
+                                   (abs(c_cfg->rl_tbl[i].speed -
+                                        2 * ddr_hertz / (1000 * 1000)) < 10)) {
+                                       debug("Using hard-coded read leveling for DIMM part number: \"%s\"\n",
+                                             part_number);
+                                       rl_rank.u64 =
+                                               c_cfg->rl_tbl[i].rl_rank[if_num][rankx];
+                                       lmc_wr(priv,
+                                              CVMX_LMCX_RLEVEL_RANKX(rankx,
+                                                                     if_num),
+                                              rl_rank.u64);
+                                       rl_rank.u64 =
+                                               lmc_rd(priv,
+                                                      CVMX_LMCX_RLEVEL_RANKX(rankx,
+                                                                             if_num));
+                                       display_rl(if_num, rl_rank, rankx);
+                                       /* Disable h/w read-leveling */
+                                       rl_dbg_loops = 0;
+                                       break;
+                               }
+                               ++i;
+                       }
+               }
+       }
+#endif /* ENABLE_HARDCODED_RLEVEL */
+
+       max_adj_rl_del_inc = c_cfg->maximum_adjacent_rlevel_delay_increment;
+       s = lookup_env(priv, "ddr_maximum_adjacent_rlevel_delay_increment");
+       if (s)
+               max_adj_rl_del_inc = strtoul(s, NULL, 0);
+
+       while (rl_dbg_loops--) {
+               union cvmx_lmcx_modereg_params1 mp1;
+               union cvmx_lmcx_comp_ctl2 cc2;
+
+               /* Initialize the error scoreboard */
+               memset(rl_score, 0, sizeof(rl_score));
+
+               cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+               saved_ddr__ptune = cc2.cn78xx.ddr__ptune;
+               saved_ddr__ntune = cc2.cn78xx.ddr__ntune;
+
+               /* Disable dynamic compensation settings */
+               if (rl_comp_offs != 0) {
+                       cc2.cn78xx.ptune = saved_ddr__ptune;
+                       cc2.cn78xx.ntune = saved_ddr__ntune;
+
+                       /*
+                        * Round up the ptune calculation to bias the odd
+                        * cases toward ptune
+                        */
+                       cc2.cn78xx.ptune += divide_roundup(rl_comp_offs, 2);
+                       cc2.cn78xx.ntune -= rl_comp_offs / 2;
+
+                       ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+                       saved_int_zqcs_dis = ctl.s.int_zqcs_dis;
+                       /* Disable ZQCS while in bypass. */
+                       ctl.s.int_zqcs_dis = 1;
+                       lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64);
+
+                       cc2.cn78xx.byp = 1; /* Enable bypass mode */
+                       lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
+                       lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+                       /* Read again */
+                       cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+                       debug("DDR__PTUNE/DDR__NTUNE                         : %d/%d\n",
+                             cc2.cn78xx.ddr__ptune, cc2.cn78xx.ddr__ntune);
+               }
+
+               mp1.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num));
+
+               for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx;
+                    ++rtt_idx) {
+                       rtt_nom = imp_val->rtt_nom_table[rtt_idx];
+
+                       /*
+                        * When the read ODT mask is zero the dyn_rtt_nom_mask
+                        * is zero than RTT_NOM will not be changing during
+                        * read-leveling.  Since the value is fixed we only need
+                        * to test it once.
+                        */
+                       if (dyn_rtt_nom_mask == 0) {
+                               // flag not to print NOM ohms
+                               print_nom_ohms = -1;
+                       } else {
+                               if (dyn_rtt_nom_mask & 1)
+                                       mp1.s.rtt_nom_00 = rtt_nom;
+                               if (dyn_rtt_nom_mask & 2)
+                                       mp1.s.rtt_nom_01 = rtt_nom;
+                               if (dyn_rtt_nom_mask & 4)
+                                       mp1.s.rtt_nom_10 = rtt_nom;
+                               if (dyn_rtt_nom_mask & 8)
+                                       mp1.s.rtt_nom_11 = rtt_nom;
+                               // FIXME? rank 0 ohms always?
+                               print_nom_ohms =
+                                       imp_val->rtt_nom_ohms[mp1.s.rtt_nom_00];
+                       }
+
+                       lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num),
+                              mp1.u64);
+
+                       if (print_nom_ohms >= 0 && rl_print > 1) {
+                               debug("\n");
+                               debug("RTT_NOM     %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
+                                     imp_val->rtt_nom_ohms[mp1.s.rtt_nom_11],
+                                     imp_val->rtt_nom_ohms[mp1.s.rtt_nom_10],
+                                     imp_val->rtt_nom_ohms[mp1.s.rtt_nom_01],
+                                     imp_val->rtt_nom_ohms[mp1.s.rtt_nom_00],
+                                     mp1.s.rtt_nom_11,
+                                     mp1.s.rtt_nom_10,
+                                     mp1.s.rtt_nom_01,
+                                     mp1.s.rtt_nom_00);
+                       }
+
+                       ddr_init_seq(priv, rank_mask, if_num);
+
+                       // Try RANK outside RODT to rearrange the output...
+                       for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+                               if (!(rank_mask & (1 << rankx)))
+                                       continue;
+
+                               for (rodt_ctl = max_rodt_ctl;
+                                    rodt_ctl >= min_rodt_ctl; --rodt_ctl)
+                                       rodt_loop(priv, rankx, rl_score);
+                       }
+               }
+
+               /* Re-enable dynamic compensation settings. */
+               if (rl_comp_offs != 0) {
+                       cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+
+                       cc2.cn78xx.ptune = 0;
+                       cc2.cn78xx.ntune = 0;
+                       cc2.cn78xx.byp = 0; /* Disable bypass mode */
+                       lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
+                       /* Read once */
+                       lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+
+                       /* Read again */
+                       cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+                       debug("DDR__PTUNE/DDR__NTUNE                         : %d/%d\n",
+                             cc2.cn78xx.ddr__ptune, cc2.cn78xx.ddr__ntune);
+
+                       ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+                       /* Restore original setting */
+                       ctl.s.int_zqcs_dis = saved_int_zqcs_dis;
+                       lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64);
+               }
+
+               int override_compensation = 0;
+
+               s = lookup_env(priv, "ddr__ptune");
+               if (s)
+                       saved_ddr__ptune = strtoul(s, NULL, 0);
+
+               s = lookup_env(priv, "ddr__ntune");
+               if (s) {
+                       saved_ddr__ntune = strtoul(s, NULL, 0);
+                       override_compensation = 1;
+               }
+
+               if (override_compensation) {
+                       cc2.cn78xx.ptune = saved_ddr__ptune;
+                       cc2.cn78xx.ntune = saved_ddr__ntune;
+
+                       ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+                       saved_int_zqcs_dis = ctl.s.int_zqcs_dis;
+                       /* Disable ZQCS while in bypass. */
+                       ctl.s.int_zqcs_dis = 1;
+                       lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64);
+
+                       cc2.cn78xx.byp = 1; /* Enable bypass mode */
+                       lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
+                       /* Read again */
+                       cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+
+                       debug("DDR__PTUNE/DDR__NTUNE                         : %d/%d\n",
+                             cc2.cn78xx.ptune, cc2.cn78xx.ntune);
+               }
+
+               /* Evaluation block */
+               /* Still at initial value? */
+               int best_rodt_score = DEFAULT_BEST_RANK_SCORE;
+               int auto_rodt_ctl = 0;
+               int auto_rtt_nom  = 0;
+               int rodt_score;
+
+               rodt_row_skip_mask = 0;
+
+               // just add specific RODT rows to the skip mask for DDR4
+               // at this time...
+               if (ddr_type == DDR4_DRAM) {
+                       // skip RODT row 34 ohms for all DDR4 types
+                       rodt_row_skip_mask |= (1 << ddr4_rodt_ctl_34_ohm);
+                       // skip RODT row 40 ohms for all DDR4 types
+                       rodt_row_skip_mask |= (1 << ddr4_rodt_ctl_40_ohm);
+                       // For now, do not skip RODT row 40 or 48 ohm when
+                       // ddr_hertz is above 1075 MHz
+                       if (ddr_hertz > 1075000000) {
+                               // noskip RODT row 40 ohms
+                               rodt_row_skip_mask &=
+                                       ~(1 << ddr4_rodt_ctl_40_ohm);
+                               // noskip RODT row 48 ohms
+                               rodt_row_skip_mask &=
+                                       ~(1 << ddr4_rodt_ctl_48_ohm);
+                       }
+                       // For now, do not skip RODT row 48 ohm for 2Rx4
+                       // stacked die DIMMs
+                       if (is_stacked_die && num_ranks == 2 &&
+                           dram_width == 4) {
+                               // noskip RODT row 48 ohms
+                               rodt_row_skip_mask &=
+                                       ~(1 << ddr4_rodt_ctl_48_ohm);
+                       }
+                       // for now, leave all rows eligible when we have
+                       // mini-DIMMs...
+                       if (spd_dimm_type == 5 || spd_dimm_type == 6)
+                               rodt_row_skip_mask = 0;
+                       // for now, leave all rows eligible when we have
+                       // a 2-slot 1-rank config
+                       if (dimm_count == 2 && num_ranks == 1)
+                               rodt_row_skip_mask = 0;
+
+                       debug("Evaluating Read-Leveling Scoreboard for AUTO settings.\n");
+                       for (rtt_idx = min_rtt_nom_idx;
+                            rtt_idx <= max_rtt_nom_idx; ++rtt_idx) {
+                               rtt_nom = imp_val->rtt_nom_table[rtt_idx];
+
+                               for (rodt_ctl = max_rodt_ctl;
+                                    rodt_ctl >= min_rodt_ctl; --rodt_ctl) {
+                                       rodt_score = 0;
+                                       for (rankx = 0; rankx < dimm_count * 4;
+                                            rankx++) {
+                                               if (!(rank_mask & (1 << rankx)))
+                                                       continue;
+
+                                               debug("rl_score[rtt_nom=%d][rodt_ctl=%d][rankx=%d].score:%d\n",
+                                                     rtt_nom, rodt_ctl, rankx,
+                                                     rl_score[rtt_nom][rodt_ctl][rankx].score);
+                                               rodt_score +=
+                                                       rl_score[rtt_nom][rodt_ctl][rankx].score;
+                                       }
+                                       // FIXME: do we need to skip RODT rows
+                                       // here, like we do below in the
+                                       // by-RANK settings?
+
+                                       /*
+                                        * When using automatic ODT settings use
+                                        * the ODT settings associated with the
+                                        * best score for all of the tested ODT
+                                        * combinations.
+                                        */
+
+                                       if (rodt_score < best_rodt_score ||
+                                           (rodt_score == best_rodt_score &&
+                                            (imp_val->rodt_ohms[rodt_ctl] >
+                                             imp_val->rodt_ohms[auto_rodt_ctl]))) {
+                                               debug("AUTO: new best score for rodt:%d (%d), new score:%d, previous score:%d\n",
+                                                     rodt_ctl,
+                                                     imp_val->rodt_ohms[rodt_ctl],
+                                                     rodt_score,
+                                                     best_rodt_score);
+                                               best_rodt_score = rodt_score;
+                                               auto_rodt_ctl   = rodt_ctl;
+                                               auto_rtt_nom    = rtt_nom;
+                                       }
+                               }
+                       }
+
+                       mp1.u64 = lmc_rd(priv,
+                                        CVMX_LMCX_MODEREG_PARAMS1(if_num));
+
+                       if (ddr_rtt_nom_auto) {
+                               /* Store the automatically set RTT_NOM value */
+                               if (dyn_rtt_nom_mask & 1)
+                                       mp1.s.rtt_nom_00 = auto_rtt_nom;
+                               if (dyn_rtt_nom_mask & 2)
+                                       mp1.s.rtt_nom_01 = auto_rtt_nom;
+                               if (dyn_rtt_nom_mask & 4)
+                                       mp1.s.rtt_nom_10 = auto_rtt_nom;
+                               if (dyn_rtt_nom_mask & 8)
+                                       mp1.s.rtt_nom_11 = auto_rtt_nom;
+                       } else {
+                               /*
+                                * restore the manual settings to the register
+                                */
+                               mp1.s.rtt_nom_00 = default_rtt_nom[0];
+                               mp1.s.rtt_nom_01 = default_rtt_nom[1];
+                               mp1.s.rtt_nom_10 = default_rtt_nom[2];
+                               mp1.s.rtt_nom_11 = default_rtt_nom[3];
+                       }
+
+                       lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num),
+                              mp1.u64);
+                       debug("RTT_NOM     %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
+                             imp_val->rtt_nom_ohms[mp1.s.rtt_nom_11],
+                             imp_val->rtt_nom_ohms[mp1.s.rtt_nom_10],
+                             imp_val->rtt_nom_ohms[mp1.s.rtt_nom_01],
+                             imp_val->rtt_nom_ohms[mp1.s.rtt_nom_00],
+                             mp1.s.rtt_nom_11,
+                             mp1.s.rtt_nom_10,
+                             mp1.s.rtt_nom_01,
+                             mp1.s.rtt_nom_00);
+
+                       debug("RTT_WR      %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
+                             imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 3)],
+                             imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 2)],
+                             imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 1)],
+                             imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 0)],
+                             extr_wr(mp1.u64, 3),
+                             extr_wr(mp1.u64, 2),
+                             extr_wr(mp1.u64, 1),
+                             extr_wr(mp1.u64, 0));
+
+                       debug("DIC         %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
+                             imp_val->dic_ohms[mp1.s.dic_11],
+                             imp_val->dic_ohms[mp1.s.dic_10],
+                             imp_val->dic_ohms[mp1.s.dic_01],
+                             imp_val->dic_ohms[mp1.s.dic_00],
+                             mp1.s.dic_11,
+                             mp1.s.dic_10,
+                             mp1.s.dic_01,
+                             mp1.s.dic_00);
+
+                       if (ddr_type == DDR4_DRAM) {
+                               union cvmx_lmcx_modereg_params2 mp2;
+                               /*
+                                * We must read the CSR, and not depend on
+                                * odt_config[odt_idx].odt_mask2, since we could
+                                * have overridden values with envvars.
+                                * NOTE: this corrects the printout, since the
+                                * CSR is not written with the old values...
