--- /dev/null
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2018 Marvell International Ltd.
+ */
+
+#include <dm.h>
+#include <dm/device-internal.h>
+#include <dm/devres.h>
+#include <dm/of_access.h>
+#include <malloc.h>
+#include <memalign.h>
+#include <nand.h>
+#include <pci.h>
+#include <time.h>
+#include <linux/bitfield.h>
+#include <linux/ctype.h>
+#include <linux/dma-mapping.h>
+#include <linux/delay.h>
+#include <linux/errno.h>
+#include <linux/err.h>
+#include <linux/ioport.h>
+#include <linux/libfdt.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand_bch.h>
+#include <linux/mtd/nand_ecc.h>
+#include <asm/io.h>
+#include <asm/types.h>
+#include <asm/dma-mapping.h>
+#include <asm/arch/clock.h>
+#include "octeontx_bch.h"
+
+#ifdef DEBUG
+# undef CONFIG_LOGLEVEL
+# define CONFIG_LOGLEVEL 8
+#endif
+
+/*
+ * The NDF_CMD queue takes commands between 16 - 128 bit.
+ * All commands must be 16 bit aligned and are little endian.
+ * WAIT_STATUS commands must be 64 bit aligned.
+ * Commands are selected by the 4 bit opcode.
+ *
+ * Available Commands:
+ *
+ * 16 Bit:
+ * NOP
+ * WAIT
+ * BUS_ACQ, BUS_REL
+ * CHIP_EN, CHIP_DIS
+ *
+ * 32 Bit:
+ * CLE_CMD
+ * RD_CMD, RD_EDO_CMD
+ * WR_CMD
+ *
+ * 64 Bit:
+ * SET_TM_PAR
+ *
+ * 96 Bit:
+ * ALE_CMD
+ *
+ * 128 Bit:
+ * WAIT_STATUS, WAIT_STATUS_ALE
+ */
+
+/* NDF Register offsets */
+#define NDF_CMD 0x0
+#define NDF_MISC 0x8
+#define NDF_ECC_CNT 0x10
+#define NDF_DRBELL 0x30
+#define NDF_ST_REG 0x38 /* status */
+#define NDF_INT 0x40
+#define NDF_INT_W1S 0x48
+#define NDF_DMA_CFG 0x50
+#define NDF_DMA_ADR 0x58
+#define NDF_INT_ENA_W1C 0x60
+#define NDF_INT_ENA_W1S 0x68
+
+/* NDF command opcodes */
+#define NDF_OP_NOP 0x0
+#define NDF_OP_SET_TM_PAR 0x1
+#define NDF_OP_WAIT 0x2
+#define NDF_OP_CHIP_EN_DIS 0x3
+#define NDF_OP_CLE_CMD 0x4
+#define NDF_OP_ALE_CMD 0x5
+#define NDF_OP_WR_CMD 0x8
+#define NDF_OP_RD_CMD 0x9
+#define NDF_OP_RD_EDO_CMD 0xa
+#define NDF_OP_WAIT_STATUS 0xb /* same opcode for WAIT_STATUS_ALE */
+#define NDF_OP_BUS_ACQ_REL 0xf
+
+#define NDF_BUS_ACQUIRE 1
+#define NDF_BUS_RELEASE 0
+
+#define DBGX_EDSCR(X) (0x87A008000088 + (X) * 0x80000)
+
+struct ndf_nop_cmd {
+ u16 opcode: 4;
+ u16 nop: 12;
+};
+
+struct ndf_wait_cmd {
+ u16 opcode:4;
+ u16 r_b:1; /* wait for one cycle or PBUS_WAIT deassert */
+ u16:3;
+ u16 wlen:3; /* timing parameter select */
+ u16:5;
+};
+
+struct ndf_bus_cmd {
+ u16 opcode:4;
+ u16 direction:4; /* 1 = acquire, 0 = release */
+ u16:8;
+};
+
+struct ndf_chip_cmd {
+ u16 opcode:4;
+ u16 chip:3; /* select chip, 0 = disable */
+ u16 enable:1; /* 1 = enable, 0 = disable */
+ u16 bus_width:2; /* 10 = 16 bit, 01 = 8 bit */