+                                */
+                               mp2.u64 = lmc_rd(priv,
+                                                CVMX_LMCX_MODEREG_PARAMS2(if_num));
+
+                               debug("RTT_PARK    %3d, %3d, %3d, %3d ohms           :  %x,%x,%x,%x\n",
+                                     imp_val->rtt_nom_ohms[mp2.s.rtt_park_11],
+                                     imp_val->rtt_nom_ohms[mp2.s.rtt_park_10],
+                                     imp_val->rtt_nom_ohms[mp2.s.rtt_park_01],
+                                     imp_val->rtt_nom_ohms[mp2.s.rtt_park_00],
+                                     mp2.s.rtt_park_11,
+                                     mp2.s.rtt_park_10,
+                                     mp2.s.rtt_park_01,
+                                     mp2.s.rtt_park_00);
+
+                               debug("%-45s :  0x%x,0x%x,0x%x,0x%x\n",
+                                     "VREF_RANGE",
+                                     mp2.s.vref_range_11,
+                                     mp2.s.vref_range_10,
+                                     mp2.s.vref_range_01,
+                                     mp2.s.vref_range_00);
+
+                               debug("%-45s :  0x%x,0x%x,0x%x,0x%x\n",
+                                     "VREF_VALUE",
+                                     mp2.s.vref_value_11,
+                                     mp2.s.vref_value_10,
+                                     mp2.s.vref_value_01,
+                                     mp2.s.vref_value_00);
+                       }
+
+                       cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+                       if (ddr_rodt_ctl_auto) {
+                               cc2.cn78xx.rodt_ctl = auto_rodt_ctl;
+                       } else {
+                               // back to the original setting
+                               cc2.cn78xx.rodt_ctl = default_rodt_ctl;
+                       }
+                       lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
+                       cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
+                       debug("Read ODT_CTL                                  : 0x%x (%d ohms)\n",
+                             cc2.cn78xx.rodt_ctl,
+                             imp_val->rodt_ohms[cc2.cn78xx.rodt_ctl]);
+
+                       /*
+                        * Use the delays associated with the best score for
+                        * each individual rank
+                        */
+                       debug("Evaluating Read-Leveling Scoreboard for per-RANK settings.\n");
+
+                       // this is the the RANK MAJOR LOOP
+                       for (rankx = 0; rankx < dimm_count * 4; rankx++)
+                               rank_major_loop(priv, rankx, rl_score);
+               }  /* Evaluation block */
+       } /* while(rl_dbg_loops--) */
+
+       ctl.cn78xx.ddr2t = save_ddr2t;
+       lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64);
+       ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+       /* Display final 2T value */
+       debug("DDR2T                                         : %6d\n",
+             ctl.cn78xx.ddr2t);
+
+       ddr_init_seq(priv, rank_mask, if_num);
+
+       for (rankx = 0; rankx < dimm_count * 4; rankx++) {
+               u64 value;
+               int parameter_set = 0;
+
+               if (!(rank_mask & (1 << rankx)))
+                       continue;
+
+               rl_rank.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx,
+                                                                 if_num));
+
+               for (i = 0; i < 9; ++i) {
+                       s = lookup_env(priv, "ddr%d_rlevel_rank%d_byte%d",
+                                      if_num, rankx, i);
+                       if (s) {
+                               parameter_set |= 1;
+                               value = simple_strtoul(s, NULL, 0);
+
+                               upd_rl_rank(&rl_rank, i, value);
+                       }
+               }
+
+               s = lookup_env_ull(priv, "ddr%d_rlevel_rank%d", if_num, rankx);
+               if (s) {
+                       parameter_set |= 1;
+                       value = simple_strtoull(s, NULL, 0);
+                       rl_rank.u64 = value;
+               }
+
+               if (parameter_set) {
+                       lmc_wr(priv,
+                              CVMX_LMCX_RLEVEL_RANKX(rankx, if_num),
+                              rl_rank.u64);
+                       rl_rank.u64 = lmc_rd(priv,
+                                            CVMX_LMCX_RLEVEL_RANKX(rankx,
+                                                                   if_num));
+                       display_rl(if_num, rl_rank, rankx);
+               }
+       }
+}
+
+int init_octeon3_ddr3_interface(struct ddr_priv *priv,
+                               struct ddr_conf *_ddr_conf, u32 _ddr_hertz,
+                               u32 cpu_hertz, u32 ddr_ref_hertz, int _if_num,
+                               u32 _if_mask)
+{
+       union cvmx_lmcx_control ctrl;
+       int ret;
+       char *s;
+       int i;
+
+       if_num = _if_num;
+       ddr_hertz = _ddr_hertz;
+       ddr_conf = _ddr_conf;
+       if_mask = _if_mask;
+       odt_1rank_config = ddr_conf->odt_1rank_config;
+       odt_2rank_config = ddr_conf->odt_2rank_config;
+       odt_4rank_config = ddr_conf->odt_4rank_config;
+       dimm_config_table = ddr_conf->dimm_config_table;
+       c_cfg = &ddr_conf->custom_lmc_config;
+
+       /*
+        * Compute clock rates to the nearest picosecond.
+        */
+       tclk_psecs = hertz_to_psecs(ddr_hertz); /* Clock in psecs */
+       eclk_psecs = hertz_to_psecs(cpu_hertz); /* Clock in psecs */
+
+       dimm_count = 0;
+       /* Accumulate and report all the errors before giving up */
+       fatal_error = 0;
+
+       /* Flag that indicates safe DDR settings should be used */
+       safe_ddr_flag = 0;
+       if_64b = 1;             /* Octeon II Default: 64bit interface width */
+       mem_size_mbytes = 0;
+       bank_bits = 0;
+       column_bits_start = 1;
+       use_ecc = 1;
+       min_cas_latency = 0, max_cas_latency = 0, override_cas_latency = 0;
+       spd_package = 0;
+       spd_rawcard = 0;
+       spd_rawcard_aorb = 0;
+       spd_rdimm_registers = 0;
+       is_stacked_die = 0;
+       is_3ds_dimm = 0;        // 3DS
+       lranks_per_prank = 1;   // 3DS: logical ranks per package rank
+       lranks_bits = 0;        // 3DS: logical ranks bits
+       die_capacity = 0;       // in Mbits; only used for 3DS
+
+       wl_mask_err = 0;
+       dyn_rtt_nom_mask = 0;
+       ddr_disable_chip_reset = 1;
+       match_wl_rtt_nom = 0;
+
+       internal_retries = 0;
+
+       disable_deskew_training = 0;
+       restart_if_dsk_incomplete = 0;
+       last_lane = ((if_64b) ? 8 : 4) + use_ecc;
+
+       disable_sequential_delay_check = 0;
+       wl_print = WLEVEL_PRINTALL_DEFAULT;
+
+       enable_by_rank_init = 1;        // FIXME: default by-rank ON
+       saved_rank_mask = 0;
+
+       node = 0;
+
+       memset(hwl_alts, 0, sizeof(hwl_alts));
+
+       /*
+        * Initialize these to shut up the compiler. They are configured
+        * and used only for DDR4
+        */
+       ddr4_trrd_lmin = 6000;
+       ddr4_tccd_lmin = 6000;
+
+       debug("\nInitializing node %d DDR interface %d, DDR Clock %d, DDR Reference Clock %d, CPUID 0x%08x\n",
+             node, if_num, ddr_hertz, ddr_ref_hertz, read_c0_prid());
+
+       if (dimm_config_table[0].spd_addrs[0] == 0 &&
+           !dimm_config_table[0].spd_ptrs[0]) {
+               printf("ERROR: No dimms specified in the dimm_config_table.\n");
+               return -1;
+       }
+
+       // allow some overrides to be done
+
+       // this one controls several things related to DIMM geometry: HWL and RL
+       disable_sequential_delay_check = c_cfg->disable_sequential_delay_check;
+       s = lookup_env(priv, "ddr_disable_sequential_delay_check");
+       if (s)
+               disable_sequential_delay_check = strtoul(s, NULL, 0);
+
+       // this one controls whether chip RESET is done, or LMC init restarted
+       // from step 6.9.6
+       s = lookup_env(priv, "ddr_disable_chip_reset");
+       if (s)
+               ddr_disable_chip_reset = !!strtoul(s, NULL, 0);
+
+       // this one controls whether Deskew Training is performed
+       s = lookup_env(priv, "ddr_disable_deskew_training");
+       if (s)
+               disable_deskew_training = !!strtoul(s, NULL, 0);
+
+       if (ddr_verbose(priv)) {
+               printf("DDR SPD Table:");
+               for (didx = 0; didx < DDR_CFG_T_MAX_DIMMS; ++didx) {
+                       if (dimm_config_table[didx].spd_addrs[0] == 0)
+                               break;
+
+                       printf(" --ddr%dspd=0x%02x", if_num,
+                              dimm_config_table[didx].spd_addrs[0]);
+                       if (dimm_config_table[didx].spd_addrs[1] != 0)
+                               printf(",0x%02x",
+                                      dimm_config_table[didx].spd_addrs[1]);
+               }
+               printf("\n");
+       }
+
+       /*
+        * Walk the DRAM Socket Configuration Table to see what is installed.
+        */
+       for (didx = 0; didx < DDR_CFG_T_MAX_DIMMS; ++didx) {
+               /* Check for lower DIMM socket populated */
+               if (validate_dimm(priv, &dimm_config_table[didx], 0)) {
+                       if (ddr_verbose(priv))
+                               report_dimm(&dimm_config_table[didx], 0,
+                                           dimm_count, if_num);
+                       ++dimm_count;
+               } else {
+                       break;
+               }               /* Finished when there is no lower DIMM */
+       }
+
+       initialize_ddr_clock(priv, ddr_conf, cpu_hertz, ddr_hertz,
+                            ddr_ref_hertz, if_num, if_mask);
+
+       if (!odt_1rank_config)
+               odt_1rank_config = disable_odt_config;
+       if (!odt_2rank_config)
+               odt_2rank_config = disable_odt_config;
+       if (!odt_4rank_config)
+               odt_4rank_config = disable_odt_config;
+
+       s = env_get("ddr_safe");
+       if (s) {
+               safe_ddr_flag = !!simple_strtoul(s, NULL, 0);
+               printf("Parameter found in environment. ddr_safe = %d\n",
+                      safe_ddr_flag);
+       }
+
+       if (dimm_count == 0) {
+               printf("ERROR: DIMM 0 not detected.\n");
+               return (-1);
+       }
+
+       if (c_cfg->mode32b)
+               if_64b = 0;
+
+       s = lookup_env(priv, "if_64b");
+       if (s)
+               if_64b = !!simple_strtoul(s, NULL, 0);
+
+       if (if_64b == 1) {
+               if (octeon_is_cpuid(OCTEON_CN70XX)) {
+                       printf("64-bit interface width is not supported for this Octeon model\n");
+                       ++fatal_error;
+               }
+       }
+
+       /* ddr_type only indicates DDR4 or DDR3 */
+       ddr_type = (read_spd(&dimm_config_table[0], 0,
+                            DDR4_SPD_KEY_BYTE_DEVICE_TYPE) == 0x0C) ? 4 : 3;
+       debug("DRAM Device Type: DDR%d\n", ddr_type);
+
+       if (ddr_type == DDR4_DRAM) {
+               int spd_module_type;
+               int asymmetric;
+               const char *signal_load[4] = { "", "MLS", "3DS", "RSV" };
+
+               imp_val = &ddr4_impedence_val;
+
+               spd_addr =
+                   read_spd(&dimm_config_table[0], 0,
+                            DDR4_SPD_ADDRESSING_ROW_COL_BITS);
+               spd_org =
+                   read_spd(&dimm_config_table[0], 0,
+                            DDR4_SPD_MODULE_ORGANIZATION);
+               spd_banks =
+                   0xFF & read_spd(&dimm_config_table[0], 0,
+                                   DDR4_SPD_DENSITY_BANKS);
+
+               bank_bits =
+                   (2 + ((spd_banks >> 4) & 0x3)) + ((spd_banks >> 6) & 0x3);
+               /* Controller can only address 4 bits. */
+               bank_bits = min((int)bank_bits, 4);
+
+               spd_package =
+                   0XFF & read_spd(&dimm_config_table[0], 0,
+                                   DDR4_SPD_PACKAGE_TYPE);
+               if (spd_package & 0x80) {       // non-monolithic device
+                       is_stacked_die = ((spd_package & 0x73) == 0x11);
+                       debug("DDR4: Package Type 0x%02x (%s), %d die\n",
+                             spd_package, signal_load[(spd_package & 3)],
+                             ((spd_package >> 4) & 7) + 1);
+                       is_3ds_dimm = ((spd_package & 3) == 2); // is it 3DS?
+                       if (is_3ds_dimm) {      // is it 3DS?
+                               lranks_per_prank = ((spd_package >> 4) & 7) + 1;
+                               // FIXME: should make sure it is only 2H or 4H
+                               // or 8H?
+                               lranks_bits = lranks_per_prank >> 1;
+                               if (lranks_bits == 4)
+                                       lranks_bits = 3;
+                       }
+               } else if (spd_package != 0) {
+                       // FIXME: print non-zero monolithic device definition
+                       debug("DDR4: Package Type MONOLITHIC: %d die, signal load %d\n",
+                             ((spd_package >> 4) & 7) + 1, (spd_package & 3));
+               }
+
+               asymmetric = (spd_org >> 6) & 1;
+               if (asymmetric) {
+                       int spd_secondary_pkg =
+                           read_spd(&dimm_config_table[0], 0,
+                                    DDR4_SPD_SECONDARY_PACKAGE_TYPE);
+                       debug("DDR4: Module Organization: ASYMMETRICAL: Secondary Package Type 0x%02x\n",
+                             spd_secondary_pkg);
+               } else {
+                       u64 bus_width =
+                               8 << (0x07 &
+                               read_spd(&dimm_config_table[0], 0,
+                                        DDR4_SPD_MODULE_MEMORY_BUS_WIDTH));
+                       u64 ddr_width = 4 << ((spd_org >> 0) & 0x7);
+                       u64 module_cap;
+                       int shift = (spd_banks & 0x0F);
+
+                       die_capacity = (shift < 8) ? (256UL << shift) :
+                               ((12UL << (shift & 1)) << 10);
+                       debug("DDR4: Module Organization: SYMMETRICAL: capacity per die %d %cbit\n",
+                             (die_capacity > 512) ? (die_capacity >> 10) :
+                             die_capacity, (die_capacity > 512) ? 'G' : 'M');
+                       module_cap = ((u64)die_capacity << 20) / 8UL *
+                               bus_width / ddr_width *
+                               (1UL + ((spd_org >> 3) & 0x7));
+
+                       // is it 3DS?
+                       if (is_3ds_dimm) {
+                               module_cap *= (u64)(((spd_package >> 4) & 7) +
+                                                   1);
+                       }
+                       debug("DDR4: Module Organization: SYMMETRICAL: capacity per module %lld GB\n",
+                             module_cap >> 30);
+               }
+
+               spd_rawcard =
+                   0xFF & read_spd(&dimm_config_table[0], 0,
+                                   DDR4_SPD_REFERENCE_RAW_CARD);
+               debug("DDR4: Reference Raw Card 0x%02x\n", spd_rawcard);
+
+               spd_module_type =
+                   read_spd(&dimm_config_table[0], 0,
+                            DDR4_SPD_KEY_BYTE_MODULE_TYPE);
+               if (spd_module_type & 0x80) {   // HYBRID module
+                       debug("DDR4: HYBRID module, type %s\n",
+                             ((spd_module_type & 0x70) ==
+                              0x10) ? "NVDIMM" : "UNKNOWN");
+               }
+               spd_thermal_sensor =
+                   read_spd(&dimm_config_table[0], 0,
+                            DDR4_SPD_MODULE_THERMAL_SENSOR);
+               spd_dimm_type = spd_module_type & 0x0F;
+               spd_rdimm = (spd_dimm_type == 1) || (spd_dimm_type == 5) ||
+                       (spd_dimm_type == 8);
+               if (spd_rdimm) {
+                       u16 spd_mfgr_id, spd_register_rev, spd_mod_attr;
+                       static const u16 manu_ids[4] = {
+                               0xb380, 0x3286, 0x9780, 0xb304
+                       };
+                       static const char *manu_names[4] = {
+                               "XXX", "XXXXXXX", "XX", "XXXXX"
+                       };
+                       int mc;
+
+                       spd_mfgr_id =
+                           (0xFFU &
+                            read_spd(&dimm_config_table[0], 0,
+                                     DDR4_SPD_REGISTER_MANUFACTURER_ID_LSB)) |
+                           ((0xFFU &
+                             read_spd(&dimm_config_table[0], 0,
+                                      DDR4_SPD_REGISTER_MANUFACTURER_ID_MSB))
+                            << 8);
+                       spd_register_rev =
+                           0xFFU & read_spd(&dimm_config_table[0], 0,
+                                            DDR4_SPD_REGISTER_REVISION_NUMBER);
+                       for (mc = 0; mc < 4; mc++)
+                               if (manu_ids[mc] == spd_mfgr_id)
+                                       break;
+
+                       debug("DDR4: RDIMM Register Manufacturer ID: %s, Revision: 0x%02x\n",
+                             (mc >= 4) ? "UNKNOWN" : manu_names[mc],
+                             spd_register_rev);
+
+                       // RAWCARD A or B must be bit 7=0 and bits 4-0
+                       // either 00000(A) or 00001(B)
+                       spd_rawcard_aorb = ((spd_rawcard & 0x9fUL) <= 1);
+                       // RDIMM Module Attributes
+                       spd_mod_attr =
+                           0xFFU & read_spd(&dimm_config_table[0], 0,
+                                       DDR4_SPD_UDIMM_ADDR_MAPPING_FROM_EDGE);
+                       spd_rdimm_registers = ((1 << (spd_mod_attr & 3)) >> 1);
+                       debug("DDR4: RDIMM Module Attributes (0x%02x): Register Type DDR4RCD%02d, DRAM rows %d, Registers %d\n",
+                             spd_mod_attr, (spd_mod_attr >> 4) + 1,
+                             ((1 << ((spd_mod_attr >> 2) & 3)) >> 1),
+                             spd_rdimm_registers);
+               }
+               dimm_type_name = ddr4_dimm_types[spd_dimm_type];
+       } else {                /* if (ddr_type == DDR4_DRAM) */
+               const char *signal_load[4] = { "UNK", "MLS", "SLS", "RSV" };
+
+               imp_val = &ddr3_impedence_val;
+
+               spd_addr =
+                   read_spd(&dimm_config_table[0], 0,
+                            DDR3_SPD_ADDRESSING_ROW_COL_BITS);
+               spd_org =
+                   read_spd(&dimm_config_table[0], 0,
+                            DDR3_SPD_MODULE_ORGANIZATION);
+               spd_banks =
+                   read_spd(&dimm_config_table[0], 0,
+                            DDR3_SPD_DENSITY_BANKS) & 0xff;
+
+               bank_bits = 3 + ((spd_banks >> 4) & 0x7);
+               /* Controller can only address 3 bits. */
+               bank_bits = min((int)bank_bits, 3);
+               spd_dimm_type =
+                   0x0f & read_spd(&dimm_config_table[0], 0,
+                                   DDR3_SPD_KEY_BYTE_MODULE_TYPE);
+               spd_rdimm = (spd_dimm_type == 1) || (spd_dimm_type == 5) ||
+                       (spd_dimm_type == 9);
+
+               spd_package =
+                   0xFF & read_spd(&dimm_config_table[0], 0,
+                                   DDR3_SPD_SDRAM_DEVICE_TYPE);
+               if (spd_package & 0x80) {       // non-standard device
+                       debug("DDR3: Device Type 0x%02x (%s), %d die\n",
+                             spd_package, signal_load[(spd_package & 3)],
+                             ((1 << ((spd_package >> 4) & 7)) >> 1));
+               } else if (spd_package != 0) {
+                       // FIXME: print non-zero monolithic device definition
+                       debug("DDR3: Device Type MONOLITHIC: %d die, signal load %d\n",
+                             ((1 << (spd_package >> 4) & 7) >> 1),
+                             (spd_package & 3));
+               }
+
+               spd_rawcard =
+                   0xFF & read_spd(&dimm_config_table[0], 0,
+                                   DDR3_SPD_REFERENCE_RAW_CARD);
+               debug("DDR3: Reference Raw Card 0x%02x\n", spd_rawcard);
+               spd_thermal_sensor =
+                   read_spd(&dimm_config_table[0], 0,
+                            DDR3_SPD_MODULE_THERMAL_SENSOR);
+
+               if (spd_rdimm) {
+                       int spd_mfgr_id, spd_register_rev, spd_mod_attr;
+
+                       spd_mfgr_id =
+                           (0xFFU &
+                            read_spd(&dimm_config_table[0], 0,
+                                     DDR3_SPD_REGISTER_MANUFACTURER_ID_LSB)) |
+                           ((0xFFU &
+                             read_spd(&dimm_config_table[0], 0,
+                                      DDR3_SPD_REGISTER_MANUFACTURER_ID_MSB))
+                            << 8);
+                       spd_register_rev =
+                           0xFFU & read_spd(&dimm_config_table[0], 0,
+                                            DDR3_SPD_REGISTER_REVISION_NUMBER);
+                       debug("DDR3: RDIMM Register Manufacturer ID 0x%x Revision 0x%02x\n",
+                             spd_mfgr_id, spd_register_rev);
+                       // Module Attributes
+                       spd_mod_attr =
+                           0xFFU & read_spd(&dimm_config_table[0], 0,
+                                            DDR3_SPD_ADDRESS_MAPPING);
+                       spd_rdimm_registers = ((1 << (spd_mod_attr & 3)) >> 1);
+                       debug("DDR3: RDIMM Module Attributes (0x%02x): DRAM rows %d, Registers %d\n",
+                             spd_mod_attr,
+                             ((1 << ((spd_mod_attr >> 2) & 3)) >> 1),
+                             spd_rdimm_registers);
+               }
+               dimm_type_name = ddr3_dimm_types[spd_dimm_type];
+       }
+
+       if (spd_thermal_sensor & 0x80) {
+               debug("DDR%d: SPD: Thermal Sensor PRESENT\n",
+                     (ddr_type == DDR4_DRAM) ? 4 : 3);
+       }
+
+       debug("spd_addr        : %#06x\n", spd_addr);
+       debug("spd_org         : %#06x\n", spd_org);
+       debug("spd_banks       : %#06x\n", spd_banks);
+
+       row_bits = 12 + ((spd_addr >> 3) & 0x7);
+       col_bits = 9 + ((spd_addr >> 0) & 0x7);
+
+       num_ranks = 1 + ((spd_org >> 3) & 0x7);
+       dram_width = 4 << ((spd_org >> 0) & 0x7);
+       num_banks = 1 << bank_bits;
+
+       s = lookup_env(priv, "ddr_num_ranks");
+       if (s)
+               num_ranks = simple_strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_enable_by_rank_init");
+       if (s)
+               enable_by_rank_init = !!simple_strtoul(s, NULL, 0);
+
+       // FIXME: for now, we can only handle a DDR4 2rank-1slot config
+       // FIXME: also, by-rank init does not work correctly if 32-bit mode...
+       if (enable_by_rank_init && (ddr_type != DDR4_DRAM ||
+                                   dimm_count != 1 || if_64b != 1 ||
+                                   num_ranks != 2))
+               enable_by_rank_init = 0;
+
+       if (enable_by_rank_init) {
+               struct dimm_odt_config *odt_config;
+               union cvmx_lmcx_modereg_params1 mp1;
+               union cvmx_lmcx_modereg_params2 modereg_params2;
+               int by_rank_rodt, by_rank_wr, by_rank_park;
+
+               // Do ODT settings changes which work best for 2R-1S configs
+               debug("DDR4: 2R-1S special BY-RANK init ODT settings updated\n");
+
+               // setup for modifying config table values - 2 ranks and 1 DIMM
+               odt_config =
+                   (struct dimm_odt_config *)&ddr_conf->odt_2rank_config[0];
+
+               // original was 80, first try was 60
+               by_rank_rodt = ddr4_rodt_ctl_48_ohm;
+               s = lookup_env(priv, "ddr_by_rank_rodt");
+               if (s)
+                       by_rank_rodt = strtoul(s, NULL, 0);
+
+               odt_config->qs_dic = /*RODT_CTL */ by_rank_rodt;
+
+               // this is for MODEREG_PARAMS1 fields
+               // fetch the original settings
+               mp1.u64 = odt_config->modereg_params1.u64;
+
+               by_rank_wr = ddr4_rttwr_80ohm;  // originals were 240
+               s = lookup_env(priv, "ddr_by_rank_wr");
+               if (s)
+                       by_rank_wr = simple_strtoul(s, NULL, 0);
+
+               // change specific settings here...
+               insrt_wr(&mp1.u64, /*rank */ 00, by_rank_wr);
+               insrt_wr(&mp1.u64, /*rank */ 01, by_rank_wr);
+
+               // save final settings
+               odt_config->modereg_params1.u64 = mp1.u64;
+
+               // this is for MODEREG_PARAMS2 fields
+               // fetch the original settings
+               modereg_params2.u64 = odt_config->modereg_params2.u64;
+
+               by_rank_park = ddr4_rttpark_none;       // originals were 120
+               s = lookup_env(priv, "ddr_by_rank_park");
+               if (s)
+                       by_rank_park = simple_strtoul(s, NULL, 0);
+
+               // change specific settings here...
+               modereg_params2.s.rtt_park_00 = by_rank_park;
+               modereg_params2.s.rtt_park_01 = by_rank_park;
+
+               // save final settings
+               odt_config->modereg_params2.u64 = modereg_params2.u64;
+       }
+
+       /*
+        * FIX
+        * Check that values are within some theoretical limits.
+        * col_bits(min) = row_lsb(min) - bank_bits(max) - bus_bits(max) =
+        *   14 - 3 - 4 = 7
+        * col_bits(max) = row_lsb(max) - bank_bits(min) - bus_bits(min) =
+        *   18 - 2 - 3 = 13
+        */
+       if (col_bits > 13 || col_bits < 7) {
+               printf("Unsupported number of Col Bits: %d\n", col_bits);
+               ++fatal_error;
+       }
+
+       /*
+        * FIX
+        * Check that values are within some theoretical limits.
+        * row_bits(min) = pbank_lsb(min) - row_lsb(max) - rank_bits =
+        *   26 - 18 - 1 = 7
+        * row_bits(max) = pbank_lsb(max) - row_lsb(min) - rank_bits =
+        *   33 - 14 - 1 = 18
+        */
+       if (row_bits > 18 || row_bits < 7) {
+               printf("Unsupported number of Row Bits: %d\n", row_bits);
+               ++fatal_error;
+       }
+
+       s = lookup_env(priv, "ddr_rdimm_ena");
+       if (s)
+               spd_rdimm = !!simple_strtoul(s, NULL, 0);
+
+       wl_loops = WLEVEL_LOOPS_DEFAULT;
+       // accept generic or interface-specific override
+       s = lookup_env(priv, "ddr_wlevel_loops");
+       if (!s)
+               s = lookup_env(priv, "ddr%d_wlevel_loops", if_num);
+
+       if (s)
+               wl_loops = strtoul(s, NULL, 0);
+
+       s = lookup_env(priv, "ddr_ranks");
+       if (s)
+               num_ranks = simple_strtoul(s, NULL, 0);
+
+       bunk_enable = (num_ranks > 1);
+
+       if (octeon_is_cpuid(OCTEON_CN7XXX))
+               column_bits_start = 3;
+       else
+               printf("ERROR: Unsupported Octeon model: 0x%x\n",
+                      read_c0_prid());
+
+       row_lsb = column_bits_start + col_bits + bank_bits - (!if_64b);
+       debug("row_lsb = column_bits_start + col_bits + bank_bits = %d\n",
+             row_lsb);
+
+       pbank_lsb = row_lsb + row_bits + bunk_enable;
+       debug("pbank_lsb = row_lsb + row_bits + bunk_enable = %d\n", pbank_lsb);
+
+       if (lranks_per_prank > 1) {
+               pbank_lsb = row_lsb + row_bits + lranks_bits + bunk_enable;
+               debug("DDR4: 3DS: pbank_lsb = (%d row_lsb) + (%d row_bits) + (%d lranks_bits) + (%d bunk_enable) = %d\n",
+                     row_lsb, row_bits, lranks_bits, bunk_enable, pbank_lsb);
+       }
+
+       mem_size_mbytes = dimm_count * ((1ull << pbank_lsb) >> 20);
+       if (num_ranks == 4) {
+               /*
+                * Quad rank dimm capacity is equivalent to two dual-rank
+                * dimms.
+                */
+               mem_size_mbytes *= 2;
+       }
+
+       /*
+        * Mask with 1 bits set for for each active rank, allowing 2 bits
+        * per dimm. This makes later calculations simpler, as a variety
+        * of CSRs use this layout. This init needs to be updated for dual
+        * configs (ie non-identical DIMMs).
+        *
+        * Bit 0 = dimm0, rank 0
+        * Bit 1 = dimm0, rank 1
+        * Bit 2 = dimm1, rank 0
+        * Bit 3 = dimm1, rank 1
+        * ...
+        */
+       rank_mask = 0x1;
+       if (num_ranks > 1)
+               rank_mask = 0x3;
+       if (num_ranks > 2)
+               rank_mask = 0xf;
+
+       for (i = 1; i < dimm_count; i++)
+               rank_mask |= ((rank_mask & 0x3) << (2 * i));
+
+       /*
+        * If we are booting from RAM, the DRAM controller is
+        * already set up.  Just return the memory size
+        */
+       if (priv->flags & FLAG_RAM_RESIDENT) {
+               debug("Ram Boot: Skipping LMC config\n");
+               return mem_size_mbytes;
+       }
+
+       if (ddr_type == DDR4_DRAM) {
+               spd_ecc =
+                   !!(read_spd
+                      (&dimm_config_table[0], 0,
+                       DDR4_SPD_MODULE_MEMORY_BUS_WIDTH) & 8);
+       } else {
+               spd_ecc =
+                   !!(read_spd
+                      (&dimm_config_table[0], 0,
+                       DDR3_SPD_MEMORY_BUS_WIDTH) & 8);
+       }
+
+       char rank_spec[8];
+
+       printable_rank_spec(rank_spec, num_ranks, dram_width, spd_package);
+       debug("Summary: %d %s%s %s %s, row bits=%d, col bits=%d, bank bits=%d\n",
+             dimm_count, dimm_type_name, (dimm_count > 1) ? "s" : "",
+             rank_spec,
+             (spd_ecc) ? "ECC" : "non-ECC", row_bits, col_bits, bank_bits);
+
+       if (ddr_type == DDR4_DRAM) {
+               spd_cas_latency =
+                   ((0xff &
+                     read_spd(&dimm_config_table[0], 0,
+                              DDR4_SPD_CAS_LATENCIES_BYTE0)) << 0);
+               spd_cas_latency |=
+                   ((0xff &
+                     read_spd(&dimm_config_table[0], 0,
+                              DDR4_SPD_CAS_LATENCIES_BYTE1)) << 8);
+               spd_cas_latency |=
+                   ((0xff &
+                     read_spd(&dimm_config_table[0], 0,
+                              DDR4_SPD_CAS_LATENCIES_BYTE2)) << 16);
+               spd_cas_latency |=
+                   ((0xff &
+                     read_spd(&dimm_config_table[0], 0,
+                              DDR4_SPD_CAS_LATENCIES_BYTE3)) << 24);
+       } else {
+               spd_cas_latency =
+                   0xff & read_spd(&dimm_config_table[0], 0,
+                                   DDR3_SPD_CAS_LATENCIES_LSB);
+               spd_cas_latency |=
+                   ((0xff &
+                     read_spd(&dimm_config_table[0], 0,
+                              DDR3_SPD_CAS_LATENCIES_MSB)) << 8);
+       }
+       debug("spd_cas_latency : %#06x\n", spd_cas_latency);
+
+       if (ddr_type == DDR4_DRAM) {
+               /*
+                * No other values for DDR4 MTB and FTB are specified at the
+                * current time so don't bother reading them. Can't speculate
+                * how new values will be represented.
+                */
+               int spdmtb = 125;
+               int spdftb = 1;
+
+               taamin = spdmtb * read_spd(&dimm_config_table[0], 0,
+                                          DDR4_SPD_MIN_CAS_LATENCY_TAAMIN) +
+                        spdftb * (signed char)read_spd(&dimm_config_table[0],
+                        0, DDR4_SPD_MIN_CAS_LATENCY_FINE_TAAMIN);
+
+               ddr4_tckavgmin = spdmtb * read_spd(&dimm_config_table[0], 0,
+                       DDR4_SPD_MINIMUM_CYCLE_TIME_TCKAVGMIN) +
+                       spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
+                       DDR4_SPD_MIN_CYCLE_TIME_FINE_TCKAVGMIN);
+
+               ddr4_tckavgmax = spdmtb * read_spd(&dimm_config_table[0], 0,
+                       DDR4_SPD_MAXIMUM_CYCLE_TIME_TCKAVGMAX) +
+                       spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
+                       DDR4_SPD_MAX_CYCLE_TIME_FINE_TCKAVGMAX);
+
+               ddr4_trdcmin = spdmtb * read_spd(&dimm_config_table[0], 0,
+                       DDR4_SPD_MIN_RAS_CAS_DELAY_TRCDMIN) +
+                       spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
+                       DDR4_SPD_MIN_RAS_TO_CAS_DELAY_FINE_TRCDMIN);
+
+               ddr4_trpmin = spdmtb * read_spd(&dimm_config_table[0], 0,
+                       DDR4_SPD_MIN_ROW_PRECHARGE_DELAY_TRPMIN) +
+                       spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
+                       DDR4_SPD_MIN_ROW_PRECHARGE_DELAY_FINE_TRPMIN);
+
+               ddr4_trasmin = spdmtb *
+                       (((read_spd
+                          (&dimm_config_table[0], 0,
+                           DDR4_SPD_UPPER_NIBBLES_TRAS_TRC) & 0xf) << 8) +
+                        (read_spd
+                         (&dimm_config_table[0], 0,
+                          DDR4_SPD_MIN_ACTIVE_PRECHARGE_LSB_TRASMIN) & 0xff));
+
+               ddr4_trcmin = spdmtb *
+                       ((((read_spd
+                           (&dimm_config_table[0], 0,
+                            DDR4_SPD_UPPER_NIBBLES_TRAS_TRC) >> 4) & 0xf) <<
+                         8) + (read_spd
+                               (&dimm_config_table[0], 0,
+                                DDR4_SPD_MIN_ACTIVE_REFRESH_LSB_TRCMIN) &
+                               0xff))
+                       + spdftb * (signed char)read_spd(&dimm_config_table[0],
+                                                        0,
+                       DDR4_SPD_MIN_ACT_TO_ACT_REFRESH_DELAY_FINE_TRCMIN);
+
+               ddr4_trfc1min = spdmtb * (((read_spd(&dimm_config_table[0], 0,
+                       DDR4_SPD_MIN_REFRESH_RECOVERY_MSB_TRFC1MIN) & 0xff) <<
+                       8) + (read_spd(&dimm_config_table[0], 0,
+                       DDR4_SPD_MIN_REFRESH_RECOVERY_LSB_TRFC1MIN) & 0xff));
+
+               ddr4_trfc2min = spdmtb * (((read_spd(&dimm_config_table[0], 0,
+                       DDR4_SPD_MIN_REFRESH_RECOVERY_MSB_TRFC2MIN) & 0xff) <<
+                       8) + (read_spd(&dimm_config_table[0], 0,
+                       DDR4_SPD_MIN_REFRESH_RECOVERY_LSB_TRFC2MIN) & 0xff));
+
+               ddr4_trfc4min = spdmtb * (((read_spd(&dimm_config_table[0], 0,
+                       DDR4_SPD_MIN_REFRESH_RECOVERY_MSB_TRFC4MIN) & 0xff) <<
+                       8) + (read_spd(&dimm_config_table[0], 0,
+                       DDR4_SPD_MIN_REFRESH_RECOVERY_LSB_TRFC4MIN) & 0xff));
+
+               ddr4_tfawmin = spdmtb * (((read_spd(&dimm_config_table[0], 0,
+                       DDR4_SPD_MIN_FOUR_ACTIVE_WINDOW_MSN_TFAWMIN) & 0xf) <<
+                       8) + (read_spd(&dimm_config_table[0], 0,
+                       DDR4_SPD_MIN_FOUR_ACTIVE_WINDOW_LSB_TFAWMIN) & 0xff));
+
+               ddr4_trrd_smin = spdmtb * read_spd(&dimm_config_table[0], 0,
+                       DDR4_SPD_MIN_ROW_ACTIVE_DELAY_SAME_TRRD_SMIN) +
+                       spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
+                       DDR4_SPD_MIN_ACT_TO_ACT_DELAY_DIFF_FINE_TRRD_SMIN);
+
+               ddr4_trrd_lmin = spdmtb * read_spd(&dimm_config_table[0], 0,
+                       DDR4_SPD_MIN_ROW_ACTIVE_DELAY_DIFF_TRRD_LMIN) +
+                       spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
+                       DDR4_SPD_MIN_ACT_TO_ACT_DELAY_SAME_FINE_TRRD_LMIN);
+
+               ddr4_tccd_lmin = spdmtb * read_spd(&dimm_config_table[0], 0,
+                       DDR4_SPD_MIN_CAS_TO_CAS_DELAY_TCCD_LMIN) +
+                       spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
+                       DDR4_SPD_MIN_CAS_TO_CAS_DELAY_FINE_TCCD_LMIN);
+
+               debug("%-45s : %6d ps\n", "Medium Timebase (MTB)", spdmtb);
+               debug("%-45s : %6d ps\n", "Fine Timebase   (FTB)", spdftb);
+
+               debug("%-45s : %6d ps (%ld MT/s)\n",
+                     "SDRAM Minimum Cycle Time (tCKAVGmin)", ddr4_tckavgmin,
+                     pretty_psecs_to_mts(ddr4_tckavgmin));
+               debug("%-45s : %6d ps\n",
+                     "SDRAM Maximum Cycle Time (tCKAVGmax)", ddr4_tckavgmax);
+               debug("%-45s : %6d ps\n", "Minimum CAS Latency Time (taamin)",
+                     taamin);
+               debug("%-45s : %6d ps\n",
+                     "Minimum RAS to CAS Delay Time (tRCDmin)", ddr4_trdcmin);
+               debug("%-45s : %6d ps\n",
+                     "Minimum Row Precharge Delay Time (tRPmin)", ddr4_trpmin);
+               debug("%-45s : %6d ps\n",
+                     "Minimum Active to Precharge Delay (tRASmin)",
+                     ddr4_trasmin);
+               debug("%-45s : %6d ps\n",
+                     "Minimum Active to Active/Refr. Delay (tRCmin)",
+                     ddr4_trcmin);
+               debug("%-45s : %6d ps\n",
+                     "Minimum Refresh Recovery Delay (tRFC1min)",
+                     ddr4_trfc1min);
+               debug("%-45s : %6d ps\n",
+                     "Minimum Refresh Recovery Delay (tRFC2min)",
+                     ddr4_trfc2min);
+               debug("%-45s : %6d ps\n",
+                     "Minimum Refresh Recovery Delay (tRFC4min)",
+                     ddr4_trfc4min);
+               debug("%-45s : %6d ps\n",
+                     "Minimum Four Activate Window Time (tFAWmin)",
+                     ddr4_tfawmin);
+               debug("%-45s : %6d ps\n",
+                     "Minimum Act. to Act. Delay (tRRD_Smin)", ddr4_trrd_smin);
+               debug("%-45s : %6d ps\n",
+                     "Minimum Act. to Act. Delay (tRRD_Lmin)", ddr4_trrd_lmin);
+               debug("%-45s : %6d ps\n",
+                     "Minimum CAS to CAS Delay Time (tCCD_Lmin)",
+                     ddr4_tccd_lmin);
+
+#define DDR4_TWR 15000
+#define DDR4_TWTR_S 2500
+
+               tckmin = ddr4_tckavgmin;
+               twr = DDR4_TWR;
+               trcd = ddr4_trdcmin;
+               trrd = ddr4_trrd_smin;
+               trp = ddr4_trpmin;
+               tras = ddr4_trasmin;
+               trc = ddr4_trcmin;
+               trfc = ddr4_trfc1min;
+               twtr = DDR4_TWTR_S;
+               tfaw = ddr4_tfawmin;
+
+               if (spd_rdimm) {
+                       spd_addr_mirror = read_spd(&dimm_config_table[0], 0,
+                       DDR4_SPD_RDIMM_ADDR_MAPPING_FROM_REGISTER_TO_DRAM) &
+                       0x1;
+               } else {
+                       spd_addr_mirror = read_spd(&dimm_config_table[0], 0,
+                               DDR4_SPD_UDIMM_ADDR_MAPPING_FROM_EDGE) & 0x1;
+               }
+               debug("spd_addr_mirror : %#06x\n", spd_addr_mirror);
+       } else {
+               spd_mtb_dividend =
+                   0xff & read_spd(&dimm_config_table[0], 0,
+                                   DDR3_SPD_MEDIUM_TIMEBASE_DIVIDEND);
+               spd_mtb_divisor =
+                   0xff & read_spd(&dimm_config_table[0], 0,
+                                   DDR3_SPD_MEDIUM_TIMEBASE_DIVISOR);
+               spd_tck_min =
+                   0xff & read_spd(&dimm_config_table[0], 0,
+                                   DDR3_SPD_MINIMUM_CYCLE_TIME_TCKMIN);
+               spd_taa_min =
+                   0xff & read_spd(&dimm_config_table[0], 0,
+                                   DDR3_SPD_MIN_CAS_LATENCY_TAAMIN);
+
+               spd_twr =
+                   0xff & read_spd(&dimm_config_table[0], 0,
+                                   DDR3_SPD_MIN_WRITE_RECOVERY_TWRMIN);
+               spd_trcd =
+                   0xff & read_spd(&dimm_config_table[0], 0,
+                                   DDR3_SPD_MIN_RAS_CAS_DELAY_TRCDMIN);
+               spd_trrd =
+                   0xff & read_spd(&dimm_config_table[0], 0,
+                                   DDR3_SPD_MIN_ROW_ACTIVE_DELAY_TRRDMIN);
+               spd_trp =
+                   0xff & read_spd(&dimm_config_table[0], 0,
+                                   DDR3_SPD_MIN_ROW_PRECHARGE_DELAY_TRPMIN);
+               spd_tras =
+                   0xff & read_spd(&dimm_config_table[0], 0,
+                                   DDR3_SPD_MIN_ACTIVE_PRECHARGE_LSB_TRASMIN);
+               spd_tras |=
+                   ((0xff &
+                     read_spd(&dimm_config_table[0], 0,
+                              DDR3_SPD_UPPER_NIBBLES_TRAS_TRC) & 0xf) << 8);
+               spd_trc =
+                   0xff & read_spd(&dimm_config_table[0], 0,
+                                   DDR3_SPD_MIN_ACTIVE_REFRESH_LSB_TRCMIN);
+               spd_trc |=
+                   ((0xff &
+                     read_spd(&dimm_config_table[0], 0,
+                              DDR3_SPD_UPPER_NIBBLES_TRAS_TRC) & 0xf0) << 4);
+               spd_trfc =
+                   0xff & read_spd(&dimm_config_table[0], 0,
+                                   DDR3_SPD_MIN_REFRESH_RECOVERY_LSB_TRFCMIN);
+               spd_trfc |=
+                   ((0xff &
+                     read_spd(&dimm_config_table[0], 0,
+                              DDR3_SPD_MIN_REFRESH_RECOVERY_MSB_TRFCMIN)) <<
+                    8);
+               spd_twtr =
+                   0xff & read_spd(&dimm_config_table[0], 0,
+                               DDR3_SPD_MIN_INTERNAL_WRITE_READ_CMD_TWTRMIN);
+               spd_trtp =
+                   0xff & read_spd(&dimm_config_table[0], 0,
+                       DDR3_SPD_MIN_INTERNAL_READ_PRECHARGE_CMD_TRTPMIN);
+               spd_tfaw =
+                   0xff & read_spd(&dimm_config_table[0], 0,
+                                   DDR3_SPD_MIN_FOUR_ACTIVE_WINDOW_TFAWMIN);
+               spd_tfaw |=
+                   ((0xff &
+                     read_spd(&dimm_config_table[0], 0,
+                              DDR3_SPD_UPPER_NIBBLE_TFAW) & 0xf) << 8);
+               spd_addr_mirror =
+                   0xff & read_spd(&dimm_config_table[0], 0,
+                                   DDR3_SPD_ADDRESS_MAPPING) & 0x1;
+               /* Only address mirror unbuffered dimms.  */
+               spd_addr_mirror = spd_addr_mirror && !spd_rdimm;
+               ftb_dividend =
+                   read_spd(&dimm_config_table[0], 0,
+                            DDR3_SPD_FINE_TIMEBASE_DIVIDEND_DIVISOR) >> 4;
+               ftb_divisor =
+                   read_spd(&dimm_config_table[0], 0,
+                            DDR3_SPD_FINE_TIMEBASE_DIVIDEND_DIVISOR) & 0xf;
+               /* Make sure that it is not 0 */
+               ftb_divisor = (ftb_divisor == 0) ? 1 : ftb_divisor;
+
+               debug("spd_twr         : %#06x\n", spd_twr);
+               debug("spd_trcd        : %#06x\n", spd_trcd);
+               debug("spd_trrd        : %#06x\n", spd_trrd);
+               debug("spd_trp         : %#06x\n", spd_trp);
+               debug("spd_tras        : %#06x\n", spd_tras);
+               debug("spd_trc         : %#06x\n", spd_trc);
+               debug("spd_trfc        : %#06x\n", spd_trfc);
+               debug("spd_twtr        : %#06x\n", spd_twtr);
+               debug("spd_trtp        : %#06x\n", spd_trtp);
+               debug("spd_tfaw        : %#06x\n", spd_tfaw);
+               debug("spd_addr_mirror : %#06x\n", spd_addr_mirror);
+
+               mtb_psec = spd_mtb_dividend * 1000 / spd_mtb_divisor;
+               taamin = mtb_psec * spd_taa_min;
+               taamin += ftb_dividend *
+                       (signed char)read_spd(&dimm_config_table[0],
+                               0, DDR3_SPD_MIN_CAS_LATENCY_FINE_TAAMIN) /
+                       ftb_divisor;
+               tckmin = mtb_psec * spd_tck_min;
+               tckmin += ftb_dividend *
+                       (signed char)read_spd(&dimm_config_table[0],
+                               0, DDR3_SPD_MINIMUM_CYCLE_TIME_FINE_TCKMIN) /
+                       ftb_divisor;
+
+               twr = spd_twr * mtb_psec;
+               trcd = spd_trcd * mtb_psec;
+               trrd = spd_trrd * mtb_psec;
+               trp = spd_trp * mtb_psec;
+               tras = spd_tras * mtb_psec;
+               trc = spd_trc * mtb_psec;
+               trfc = spd_trfc * mtb_psec;
+               if (octeon_is_cpuid(OCTEON_CN78XX_PASS2_X) && trfc < 260000) {
+                       // default to this - because it works...
+                       int new_trfc = 260000;
+
+                       s = env_get("ddr_trfc");
+                       if (s) {
+                               new_trfc = simple_strtoul(s, NULL, 0);
+                               printf("Parameter found in environment. ddr_trfc = %d\n",
+                                      new_trfc);
+                               if (new_trfc < 160000 || new_trfc > 260000) {
+                                       // back to default if out of range
+                                       new_trfc = 260000;
+                               }
+                       }
+                       debug("N%d.LMC%d: Adjusting tRFC from %d to %d, for CN78XX Pass 2.x\n",
+                             node, if_num, trfc, new_trfc);
+                       trfc = new_trfc;
+               }
+
+               twtr = spd_twtr * mtb_psec;
+               trtp = spd_trtp * mtb_psec;
+               tfaw = spd_tfaw * mtb_psec;
+
+               debug("Medium Timebase (MTB)                         : %6d ps\n",
+                     mtb_psec);
+               debug("Minimum Cycle Time (tckmin)                   : %6d ps (%ld MT/s)\n",
+                     tckmin, pretty_psecs_to_mts(tckmin));
+               debug("Minimum CAS Latency Time (taamin)             : %6d ps\n",
+                     taamin);
+               debug("Write Recovery Time (tWR)                     : %6d ps\n",
+                     twr);
+               debug("Minimum RAS to CAS delay (tRCD)               : %6d ps\n",
+                     trcd);
+               debug("Minimum Row Active to Row Active delay (tRRD) : %6d ps\n",
+                     trrd);
+               debug("Minimum Row Precharge Delay (tRP)             : %6d ps\n",
+                     trp);
+               debug("Minimum Active to Precharge (tRAS)            : %6d ps\n",
+                     tras);
+               debug("Minimum Active to Active/Refresh Delay (tRC)  : %6d ps\n",
+                     trc);
+               debug("Minimum Refresh Recovery Delay (tRFC)         : %6d ps\n",
+                     trfc);
+               debug("Internal write to read command delay (tWTR)   : %6d ps\n",
+                     twtr);
+               debug("Min Internal Rd to Precharge Cmd Delay (tRTP) : %6d ps\n",
+                     trtp);
+               debug("Minimum Four Activate Window Delay (tFAW)     : %6d ps\n",
+                     tfaw);
+       }
+
+       /*
+        * When the cycle time is within 1 psec of the minimum accept it
+        * as a slight rounding error and adjust it to exactly the minimum
+        * cycle time. This avoids an unnecessary warning.
+        */
+       if (abs(tclk_psecs - tckmin) < 2)
+               tclk_psecs = tckmin;
+
+       if (tclk_psecs < (u64)tckmin) {
+               printf("WARNING!!!!: DDR Clock Rate (tCLK: %ld) exceeds DIMM specifications (tckmin: %ld)!!!!\n",
+                      tclk_psecs, (ulong)tckmin);
+       }
+
+       debug("DDR Clock Rate (tCLK)                         : %6ld ps\n",
+             tclk_psecs);
+       debug("Core Clock Rate (eCLK)                        : %6ld ps\n",
+             eclk_psecs);
+
+       s = env_get("ddr_use_ecc");
+       if (s) {
+               use_ecc = !!simple_strtoul(s, NULL, 0);
+               printf("Parameter found in environment. ddr_use_ecc = %d\n",
+                      use_ecc);
+       }
+       use_ecc = use_ecc && spd_ecc;
+
+       if_bytemask = if_64b ? (use_ecc ? 0x1ff : 0xff)
+           : (use_ecc ? 0x01f : 0x0f);
+
+       debug("DRAM Interface width: %d bits %s bytemask 0x%03x\n",
+             if_64b ? 64 : 32, use_ecc ? "+ECC" : "", if_bytemask);
+
+       debug("\n------ Board Custom Configuration Settings ------\n");
+       debug("%-45s : %d\n", "MIN_RTT_NOM_IDX   ", c_cfg->min_rtt_nom_idx);
+       debug("%-45s : %d\n", "MAX_RTT_NOM_IDX   ", c_cfg->max_rtt_nom_idx);
+       debug("%-45s : %d\n", "MIN_RODT_CTL      ", c_cfg->min_rodt_ctl);
+       debug("%-45s : %d\n", "MAX_RODT_CTL      ", c_cfg->max_rodt_ctl);
+       debug("%-45s : %d\n", "MIN_CAS_LATENCY   ", c_cfg->min_cas_latency);
+       debug("%-45s : %d\n", "OFFSET_EN         ", c_cfg->offset_en);
+       debug("%-45s : %d\n", "OFFSET_UDIMM      ", c_cfg->offset_udimm);
+       debug("%-45s : %d\n", "OFFSET_RDIMM      ", c_cfg->offset_rdimm);
+       debug("%-45s : %d\n", "DDR_RTT_NOM_AUTO  ", c_cfg->ddr_rtt_nom_auto);
+       debug("%-45s : %d\n", "DDR_RODT_CTL_AUTO ", c_cfg->ddr_rodt_ctl_auto);
+       if (spd_rdimm)
+               debug("%-45s : %d\n", "RLEVEL_COMP_OFFSET",
+                     c_cfg->rlevel_comp_offset_rdimm);
+       else
+               debug("%-45s : %d\n", "RLEVEL_COMP_OFFSET",
+                     c_cfg->rlevel_comp_offset_udimm);
+       debug("%-45s : %d\n", "RLEVEL_COMPUTE    ", c_cfg->rlevel_compute);
+       debug("%-45s : %d\n", "DDR2T_UDIMM       ", c_cfg->ddr2t_udimm);
+       debug("%-45s : %d\n", "DDR2T_RDIMM       ", c_cfg->ddr2t_rdimm);
+       debug("%-45s : %d\n", "FPRCH2            ", c_cfg->fprch2);
+       debug("%-45s : %d\n", "PTUNE_OFFSET      ", c_cfg->ptune_offset);
+       debug("%-45s : %d\n", "NTUNE_OFFSET      ", c_cfg->ntune_offset);
+       debug("-------------------------------------------------\n");
+
+       cl = divide_roundup(taamin, tclk_psecs);
+
+       debug("Desired CAS Latency                           : %6d\n", cl);
+
+       min_cas_latency = c_cfg->min_cas_latency;
+
+       s = lookup_env(priv, "ddr_min_cas_latency");
+       if (s)
+               min_cas_latency = simple_strtoul(s, NULL, 0);
+
+       debug("CAS Latencies supported in DIMM               :");
+       base_cl = (ddr_type == DDR4_DRAM) ? 7 : 4;
+       for (i = 0; i < 32; ++i) {
+               if ((spd_cas_latency >> i) & 1) {
+                       debug(" %d", i + base_cl);
+                       max_cas_latency = i + base_cl;
+                       if (min_cas_latency == 0)
+                               min_cas_latency = i + base_cl;
+               }
+       }
+       debug("\n");
+
+       /*
+        * Use relaxed timing when running slower than the minimum
+        * supported speed.  Adjust timing to match the smallest supported
+        * CAS Latency.
+        */
+       if (min_cas_latency > cl) {
+               ulong adjusted_tclk = taamin / min_cas_latency;
+
+               cl = min_cas_latency;
+               debug("Slow clock speed. Adjusting timing: tClk = %ld, Adjusted tClk = %ld\n",
+                     tclk_psecs, adjusted_tclk);
+               tclk_psecs = adjusted_tclk;
+       }
+
+       s = env_get("ddr_cas_latency");
+       if (s) {
+               override_cas_latency = simple_strtoul(s, NULL, 0);
+               printf("Parameter found in environment. ddr_cas_latency = %d\n",
+                      override_cas_latency);
+       }
+
+       /* Make sure that the selected cas latency is legal */
+       for (i = (cl - base_cl); i < 32; ++i) {
+               if ((spd_cas_latency >> i) & 1) {
+                       cl = i + base_cl;
+                       break;
+               }
+       }
+
+       if (max_cas_latency < cl)
+               cl = max_cas_latency;
+
+       if (override_cas_latency != 0)
+               cl = override_cas_latency;
+
+       debug("CAS Latency                                   : %6d\n", cl);
+
+       if ((cl * tckmin) > 20000) {
+               debug("(CLactual * tckmin) = %d exceeds 20 ns\n",
+                     (cl * tckmin));
+       }
+
+       if (tclk_psecs < (ulong)tckmin) {
+               printf("WARNING!!!!!!: DDR3 Clock Rate (tCLK: %ld) exceeds DIMM specifications (tckmin:%ld)!!!!!!!!\n",
+                      tclk_psecs, (ulong)tckmin);
+       }
+
+       if (num_banks != 4 && num_banks != 8 && num_banks != 16) {
+               printf("Unsupported number of banks %d. Must be 4 or 8.\n",
+                      num_banks);
+               ++fatal_error;
+       }
+
+       if (num_ranks != 1 && num_ranks != 2 && num_ranks != 4) {
+               printf("Unsupported number of ranks: %d\n", num_ranks);
+               ++fatal_error;
+       }
+
+       if (octeon_is_cpuid(OCTEON_CN78XX) ||
+           octeon_is_cpuid(OCTEON_CN73XX) ||
+           octeon_is_cpuid(OCTEON_CNF75XX)) {
+               if (dram_width != 8 && dram_width != 16 && dram_width != 4) {
+                       printf("Unsupported SDRAM Width, %d.  Must be 4, 8 or 16.\n",
+                              dram_width);
+                       ++fatal_error;
+               }
+       } else if (dram_width != 8 && dram_width != 16) {
+               printf("Unsupported SDRAM Width, %d.  Must be 8 or 16.\n",
+                      dram_width);
+               ++fatal_error;
+       }
+
+       /*
+        ** Bail out here if things are not copasetic.
+        */
+       if (fatal_error)
+               return (-1);
+
+       /*
+        * 4.8.4 LMC RESET Initialization
+        *
+        * The purpose of this step is to assert/deassert the RESET# pin at the
+        * DDR3/DDR4 parts.
+        *
+        * This LMC RESET step is done for all enabled LMCs.
+        */
+       perform_lmc_reset(priv, node, if_num);
+
+       // Make sure scrambling is disabled during init...
+       ctrl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
+       ctrl.s.scramble_ena = 0;
+       lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctrl.u64);
+
+       lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG0(if_num), 0);
+       lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG1(if_num), 0);
+       if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X))
+               lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG2(if_num), 0);
+
+       odt_idx = min(dimm_count - 1, 3);
+
+       switch (num_ranks) {
+       case 1:
+               odt_config = odt_1rank_config;
+               break;
+       case 2:
+               odt_config = odt_2rank_config;
+               break;
+       case 4:
+               odt_config = odt_4rank_config;
+               break;
+       default:
+               odt_config = disable_odt_config;
+               printf("Unsupported number of ranks: %d\n", num_ranks);
+               ++fatal_error;
+       }
+
+       /*
+        * 4.8.5 Early LMC Initialization
+        *
+        * All of DDR PLL, LMC CK, and LMC DRESET initializations must be
+        * completed prior to starting this LMC initialization sequence.
+        *
+        * Perform the following five substeps for early LMC initialization:
+        *
+        * 1. Software must ensure there are no pending DRAM transactions.
+        *
+        * 2. Write LMC(0)_CONFIG, LMC(0)_CONTROL, LMC(0)_TIMING_PARAMS0,
+        *    LMC(0)_TIMING_PARAMS1, LMC(0)_MODEREG_PARAMS0,
+        *    LMC(0)_MODEREG_PARAMS1, LMC(0)_DUAL_MEMCFG, LMC(0)_NXM,
+        *    LMC(0)_WODT_MASK, LMC(0)_RODT_MASK, LMC(0)_COMP_CTL2,
+        *    LMC(0)_PHY_CTL, LMC(0)_DIMM0/1_PARAMS, and LMC(0)_DIMM_CTL with
+        *    appropriate values. All sections in this chapter can be used to
+        *    derive proper register settings.
+        */
+
+       /* LMC(0)_CONFIG */
+       lmc_config(priv);
+
+       /* LMC(0)_CONTROL */
+       lmc_control(priv);
+
+       /* LMC(0)_TIMING_PARAMS0 */
+       lmc_timing_params0(priv);
+
+       /* LMC(0)_TIMING_PARAMS1 */
+       lmc_timing_params1(priv);
+
+       /* LMC(0)_TIMING_PARAMS2 */
+       lmc_timing_params2(priv);
+
+       /* LMC(0)_MODEREG_PARAMS0 */
+       lmc_modereg_params0(priv);
+
+       /* LMC(0)_MODEREG_PARAMS1 */
+       lmc_modereg_params1(priv);
+
+       /* LMC(0)_MODEREG_PARAMS2 */
+       lmc_modereg_params2(priv);
+
+       /* LMC(0)_MODEREG_PARAMS3 */
+       lmc_modereg_params3(priv);
+
+       /* LMC(0)_NXM */
+       lmc_nxm(priv);
+
+       /* LMC(0)_WODT_MASK */
+       lmc_wodt_mask(priv);
+
+       /* LMC(0)_RODT_MASK */
+       lmc_rodt_mask(priv);
+
+       /* LMC(0)_COMP_CTL2 */
+       lmc_comp_ctl2(priv);
+
+       /* LMC(0)_PHY_CTL */
+       lmc_phy_ctl(priv);
+
+       /* LMC(0)_EXT_CONFIG */
+       lmc_ext_config(priv);
+
+       /* LMC(0)_EXT_CONFIG2 */
+       lmc_ext_config2(priv);
+
+       /* LMC(0)_DIMM0/1_PARAMS */
+       lmc_dimm01_params(priv);
+
+       ret = lmc_rank_init(priv);
+       if (ret < 0)
+               return 0;       /* 0 indicates problem */
+
+       lmc_config_2(priv);
+
+       lmc_write_leveling(priv);
+
+       lmc_read_leveling(priv);
+
+       lmc_workaround(priv);
+
+       ret = lmc_sw_write_leveling(priv);
+       if (ret < 0)
+               return 0;       /* 0 indicates problem */
+
+       // this sometimes causes stack overflow crashes..
+       // display only for DDR4 RDIMMs.
+       if (ddr_type == DDR4_DRAM && spd_rdimm) {
+               int i;
+
+               for (i = 0; i < 3; i += 2)      // just pages 0 and 2 for now..
+                       display_mpr_page(priv, rank_mask, if_num, i);
+       }
+
+       lmc_dll(priv);
+
+       lmc_workaround_2(priv);
+
+       lmc_final(priv);
+
+       lmc_scrambling(priv);
+
+       return mem_size_mbytes;
+}
+
+/////    HW-assist byte DLL offset tuning   //////
+
+static int cvmx_dram_get_num_lmc(struct ddr_priv *priv)
+{
+       union cvmx_lmcx_dll_ctl2 lmcx_dll_ctl2;
+
+       if (octeon_is_cpuid(OCTEON_CN70XX))
+               return 1;
+
+       if (octeon_is_cpuid(OCTEON_CN73XX) || octeon_is_cpuid(OCTEON_CNF75XX)) {
+               // sample LMC1
+               lmcx_dll_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(1));
+               if (lmcx_dll_ctl2.cn78xx.intf_en)
+                       return 2;
+               else
+                       return 1;
+       }
+
+       // for CN78XX, LMCs are always active in pairs, and always LMC0/1
+       // so, we sample LMC2 to see if 2 and 3 are active
+       lmcx_dll_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(2));
+       if (lmcx_dll_ctl2.cn78xx.intf_en)
+               return 4;
+       else
+               return 2;
+}
+
+// got to do these here, even though already defined in BDK
+
+// all DDR3, and DDR4 x16 today, use only 3 bank bits;
+// DDR4 x4 and x8 always have 4 bank bits
+// NOTE: this will change in the future, when DDR4 x16 devices can
+// come with 16 banks!! FIXME!!
+static int cvmx_dram_get_num_bank_bits(struct ddr_priv *priv, int lmc)
+{
+       union cvmx_lmcx_dll_ctl2 lmcx_dll_ctl2;
+       union cvmx_lmcx_config lmcx_config;
+       union cvmx_lmcx_ddr_pll_ctl lmcx_ddr_pll_ctl;
+       int bank_width;
+
+       // can always read this
+       lmcx_dll_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(lmc));
+
+       if (lmcx_dll_ctl2.cn78xx.dreset)        // check LMCn
+               return 0;
+
+       lmcx_config.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(lmc));
+       lmcx_ddr_pll_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(lmc));
+
+       bank_width = ((lmcx_ddr_pll_ctl.s.ddr4_mode != 0) &&
+                     (lmcx_config.s.bg2_enable)) ? 4 : 3;
+
+       return bank_width;
+}
+
+#define EXTRACT(v, lsb, width) (((v) >> (lsb)) & ((1ull << (width)) - 1))
+#define ADDRESS_HOLE 0x10000000ULL
+
+static void cvmx_dram_address_extract_info(struct ddr_priv *priv, u64 address,
+                                          int *node, int *lmc, int *dimm,
+                                          int *prank, int *lrank, int *bank,
+                                          int *row, int *col)
+{
+       int bank_lsb, xbits;
+       union cvmx_l2c_ctl l2c_ctl;
+       union cvmx_lmcx_config lmcx_config;
+       union cvmx_lmcx_control lmcx_control;
+       union cvmx_lmcx_ext_config ext_config;
+       int bitno = (octeon_is_cpuid(OCTEON_CN7XXX)) ? 20 : 18;
+       int bank_width;
+       int dimm_lsb;
+       int dimm_width;
+       int prank_lsb, lrank_lsb;
+       int prank_width, lrank_width;
+       int row_lsb;
+       int row_width;
+       int col_hi_lsb;
+       int col_hi_width;
+       int col_hi;
+
+       if (octeon_is_cpuid(OCTEON_CN73XX) || octeon_is_cpuid(OCTEON_CNF75XX))
+               bitno = 18;
+
+       *node = EXTRACT(address, 40, 2);        /* Address bits [41:40] */
+
+       address &= (1ULL << 40) - 1;    // lop off any node bits or above
+       if (address >= ADDRESS_HOLE)    // adjust down if at HOLE or above
+               address -= ADDRESS_HOLE;
+
+       /* Determine the LMC controllers */
+       l2c_ctl.u64 = l2c_rd(priv, CVMX_L2C_CTL);
+
+       /* xbits depends on number of LMCs */
+       xbits = cvmx_dram_get_num_lmc(priv) >> 1;       // 4->2, 2->1, 1->0
+       bank_lsb = 7 + xbits;
+
+       /* LMC number is probably aliased */
+       if (l2c_ctl.s.disidxalias) {
+               *lmc = EXTRACT(address, 7, xbits);
+       }  else {
+               *lmc = EXTRACT(address, 7, xbits) ^
+                       EXTRACT(address, bitno, xbits) ^
+                       EXTRACT(address, 12, xbits);
+       }
+
+       /* Figure out the bank field width */
+       lmcx_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(*lmc));
+       ext_config.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(*lmc));
+       bank_width = cvmx_dram_get_num_bank_bits(priv, *lmc);
+
+       /* Extract additional info from the LMC_CONFIG CSR */
+       dimm_lsb = 28 + lmcx_config.s.pbank_lsb + xbits;
+       dimm_width = 40 - dimm_lsb;
+       prank_lsb = dimm_lsb - lmcx_config.s.rank_ena;
+       prank_width = dimm_lsb - prank_lsb;
+       lrank_lsb = prank_lsb - ext_config.s.dimm0_cid;
+       lrank_width = prank_lsb - lrank_lsb;
+       row_lsb = 14 + lmcx_config.s.row_lsb + xbits;
+       row_width = lrank_lsb - row_lsb;
+       col_hi_lsb = bank_lsb + bank_width;
+       col_hi_width = row_lsb - col_hi_lsb;
+
+       /* Extract the parts of the address */
+       *dimm = EXTRACT(address, dimm_lsb, dimm_width);
+       *prank = EXTRACT(address, prank_lsb, prank_width);
+       *lrank = EXTRACT(address, lrank_lsb, lrank_width);
+       *row = EXTRACT(address, row_lsb, row_width);
+
+       /* bank calculation may be aliased... */
+       lmcx_control.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(*lmc));
+       if (lmcx_control.s.xor_bank) {
+               *bank = EXTRACT(address, bank_lsb, bank_width) ^
+                       EXTRACT(address, 12 + xbits, bank_width);
+       } else {
+               *bank = EXTRACT(address, bank_lsb, bank_width);
+       }
+
+       /* LMC number already extracted */
+       col_hi = EXTRACT(address, col_hi_lsb, col_hi_width);
+       *col = EXTRACT(address, 3, 4) | (col_hi << 4);
+       /* Bus byte is address bits [2:0]. Unused here */
+}
+
+// end of added workarounds
+
+// NOTE: "mode" argument:
+//         DBTRAIN_TEST: for testing using GP patterns, includes ECC
+//         DBTRAIN_DBI:  for DBI deskew training behavior (uses GP patterns)
+//         DBTRAIN_LFSR: for testing using LFSR patterns, includes ECC
+// NOTE: trust the caller to specify the correct/supported mode
+//
+static int test_dram_byte_hw(struct ddr_priv *priv, int if_num, u64 p,
+                            int mode, u64 *xor_data)
+{
+       u64 p1;
+       u64 k;
+       int errors = 0;
+
+       u64 mpr_data0, mpr_data1;
+       u64 bad_bits[2] = { 0, 0 };
+
+       int node_address, lmc, dimm;
+       int prank, lrank;
+       int bank, row, col;
+       int save_or_dis;
+       int byte;
+       int ba_loop, ba_bits;
+
+       union cvmx_lmcx_rlevel_ctl rlevel_ctl;
+       union cvmx_lmcx_dbtrain_ctl dbtrain_ctl;
+       union cvmx_lmcx_phy_ctl phy_ctl;
+
+       int biter_errs;
+
+       // FIXME: K iterations set to 4 for now.
+       // FIXME: decrement to increase interations.
+       // FIXME: must be no less than 22 to stay above an LMC hash field.
+       int kshift = 27;
+
+       const char *s;
+       int node = 0;
+
+       // allow override default setting for kshift
+       s = env_get("ddr_tune_set_kshift");
+       if (s) {
+               int temp = simple_strtoul(s, NULL, 0);
+
+               if (temp < 22 || temp > 28) {
+                       debug("N%d.LMC%d: ILLEGAL override of kshift to %d, using default %d\n",
+                             node, if_num, temp, kshift);
+               } else {
+                       debug("N%d.LMC%d: overriding kshift (%d) to %d\n",
+                             node, if_num, kshift, temp);
+                       kshift = temp;
+               }
+       }
+
+       /*
+        * 1) Make sure that RLEVEL_CTL[OR_DIS] = 0.
+        */
+       rlevel_ctl.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_CTL(if_num));
+       save_or_dis = rlevel_ctl.s.or_dis;
+       /* or_dis must be disabled for this sequence */
+       rlevel_ctl.s.or_dis = 0;
+       lmc_wr(priv, CVMX_LMCX_RLEVEL_CTL(if_num), rlevel_ctl.u64);
+
+       /*
+        * NOTE: this step done in the calling routine(s)...
+        * 3) Setup GENERAL_PURPOSE[0-2] registers with the data pattern
+        * of choice.
+        * a. GENERAL_PURPOSE0[DATA<63:0>] â€“ sets the initial lower
+        * (rising edge) 64 bits of data.
+        * b. GENERAL_PURPOSE1[DATA<63:0>] â€“ sets the initial upper
+        * (falling edge) 64 bits of data.
+        * c. GENERAL_PURPOSE2[DATA<15:0>] â€“ sets the initial lower
+        * (rising edge <7:0>) and upper (falling edge <15:8>) ECC data.
+        */
+
+       // final address must include LMC and node
+       p |= (if_num << 7);     /* Map address into proper interface */
+       p |= (u64)node << CVMX_NODE_MEM_SHIFT;  // map to node
+
+       /*
+        * Add base offset to both test regions to not clobber u-boot stuff
+        * when running from L2 for NAND boot.
+        */
+       p += 0x20000000;        // offset to 512MB, ie above THE HOLE!!!
+       p |= 1ull << 63;        // needed for OCTEON
+
+       errors = 0;
+
+       cvmx_dram_address_extract_info(priv, p, &node_address, &lmc, &dimm,
+                                      &prank, &lrank, &bank, &row, &col);
+       debug("%s: START at A:0x%012llx, N%d L%d D%d/%d R%d B%1x Row:%05x Col:%05x\n",
+             __func__, p, node_address, lmc, dimm, prank, lrank, bank,
+             row, col);
+
+       // only check once per call, and ignore if no match...
+       if ((int)node != node_address) {
+               printf("ERROR: Node address mismatch\n");
+               return 0;
+       }
+       if (lmc != if_num) {
+               printf("ERROR: LMC address mismatch\n");
+               return 0;
+       }
+
+       /*
+        * 7) Set PHY_CTL[PHY_RESET] = 1 (LMC automatically clears this as
+        * it’s a one-shot operation). This is to get into the habit of
+        * resetting PHY’s SILO to the original 0 location.
+        */
+       phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+       phy_ctl.s.phy_reset = 1;
+       lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+       /*
+        * Walk through a range of addresses avoiding bits that alias
+        * interfaces on the CN88XX.
+        */
+
+       // FIXME: want to try to keep the K increment from affecting the
+       // LMC via hash, so keep it above bit 21 we also want to keep k
+       // less than the base offset of bit 29 (512MB)
+
+       for (k = 0; k < (1UL << 29); k += (1UL << kshift)) {
+               // FIXME: the sequence will interate over 1/2 cacheline
+               // FIXME: for each unit specified in "read_cmd_count",
+               // FIXME: so, we setup each sequence to do the max cachelines
+               // it can
+
+               p1 = p + k;
+
+               cvmx_dram_address_extract_info(priv, p1, &node_address, &lmc,
+                                              &dimm, &prank, &lrank, &bank,
+                                              &row, &col);
+
+               /*
+                * 2) Setup the fields of the CSR DBTRAIN_CTL as follows:
+                * a. COL, ROW, BA, BG, PRANK points to the starting point
+                * of the address.
+                * You can just set them to all 0.
+                * b. RW_TRAIN â€“ set this to 1.
+                * c. TCCD_L â€“ set this to 0.
+                * d. READ_CMD_COUNT â€“ instruct the sequence to the how many
+                * writes/reads.
+                * It is 5 bits field, so set to 31 of maximum # of r/w.
+                */
+               dbtrain_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DBTRAIN_CTL(if_num));
+               dbtrain_ctl.s.column_a = col;
+               dbtrain_ctl.s.row_a = row;
+               dbtrain_ctl.s.bg = (bank >> 2) & 3;
+               dbtrain_ctl.s.prank = (dimm * 2) + prank;       // FIXME?
+               dbtrain_ctl.s.lrank = lrank;    // FIXME?
+               dbtrain_ctl.s.activate = (mode == DBTRAIN_DBI);
+               dbtrain_ctl.s.write_ena = 1;
+               dbtrain_ctl.s.read_cmd_count = 31;      // max count pass 1.x
+               if (octeon_is_cpuid(OCTEON_CN78XX_PASS2_X) ||
+                   octeon_is_cpuid(OCTEON_CNF75XX)) {
+                       // max count on chips that support it
+                       dbtrain_ctl.s.cmd_count_ext = 3;
+               } else {
+                       // max count pass 1.x
+                       dbtrain_ctl.s.cmd_count_ext = 0;
+               }
+
+               dbtrain_ctl.s.rw_train = 1;
+               dbtrain_ctl.s.tccd_sel = (mode == DBTRAIN_DBI);
+               // LFSR should only be on when chip supports it...
+               dbtrain_ctl.s.lfsr_pattern_sel = (mode == DBTRAIN_LFSR) ? 1 : 0;
+
+               biter_errs = 0;
+
+               // for each address, iterate over the 4 "banks" in the BA
+               for (ba_loop = 0, ba_bits = bank & 3;
+                    ba_loop < 4; ba_loop++, ba_bits = (ba_bits + 1) & 3) {
+                       dbtrain_ctl.s.ba = ba_bits;
+                       lmc_wr(priv, CVMX_LMCX_DBTRAIN_CTL(if_num),
+                              dbtrain_ctl.u64);
+
+                       /*
+                        * We will use the RW_TRAINING sequence (14) for
+                        * this task.
+                        *
+                        * 4) Kick off the sequence (SEQ_CTL[SEQ_SEL] = 14,
+                        *    SEQ_CTL[INIT_START] = 1).
+                        * 5) Poll on SEQ_CTL[SEQ_COMPLETE] for completion.
+                        */
+                       oct3_ddr3_seq(priv, prank, if_num, 14);
+
+                       /*
+                        * 6) Read MPR_DATA0 and MPR_DATA1 for results.
+                        * a. MPR_DATA0[MPR_DATA<63:0>] â€“ comparison results
+                        *    for DQ63:DQ0. (1 means MATCH, 0 means FAIL).
+                        * b. MPR_DATA1[MPR_DATA<7:0>] â€“ comparison results
+                        *    for ECC bit7:0.
+                        */
+                       mpr_data0 = lmc_rd(priv, CVMX_LMCX_MPR_DATA0(if_num));
+                       mpr_data1 = lmc_rd(priv, CVMX_LMCX_MPR_DATA1(if_num));
+
+                       /*
+                        * 7) Set PHY_CTL[PHY_RESET] = 1 (LMC automatically
+                        * clears this as it’s a one-shot operation).
+                        * This is to get into the habit of resetting PHY’s
+                        * SILO to the original 0 location.
+                        */
+                       phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
+                       phy_ctl.s.phy_reset = 1;
+                       lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
+
+                       // bypass any error checking or updating when DBI mode
+                       if (mode == DBTRAIN_DBI)
+                               continue;
+
+                       // data bytes
+                       if (~mpr_data0) {
+                               for (byte = 0; byte < 8; byte++) {
+                                       if ((~mpr_data0 >> (8 * byte)) & 0xffUL)
+                                               biter_errs |= (1 << byte);
+                               }
+                               // accumulate bad bits
+                               bad_bits[0] |= ~mpr_data0;
+                       }
+
+                       // include ECC byte errors
+                       if (~mpr_data1 & 0xffUL) {
+                               biter_errs |= (1 << 8);
+                               bad_bits[1] |= ~mpr_data1 & 0xffUL;
+                       }
+               }
+
+               errors |= biter_errs;
+       }                       /* end for (k=...) */
+
+       rlevel_ctl.s.or_dis = save_or_dis;
+       lmc_wr(priv, CVMX_LMCX_RLEVEL_CTL(if_num), rlevel_ctl.u64);
+
+       // send the bad bits back...
+       if (mode != DBTRAIN_DBI && xor_data) {
+               xor_data[0] = bad_bits[0];
+               xor_data[1] = bad_bits[1];
+       }
+
+       return errors;
+}
+
+// setup default for byte test pattern array
+// take these from the HRM section 6.9.13
+static const u64 byte_pattern_0[] = {
+       0xFFAAFFFFFF55FFFFULL,  // GP0
+       0x55555555AAAAAAAAULL,  // GP1
+       0xAA55AAAAULL,          // GP2
+};
+
+static const u64 byte_pattern_1[] = {
+       0xFBF7EFDFBF7FFEFDULL,  // GP0
+       0x0F1E3C78F0E1C387ULL,  // GP1
+       0xF0E1BF7FULL,          // GP2
+};
+
+// this is from Andrew via LFSR with PRBS=0xFFFFAAAA
+static const u64 byte_pattern_2[] = {
+       0xEE55AADDEE55AADDULL,  // GP0
+       0x55AADDEE55AADDEEULL,  // GP1
+       0x55EEULL,              // GP2
+};
+
+// this is from Mike via LFSR with PRBS=0x4A519909
+static const u64 byte_pattern_3[] = {
+       0x0088CCEE0088CCEEULL,  // GP0
+       0xBB552211BB552211ULL,  // GP1
+       0xBB00ULL,              // GP2
+};
+
+static const u64 *byte_patterns[4] = {
+       byte_pattern_0, byte_pattern_1, byte_pattern_2, byte_pattern_3
+};
+
+static const u32 lfsr_patterns[4] = {
+       0xFFFFAAAAUL, 0x06000000UL, 0xAAAAFFFFUL, 0x4A519909UL
+};
+
+#define NUM_BYTE_PATTERNS 4
+
+#define DEFAULT_BYTE_BURSTS 32 // compromise between time and rigor
+
+static void setup_hw_pattern(struct ddr_priv *priv, int lmc,
+                            const u64 *pattern_p)
+{
+       /*
+        * 3) Setup GENERAL_PURPOSE[0-2] registers with the data pattern
+        * of choice.
+        * a. GENERAL_PURPOSE0[DATA<63:0>] Ã¢\80\93 sets the initial lower
+        *    (rising edge) 64 bits of data.
+        * b. GENERAL_PURPOSE1[DATA<63:0>] Ã¢\80\93 sets the initial upper
+        *    (falling edge) 64 bits of data.
+        * c. GENERAL_PURPOSE2[DATA<15:0>] Ã¢\80\93 sets the initial lower
+        *    (rising edge <7:0>) and upper
+        * (falling edge <15:8>) ECC data.
+        */
+       lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE0(lmc), pattern_p[0]);
+       lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE1(lmc), pattern_p[1]);
+       lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE2(lmc), pattern_p[2]);
+}
+
+static void setup_lfsr_pattern(struct ddr_priv *priv, int lmc, u32 data)
+{
+       union cvmx_lmcx_char_ctl char_ctl;
+       u32 prbs;
+       const char *s;
+
+       s = env_get("ddr_lfsr_prbs");
+       if (s)
+               prbs = simple_strtoul(s, NULL, 0);
+       else
+               prbs = data;
+
+       /*
+        * 2) DBTRAIN_CTL[LFSR_PATTERN_SEL] = 1
+        * here data comes from the LFSR generating a PRBS pattern
+        * CHAR_CTL.EN = 0
+        * CHAR_CTL.SEL = 0; // for PRBS
+        * CHAR_CTL.DR = 1;
+        * CHAR_CTL.PRBS = setup for whatever type of PRBS to send
+        * CHAR_CTL.SKEW_ON = 1;
+        */
+       char_ctl.u64 = lmc_rd(priv, CVMX_LMCX_CHAR_CTL(lmc));
+       char_ctl.s.en = 0;
+       char_ctl.s.sel = 0;
+       char_ctl.s.dr = 1;
+       char_ctl.s.prbs = prbs;
+       char_ctl.s.skew_on = 1;
+       lmc_wr(priv, CVMX_LMCX_CHAR_CTL(lmc), char_ctl.u64);
+}
+
+static int choose_best_hw_patterns(int lmc, int mode)
+{
+       int new_mode = mode;
+       const char *s;
+
+       switch (mode) {
+       case DBTRAIN_TEST:      // always choose LFSR if chip supports it
+               if (octeon_is_cpuid(OCTEON_CN78XX_PASS2_X)) {
+                       int lfsr_enable = 1;
+
+                       s = env_get("ddr_allow_lfsr");
+                       if (s) {
+                               // override?
+                               lfsr_enable = !!strtoul(s, NULL, 0);
+                       }
+
+                       if (lfsr_enable)
+                               new_mode = DBTRAIN_LFSR;
+               }
+               break;
+
+       case DBTRAIN_DBI:       // possibly can allow LFSR use?
+               break;
+
+       case DBTRAIN_LFSR:      // forced already
+               if (!octeon_is_cpuid(OCTEON_CN78XX_PASS2_X)) {
+                       debug("ERROR: illegal HW assist mode %d\n", mode);
+                       new_mode = DBTRAIN_TEST;
+               }
+               break;
+
+       default:
+               debug("ERROR: unknown HW assist mode %d\n", mode);
+       }
+
+       if (new_mode != mode)
+               debug("%s: changing mode %d to %d\n", __func__, mode, new_mode);
+
+       return new_mode;
+}
+
+int run_best_hw_patterns(struct ddr_priv *priv, int lmc, u64 phys_addr,
+                        int mode, u64 *xor_data)
+{
+       int pattern;
+       const u64 *pattern_p;
+       int errs, errors = 0;
+
+       // FIXME? always choose LFSR if chip supports it???
+       mode = choose_best_hw_patterns(lmc, mode);
+
+       for (pattern = 0; pattern < NUM_BYTE_PATTERNS; pattern++) {
+               if (mode == DBTRAIN_LFSR) {
+                       setup_lfsr_pattern(priv, lmc, lfsr_patterns[pattern]);
+               } else {
+                       pattern_p = byte_patterns[pattern];
+                       setup_hw_pattern(priv, lmc, pattern_p);
+               }
+               errs = test_dram_byte_hw(priv, lmc, phys_addr, mode, xor_data);
+
+               debug("%s: PATTERN %d at A:0x%012llx errors 0x%x\n",
+                     __func__, pattern, phys_addr, errs);
+
+               errors |= errs;
+       }
+
+       return errors;
+}
+
+static void hw_assist_test_dll_offset(struct ddr_priv *priv,
+                                     int dll_offset_mode, int lmc,
+                                     int bytelane,
+                                     int if_64b,
+                                     u64 dram_tune_rank_offset,
+                                     int dram_tune_byte_bursts)
+{
+       int byte_offset, new_best_offset[9];
+       int rank_delay_start[4][9];
+       int rank_delay_count[4][9];
+       int rank_delay_best_start[4][9];
+       int rank_delay_best_count[4][9];
+       int errors[4], off_errors, tot_errors;
+       int rank_mask, rankx, active_ranks;
+       int pattern;
+       const u64 *pattern_p;
+       int byte;
+       char *mode_str = (dll_offset_mode == 2) ? "Read" : "Write";
+       int pat_best_offset[9];
+       u64 phys_addr;
+       int pat_beg, pat_end;
+       int rank_beg, rank_end;
+       int byte_lo, byte_hi;
+       union cvmx_lmcx_config lmcx_config;
+       u64 hw_rank_offset;
+       int num_lmcs = cvmx_dram_get_num_lmc(priv);
+       // FIXME? always choose LFSR if chip supports it???
+       int mode = choose_best_hw_patterns(lmc, DBTRAIN_TEST);
+       int node = 0;
+
+       if (bytelane == 0x0A) { // all bytelanes
+               byte_lo = 0;
+               byte_hi = 8;
+       } else {                // just 1
+               byte_lo = bytelane;
+               byte_hi = bytelane;
+       }
+
+       lmcx_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
+       rank_mask = lmcx_config.s.init_status;
+
+       // this should be correct for 1 or 2 ranks, 1 or 2 DIMMs
+       hw_rank_offset =
+           1ull << (28 + lmcx_config.s.pbank_lsb - lmcx_config.s.rank_ena +
+                    (num_lmcs / 2));
+
+       debug("N%d: %s: starting LMC%d with rank offset 0x%016llx\n",
+             node, __func__, lmc, (unsigned long long)hw_rank_offset);
+
+       // start of pattern loop
+       // we do the set of tests for each pattern supplied...
+
+       memset(new_best_offset, 0, sizeof(new_best_offset));
+       for (pattern = 0; pattern < NUM_BYTE_PATTERNS; pattern++) {
+               memset(pat_best_offset, 0, sizeof(pat_best_offset));
+
+               if (mode == DBTRAIN_TEST) {
+                       pattern_p = byte_patterns[pattern];
+                       setup_hw_pattern(priv, lmc, pattern_p);
+               } else {
+                       setup_lfsr_pattern(priv, lmc, lfsr_patterns[pattern]);
+               }
+
+               // now loop through all legal values for the DLL byte offset...
+
+#define BYTE_OFFSET_INCR 3     // FIXME: make this tunable?
+
+               tot_errors = 0;
+
+               memset(rank_delay_count, 0, sizeof(rank_delay_count));
+               memset(rank_delay_start, 0, sizeof(rank_delay_start));
+               memset(rank_delay_best_count, 0, sizeof(rank_delay_best_count));
+               memset(rank_delay_best_start, 0, sizeof(rank_delay_best_start));
+
+               for (byte_offset = -63; byte_offset < 64;
+                    byte_offset += BYTE_OFFSET_INCR) {
+                       // do the setup on the active LMC
+                       // set the bytelanes DLL offsets
+                       change_dll_offset_enable(priv, lmc, 0);
+                       // FIXME? bytelane?
+                       load_dll_offset(priv, lmc, dll_offset_mode,
+                                       byte_offset, bytelane);
+                       change_dll_offset_enable(priv, lmc, 1);
+
+                       //bdk_watchdog_poke();
+
+                       // run the test on each rank
+                       // only 1 call per rank should be enough, let the
+                       // bursts, loops, etc, control the load...
+
+                       // errors for this byte_offset, all ranks
+                       off_errors = 0;
+
+                       active_ranks = 0;
+
+                       for (rankx = 0; rankx < 4; rankx++) {
+                               if (!(rank_mask & (1 << rankx)))
+                                       continue;
+
+                               phys_addr = hw_rank_offset * active_ranks;
+                               // FIXME: now done by test_dram_byte_hw()
+                               //phys_addr |= (lmc << 7);
+                               //phys_addr |= (u64)node << CVMX_NODE_MEM_SHIFT;
+
+                               active_ranks++;
+
+                               // NOTE: return is a now a bitmask of the
+                               // erroring bytelanes.
+                               errors[rankx] =
+                                   test_dram_byte_hw(priv, lmc, phys_addr,
+                                                     mode, NULL);
+
+                               // process any errors in the bytelane(s) that
+                               // are being tested
+                               for (byte = byte_lo; byte <= byte_hi; byte++) {
+                                       // check errors
+                                       // yes, an error in the byte lane in
+                                       // this rank
+                                       if (errors[rankx] & (1 << byte)) {
+                                               off_errors |= (1 << byte);
+
+                                               debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: Address 0x%012llx errors\n",
+                                                     node, lmc, rankx, byte,
+                                                     mode_str, byte_offset,
+                                                     phys_addr);
+
+                                               // had started run
+                                               if (rank_delay_count
+                                                   [rankx][byte] > 0) {
+                                                       debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: stopping a run here\n",
+                                                             node, lmc, rankx,
+                                                             byte, mode_str,
+                                                             byte_offset);
+                                                       // stop now
+                                                       rank_delay_count
+                                                               [rankx][byte] =
+                                                               0;
+                                               }
+                                               // FIXME: else had not started
+                                               // run - nothing else to do?
+                                       } else {
+                                               // no error in the byte lane
+                                               // first success, set run start
+                                               if (rank_delay_count[rankx]
+                                                   [byte] == 0) {
+                                                       debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: starting a run here\n",
+                                                             node, lmc, rankx,
+                                                             byte, mode_str,
+                                                             byte_offset);
+                                                       rank_delay_start[rankx]
+                                                               [byte] =
+                                                               byte_offset;
+                                               }
+                                               // bump run length
+                                               rank_delay_count[rankx][byte]
+                                                       += BYTE_OFFSET_INCR;
+
+                                               // is this now the biggest
+                                               // window?
+                                               if (rank_delay_count[rankx]
+                                                   [byte] >
+                                                   rank_delay_best_count[rankx]
+                                                   [byte]) {
+                                                       rank_delay_best_count
+                                                           [rankx][byte] =
+                                                           rank_delay_count
+                                                           [rankx][byte];
+                                                       rank_delay_best_start
+                                                           [rankx][byte] =
+                                                           rank_delay_start
+                                                           [rankx][byte];
+                                                       debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: updating best to %d/%d\n",
+                                                             node, lmc, rankx,
+                                                             byte, mode_str,
+                                                             byte_offset,
+                                                             rank_delay_best_start
+                                                             [rankx][byte],
+                                                             rank_delay_best_count
+                                                             [rankx][byte]);
+                                               }
+                                       }
+                               }
+                       } /* for (rankx = 0; rankx < 4; rankx++) */
+
+                       tot_errors |= off_errors;
+               }
+
+               // set the bytelanes DLL offsets all back to 0
+               change_dll_offset_enable(priv, lmc, 0);
+               load_dll_offset(priv, lmc, dll_offset_mode, 0, bytelane);
+               change_dll_offset_enable(priv, lmc, 1);
+
+               // now choose the best byte_offsets for this pattern
+               // according to the best windows of the tested ranks
+               // calculate offset by constructing an average window
+               // from the rank windows
+               for (byte = byte_lo; byte <= byte_hi; byte++) {
+                       pat_beg = -999;
+                       pat_end = 999;
+
+                       for (rankx = 0; rankx < 4; rankx++) {
+                               if (!(rank_mask & (1 << rankx)))
+                                       continue;
+
+                               rank_beg = rank_delay_best_start[rankx][byte];
+                               pat_beg = max(pat_beg, rank_beg);
+                               rank_end = rank_beg +
+                                       rank_delay_best_count[rankx][byte] -
+                                       BYTE_OFFSET_INCR;
+                               pat_end = min(pat_end, rank_end);
+
+                               debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test:  Rank Window %3d:%3d\n",
+                                     node, lmc, rankx, byte, mode_str,
+                                     rank_beg, rank_end);
+
+                       }       /* for (rankx = 0; rankx < 4; rankx++) */
+
+                       pat_best_offset[byte] = (pat_end + pat_beg) / 2;
+
+                       // sum the pattern averages
+                       new_best_offset[byte] += pat_best_offset[byte];
+               }
+
+               // now print them on 1 line, descending order...
+               debug("N%d.LMC%d: HW DLL %s Offset Pattern %d :",
+                     node, lmc, mode_str, pattern);
+               for (byte = byte_hi; byte >= byte_lo; --byte)
+                       debug(" %4d", pat_best_offset[byte]);
+               debug("\n");
+       }
+       // end of pattern loop
+
+       debug("N%d.LMC%d: HW DLL %s Offset Average  : ", node, lmc, mode_str);
+
+       // print in decending byte index order
+       for (byte = byte_hi; byte >= byte_lo; --byte) {
+               // create the new average NINT
+               new_best_offset[byte] = divide_nint(new_best_offset[byte],
+                                                   NUM_BYTE_PATTERNS);
+
+               // print the best offsets from all patterns
+
+               // print just the offset of all the bytes
+               if (bytelane == 0x0A)
+                       debug("%4d ", new_best_offset[byte]);
+               else            // print the bytelanes also
+                       debug("(byte %d) %4d ", byte, new_best_offset[byte]);
+
+               // done with testing, load up the best offsets we found...
+               // disable offsets while we load...
+               change_dll_offset_enable(priv, lmc, 0);
+               load_dll_offset(priv, lmc, dll_offset_mode,
+                               new_best_offset[byte], byte);
+               // re-enable the offsets now that we are done loading
+               change_dll_offset_enable(priv, lmc, 1);
+       }
+
+       debug("\n");
+}
+
+/*
+ * Automatically adjust the DLL offset for the selected bytelane using
+ * hardware-assist
+ */
+static int perform_HW_dll_offset_tuning(struct ddr_priv *priv,
+                                       int dll_offset_mode, int bytelane)
+{
+       int if_64b;
+       int save_ecc_ena[4];
+       union cvmx_lmcx_config lmc_config;
+       int lmc, num_lmcs = cvmx_dram_get_num_lmc(priv);
+       const char *s;
+       int loops = 1, loop;
+       int by;
+       u64 dram_tune_rank_offset;
+       int dram_tune_byte_bursts = DEFAULT_BYTE_BURSTS;
+       int node = 0;
+
+       // see if we want to do the tuning more than once per LMC...
+       s = env_get("ddr_tune_ecc_loops");
+       if (s)
+               loops = strtoul(s, NULL, 0);
+
+       // allow override of the test repeats (bursts)
+       s = env_get("ddr_tune_byte_bursts");
+       if (s)
+               dram_tune_byte_bursts = strtoul(s, NULL, 10);
+
+       // print current working values
+       debug("N%d: H/W Tuning for bytelane %d will use %d loops, %d bursts, and %d patterns.\n",
+             node, bytelane, loops, dram_tune_byte_bursts, NUM_BYTE_PATTERNS);
+
+       // FIXME? get flag from LMC0 only
+       lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(0));
+       if_64b = !lmc_config.s.mode32b;
+
+       // this should be correct for 1 or 2 ranks, 1 or 2 DIMMs
+       dram_tune_rank_offset =
+           1ull << (28 + lmc_config.s.pbank_lsb - lmc_config.s.rank_ena +
+                    (num_lmcs / 2));
+
+       // do once for each active LMC
+
+       for (lmc = 0; lmc < num_lmcs; lmc++) {
+               debug("N%d: H/W Tuning: starting LMC%d bytelane %d tune.\n",
+                     node, lmc, bytelane);
+
+               /* Enable ECC for the HW tests */
+               // NOTE: we do enable ECC, but the HW tests used will not
+               // generate "visible" errors
+               lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
+               save_ecc_ena[lmc] = lmc_config.s.ecc_ena;
+               lmc_config.s.ecc_ena = 1;
+               lmc_wr(priv, CVMX_LMCX_CONFIG(lmc), lmc_config.u64);
+               lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
+
+               // testing is done on a single LMC at a time
+               // FIXME: for now, loop here to show what happens multiple times
+               for (loop = 0; loop < loops; loop++) {
+                       /* Perform DLL offset tuning */
+                       hw_assist_test_dll_offset(priv, 2 /* 2=read */, lmc,
+                                                 bytelane,
+                                                 if_64b, dram_tune_rank_offset,
+                                                 dram_tune_byte_bursts);
+               }
+
+               // perform cleanup on active LMC
+               debug("N%d: H/W Tuning: finishing LMC%d bytelane %d tune.\n",
+                     node, lmc, bytelane);
+
+               /* Restore ECC for DRAM tests */
+               lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
+               lmc_config.s.ecc_ena = save_ecc_ena[lmc];
+               lmc_wr(priv, CVMX_LMCX_CONFIG(lmc), lmc_config.u64);
+               lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
+
+               // finally, see if there are any read offset overrides
+               // after tuning
+               for (by = 0; by < 9; by++) {
+                       s = lookup_env(priv, "ddr%d_tune_byte%d", lmc, by);
+                       if (s) {
+                               int dllro = strtoul(s, NULL, 10);
+
+                               change_dll_offset_enable(priv, lmc, 0);
+                               load_dll_offset(priv, lmc, 2, dllro, by);
+                               change_dll_offset_enable(priv, lmc, 1);
+                       }
+               }
+
+       }                       /* for (lmc = 0; lmc < num_lmcs; lmc++) */
+
+       // finish up...
+
+       return 0;
+
+}                              /* perform_HW_dll_offset_tuning */
+
+// this routine simply makes the calls to the tuning routine and returns
+// any errors
+static int cvmx_tune_node(struct ddr_priv *priv)
+{
+       int errs, tot_errs;
+       int do_dllwo = 0;       // default to NO
+       const char *str;
+       int node = 0;
+
+       // Automatically tune the data and ECC byte DLL read offsets
+       debug("N%d: Starting DLL Read Offset Tuning for LMCs\n", node);
+       errs = perform_HW_dll_offset_tuning(priv, 2, 0x0A /* all bytelanes */);
+       debug("N%d: Finished DLL Read Offset Tuning for LMCs, %d errors\n",
+             node, errs);
+       tot_errs = errs;
+
+       // disabled by default for now, does not seem to be needed?
+       // Automatically tune the data and ECC byte DLL write offsets
+       // allow override of default setting
+       str = env_get("ddr_tune_write_offsets");
+       if (str)
+               do_dllwo = !!strtoul(str, NULL, 0);
+       if (do_dllwo) {
+               debug("N%d: Starting DLL Write Offset Tuning for LMCs\n", node);
+               errs =
+                   perform_HW_dll_offset_tuning(priv, 1,
+                                                0x0A /* all bytelanes */);
+               debug("N%d: Finished DLL Write Offset Tuning for LMCs, %d errors\n",
+                     node, errs);
+               tot_errs += errs;
+       }
+
+       return tot_errs;
+}
+
+// this routine makes the calls to the tuning routines when criteria are met
+// intended to be called for automated tuning, to apply filtering...
+
+#define IS_DDR4  1
+#define IS_DDR3  0
+#define IS_RDIMM 1
+#define IS_UDIMM 0
+#define IS_1SLOT 1
+#define IS_2SLOT 0
+
+// FIXME: DDR3 is not tuned
+static const u32 ddr_speed_filter[2][2][2] = {
+       [IS_DDR4] = {
+                    [IS_RDIMM] = {
+                                  [IS_1SLOT] = 940,
+                                  [IS_2SLOT] = 800},
+                    [IS_UDIMM] = {
+                                  [IS_1SLOT] = 1050,
+                                  [IS_2SLOT] = 940},
+                     },
+       [IS_DDR3] = {
+                    [IS_RDIMM] = {
+                                  [IS_1SLOT] = 0,      // disabled
+                                  [IS_2SLOT] = 0       // disabled
+                                  },
+                    [IS_UDIMM] = {
+                                  [IS_1SLOT] = 0,      // disabled
+                                  [IS_2SLOT] = 0       // disabled
+                               }
+               }
+};
+
+void cvmx_maybe_tune_node(struct ddr_priv *priv, u32 ddr_speed)
+{
+       const char *s;
+       union cvmx_lmcx_config lmc_config;
+       union cvmx_lmcx_control lmc_control;
+       union cvmx_lmcx_ddr_pll_ctl lmc_ddr_pll_ctl;
+       int is_ddr4;
+       int is_rdimm;
+       int is_1slot;
+       int do_tune = 0;
+       u32 ddr_min_speed;
+       int node = 0;
+
+       // scale it down from Hz to MHz
+       ddr_speed = divide_nint(ddr_speed, 1000000);
+
+       // FIXME: allow an override here so that all configs can be tuned
+       // or none
+       // If the envvar is defined, always either force it or avoid it
+       // accordingly
+       s = env_get("ddr_tune_all_configs");
+       if (s) {
+               do_tune = !!strtoul(s, NULL, 0);
+               printf("N%d: DRAM auto-tuning %s.\n", node,
+                      (do_tune) ? "forced" : "disabled");
+               if (do_tune)
+                       cvmx_tune_node(priv);
+
+               return;
+       }
+
+       // filter the tuning calls here...
+       // determine if we should/can run automatically for this configuration
+       //
+       // FIXME: tune only when the configuration indicates it will help:
+       //    DDR type, RDIMM or UDIMM, 1-slot or 2-slot, and speed
+       //
+       lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(0));     // sample LMC0
+       lmc_control.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(0));   // sample LMC0
+       // sample LMC0
+       lmc_ddr_pll_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(0));
+
+       is_ddr4 = (lmc_ddr_pll_ctl.s.ddr4_mode != 0);
+       is_rdimm = (lmc_control.s.rdimm_ena != 0);
+       // HACK, should do better
+       is_1slot = (lmc_config.s.init_status < 4);
+
+       ddr_min_speed = ddr_speed_filter[is_ddr4][is_rdimm][is_1slot];
+       do_tune = ((ddr_min_speed != 0) && (ddr_speed > ddr_min_speed));
+
+       debug("N%d: DDR%d %cDIMM %d-slot at %d MHz %s eligible for auto-tuning.\n",
+             node, (is_ddr4) ? 4 : 3, (is_rdimm) ? 'R' : 'U',
+             (is_1slot) ? 1 : 2, ddr_speed, (do_tune) ? "is" : "is not");
+
+       // call the tuning routine, filtering is done...
+       if (do_tune)
+               cvmx_tune_node(priv);
+}
+
+/*
+ * first pattern example:
+ * GENERAL_PURPOSE0.DATA == 64'h00ff00ff00ff00ff;
+ * GENERAL_PURPOSE1.DATA == 64'h00ff00ff00ff00ff;
+ * GENERAL_PURPOSE0.DATA == 16'h0000;
+ */
+
+static const u64 dbi_pattern[3] = {
+       0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL, 0x0000ULL };
+
+// Perform switchover to DBI
+static void cvmx_dbi_switchover_interface(struct ddr_priv *priv, int lmc)
+{
+       union cvmx_lmcx_modereg_params0 modereg_params0;
+       union cvmx_lmcx_modereg_params3 modereg_params3;
+       union cvmx_lmcx_phy_ctl phy_ctl;
+       union cvmx_lmcx_config lmcx_config;
+       union cvmx_lmcx_ddr_pll_ctl ddr_pll_ctl;
+       int rank_mask, rankx, active_ranks;
+       u64 phys_addr, rank_offset;
+       int num_lmcs, errors;
+       int dbi_settings[9], byte, unlocked, retries;
+       int ecc_ena;
+       int rank_max = 1;       // FIXME: make this 4 to try all the ranks
+       int node = 0;
+
+       ddr_pll_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(0));
+
+       lmcx_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
+       rank_mask = lmcx_config.s.init_status;
+       ecc_ena = lmcx_config.s.ecc_ena;
+
+       // FIXME: must filter out any non-supported configs
+       //        ie, no DDR3, no x4 devices
+       if (ddr_pll_ctl.s.ddr4_mode == 0 || lmcx_config.s.mode_x4dev == 1) {
+               debug("N%d.LMC%d: DBI switchover: inappropriate device; EXITING...\n",
+                     node, lmc);
+               return;
+       }
+
+       // this should be correct for 1 or 2 ranks, 1 or 2 DIMMs
+       num_lmcs = cvmx_dram_get_num_lmc(priv);
+       rank_offset = 1ull << (28 + lmcx_config.s.pbank_lsb -
+                              lmcx_config.s.rank_ena + (num_lmcs / 2));
+
+       debug("N%d.LMC%d: DBI switchover: rank mask 0x%x, rank size 0x%016llx.\n",
+             node, lmc, rank_mask, (unsigned long long)rank_offset);
+
+       /*
+        * 1. conduct the current init sequence as usual all the way
+        * after software write leveling.
+        */
+
+       read_dac_dbi_settings(priv, lmc, /*DBI*/ 0, dbi_settings);
+
+       display_dac_dbi_settings(lmc, /*DBI*/ 0, ecc_ena, dbi_settings,
+                                " INIT");
+
+       /*
+        * 2. set DBI related CSRs as below and issue MR write.
+        * MODEREG_PARAMS3.WR_DBI=1
+        * MODEREG_PARAMS3.RD_DBI=1
+        * PHY_CTL.DBI_MODE_ENA=1
+        */
+       modereg_params0.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(lmc));
+
+       modereg_params3.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS3(lmc));
+       modereg_params3.s.wr_dbi = 1;
+       modereg_params3.s.rd_dbi = 1;
+       lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS3(lmc), modereg_params3.u64);
+
+       phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(lmc));
+       phy_ctl.s.dbi_mode_ena = 1;
+       lmc_wr(priv, CVMX_LMCX_PHY_CTL(lmc), phy_ctl.u64);
+
+       /*
+        * there are two options for data to send.  Lets start with (1)
+        * and could move to (2) in the future:
+        *
+        * 1) DBTRAIN_CTL[LFSR_PATTERN_SEL] = 0 (or for older chips where
+        * this does not exist) set data directly in these reigsters.
+        * this will yield a clk/2 pattern:
+        * GENERAL_PURPOSE0.DATA == 64'h00ff00ff00ff00ff;
+        * GENERAL_PURPOSE1.DATA == 64'h00ff00ff00ff00ff;
+        * GENERAL_PURPOSE0.DATA == 16'h0000;
+        * 2) DBTRAIN_CTL[LFSR_PATTERN_SEL] = 1
+        * here data comes from the LFSR generating a PRBS pattern
+        * CHAR_CTL.EN = 0
+        * CHAR_CTL.SEL = 0; // for PRBS
+        * CHAR_CTL.DR = 1;
+        * CHAR_CTL.PRBS = setup for whatever type of PRBS to send
+        * CHAR_CTL.SKEW_ON = 1;
+        */
+       lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE0(lmc), dbi_pattern[0]);
+       lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE1(lmc), dbi_pattern[1]);
+       lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE2(lmc), dbi_pattern[2]);
+
+       /*
+        * 3. adjust cas_latency (only necessary if RD_DBI is set).
+        * here is my code for doing this:
+        *
+        * if (csr_model.MODEREG_PARAMS3.RD_DBI.value == 1) begin
+        * case (csr_model.MODEREG_PARAMS0.CL.value)
+        * 0,1,2,3,4: csr_model.MODEREG_PARAMS0.CL.value += 2;
+        * // CL 9-13 -> 11-15
+        * 5: begin
+        * // CL=14, CWL=10,12 gets +2, CLW=11,14 gets +3
+        * if((csr_model.MODEREG_PARAMS0.CWL.value==1 ||
+        * csr_model.MODEREG_PARAMS0.CWL.value==3))
+        * csr_model.MODEREG_PARAMS0.CL.value = 7; // 14->16
+        * else
+        * csr_model.MODEREG_PARAMS0.CL.value = 13; // 14->17
+        * end
+        * 6: csr_model.MODEREG_PARAMS0.CL.value = 8; // 15->18
+        * 7: csr_model.MODEREG_PARAMS0.CL.value = 14; // 16->19
+        * 8: csr_model.MODEREG_PARAMS0.CL.value = 15; // 18->21
+        * default:
+        * `cn_fatal(("Error mem_cfg (%s) CL (%d) with RD_DBI=1,
+        * I am not sure what to do.",
+        * mem_cfg, csr_model.MODEREG_PARAMS3.RD_DBI.value))
+        * endcase
+        * end
+        */
+
+       if (modereg_params3.s.rd_dbi == 1) {
+               int old_cl, new_cl, old_cwl;
+
+               old_cl = modereg_params0.s.cl;
+               old_cwl = modereg_params0.s.cwl;
+
+               switch (old_cl) {
+               case 0:
+               case 1:
+               case 2:
+               case 3:
+               case 4:
+                       new_cl = old_cl + 2;
+                       break;  // 9-13->11-15
+                       // CL=14, CWL=10,12 gets +2, CLW=11,14 gets +3
+               case 5:
+                       new_cl = ((old_cwl == 1) || (old_cwl == 3)) ? 7 : 13;
+                       break;
+               case 6:
+                       new_cl = 8;
+                       break;  // 15->18
+               case 7:
+                       new_cl = 14;
+                       break;  // 16->19
+               case 8:
+                       new_cl = 15;
+                       break;  // 18->21
+               default:
+                       printf("ERROR: Bad CL value (%d) for DBI switchover.\n",
+                              old_cl);
+                       // FIXME: need to error exit here...
+                       old_cl = -1;
+                       new_cl = -1;
+                       break;
+               }
+               debug("N%d.LMC%d: DBI switchover: CL ADJ: old_cl 0x%x, old_cwl 0x%x, new_cl 0x%x.\n",
+                     node, lmc, old_cl, old_cwl, new_cl);
+               modereg_params0.s.cl = new_cl;
+               lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(lmc),
+                      modereg_params0.u64);
+       }
+
+       /*
+        * 4. issue MRW to MR0 (CL) and MR5 (DBI), using LMC sequence
+        * SEQ_CTL[SEQ_SEL] = MRW.
+        */
+       // Use the default values, from the CSRs fields
+       // also, do B-sides for RDIMMs...
+
+       for (rankx = 0; rankx < 4; rankx++) {
+               if (!(rank_mask & (1 << rankx)))
+                       continue;
+
+               // for RDIMMs, B-side writes should get done automatically
+               // when the A-side is written
+               ddr4_mrw(priv, lmc, rankx, -1 /* use_default */,
+                        0 /*MRreg */, 0 /*A-side */);  /* MR0 */
+               ddr4_mrw(priv, lmc, rankx, -1 /* use_default */,
+                        5 /*MRreg */, 0 /*A-side */);  /* MR5 */
+       }
+
+       /*
+        * 5. conduct DBI bit deskew training via the General Purpose
+        * R/W sequence (dbtrain). may need to run this over and over to get
+        * a lock (I need up to 5 in simulation):
+        * SEQ_CTL[SEQ_SEL] = RW_TRAINING (15)
+        * DBTRAIN_CTL.CMD_COUNT_EXT = all 1's
+        * DBTRAIN_CTL.READ_CMD_COUNT = all 1's
+        * DBTRAIN_CTL.TCCD_SEL = set according to MODEREG_PARAMS3[TCCD_L]
+        * DBTRAIN_CTL.RW_TRAIN = 1
+        * DBTRAIN_CTL.READ_DQ_COUNT = dont care
+        * DBTRAIN_CTL.WRITE_ENA = 1;
+        * DBTRAIN_CTL.ACTIVATE = 1;
+        * DBTRAIN_CTL LRANK, PRANK, ROW_A, BG, BA, COLUMN_A = set to a
+        * valid address
+        */
+
+       // NOW - do the training
+       debug("N%d.LMC%d: DBI switchover: TRAINING begins...\n", node, lmc);
+
+       active_ranks = 0;
+       for (rankx = 0; rankx < rank_max; rankx++) {
+               if (!(rank_mask & (1 << rankx)))
+                       continue;
+
+               phys_addr = rank_offset * active_ranks;
+               // FIXME: now done by test_dram_byte_hw()
+
+               active_ranks++;
+
+               retries = 0;
+
+restart_training:
+
+               // NOTE: return is a bitmask of the erroring bytelanes -
+               // we only print it
+               errors =
+                   test_dram_byte_hw(priv, lmc, phys_addr, DBTRAIN_DBI, NULL);
+
+               debug("N%d.LMC%d: DBI switchover: TEST: rank %d, phys_addr 0x%llx, errors 0x%x.\n",
+                     node, lmc, rankx, (unsigned long long)phys_addr, errors);
+
+               // NEXT - check for locking
+               unlocked = 0;
+               read_dac_dbi_settings(priv, lmc, /*DBI*/ 0, dbi_settings);
+
+               for (byte = 0; byte < (8 + ecc_ena); byte++)
+                       unlocked += (dbi_settings[byte] & 1) ^ 1;
+
+               // FIXME: print out the DBI settings array after each rank?
+               if (rank_max > 1)       // only when doing more than 1 rank
+                       display_dac_dbi_settings(lmc, /*DBI*/ 0, ecc_ena,
+                                                dbi_settings, " RANK");
+
+               if (unlocked > 0) {
+                       debug("N%d.LMC%d: DBI switchover: LOCK: %d still unlocked.\n",
+                             node, lmc, unlocked);
+                       retries++;
+                       if (retries < 10) {
+                               goto restart_training;
+                       } else {
+                               debug("N%d.LMC%d: DBI switchover: LOCK: %d retries exhausted.\n",
+                                     node, lmc, retries);
+                       }
+               }
+       }                       /* for (rankx = 0; rankx < 4; rankx++) */
+
+       // print out the final DBI settings array
+       display_dac_dbi_settings(lmc, /*DBI*/ 0, ecc_ena, dbi_settings,
+                                "FINAL");
+}
+
+void cvmx_dbi_switchover(struct ddr_priv *priv)
+{
+       int lmc;
+       int num_lmcs = cvmx_dram_get_num_lmc(priv);
+
+       for (lmc = 0; lmc < num_lmcs; lmc++)
+               cvmx_dbi_switchover_interface(priv, lmc);
+}