+ u16:6;
+};
+
+struct ndf_cle_cmd {
+ u32 opcode:4;
+ u32:4;
+ u32 cmd_data:8; /* command sent to the PBUS AD pins */
+ u32 clen1:3; /* time between PBUS CLE and WE asserts */
+ u32 clen2:3; /* time WE remains asserted */
+ u32 clen3:3; /* time between WE deassert and CLE */
+ u32:7;
+};
+
+/* RD_EDO_CMD uses the same layout as RD_CMD */
+struct ndf_rd_cmd {
+ u32 opcode:4;
+ u32 data:16; /* data bytes */
+ u32 rlen1:3;
+ u32 rlen2:3;
+ u32 rlen3:3;
+ u32 rlen4:3;
+};
+
+struct ndf_wr_cmd {
+ u32 opcode:4;
+ u32 data:16; /* data bytes */
+ u32:4;
+ u32 wlen1:3;
+ u32 wlen2:3;
+ u32:3;
+};
+
+struct ndf_set_tm_par_cmd {
+ u64 opcode:4;
+ u64 tim_mult:4; /* multiplier for the seven parameters */
+ u64 tm_par1:8; /* --> Following are the 7 timing parameters that */
+ u64 tm_par2:8; /* specify the number of coprocessor cycles. */
+ u64 tm_par3:8; /* A value of zero means one cycle. */
+ u64 tm_par4:8; /* All values are scaled by tim_mult */
+ u64 tm_par5:8; /* using tim_par * (2 ^ tim_mult). */
+ u64 tm_par6:8;
+ u64 tm_par7:8;
+};
+
+struct ndf_ale_cmd {
+ u32 opcode:4;
+ u32:4;
+ u32 adr_byte_num:4; /* number of address bytes to be sent */
+ u32:4;
+ u32 alen1:3;
+ u32 alen2:3;
+ u32 alen3:3;
+ u32 alen4:3;
+ u32:4;
+ u8 adr_byt1;
+ u8 adr_byt2;
+ u8 adr_byt3;
+ u8 adr_byt4;
+ u8 adr_byt5;
+ u8 adr_byt6;
+ u8 adr_byt7;
+ u8 adr_byt8;
+};
+
+struct ndf_wait_status_cmd {
+ u32 opcode:4;
+ u32:4;
+ u32 data:8; /** data */
+ u32 clen1:3;
+ u32 clen2:3;
+ u32 clen3:3;
+ u32:8;
+ /** set to 5 to select WAIT_STATUS_ALE command */
+ u32 ale_ind:8;
+ /** ALE only: number of address bytes to be sent */
+ u32 adr_byte_num:4;
+ u32:4;
+ u32 alen1:3; /* ALE only */
+ u32 alen2:3; /* ALE only */
+ u32 alen3:3; /* ALE only */
+ u32 alen4:3; /* ALE only */
+ u32:4;
+ u8 adr_byt[4]; /* ALE only */
+ u32 nine:4; /* set to 9 */
+ u32 and_mask:8;
+ u32 comp_byte:8;
+ u32 rlen1:3;
+ u32 rlen2:3;
+ u32 rlen3:3;
+ u32 rlen4:3;
+};
+
+union ndf_cmd {
+ u64 val[2];
+ union {
+ struct ndf_nop_cmd nop;
+ struct ndf_wait_cmd wait;
+ struct ndf_bus_cmd bus_acq_rel;
+ struct ndf_chip_cmd chip_en_dis;
+ struct ndf_cle_cmd cle_cmd;
+ struct ndf_rd_cmd rd_cmd;
+ struct ndf_wr_cmd wr_cmd;
+ struct ndf_set_tm_par_cmd set_tm_par;
+ struct ndf_ale_cmd ale_cmd;
+ struct ndf_wait_status_cmd wait_status;
+ } u;
+};
+
+/** Disable multi-bit error hangs */
+#define NDF_MISC_MB_DIS BIT_ULL(27)
+/** High watermark for NBR FIFO or load/store operations */
+#define NDF_MISC_NBR_HWM GENMASK_ULL(26, 24)
+/** Wait input filter count */
+#define NDF_MISC_WAIT_CNT GENMASK_ULL(23, 18)
+/** Unfilled NFD_CMD queue bytes */
+#define NDF_MISC_FR_BYTE GENMASK_ULL(17, 7)
+/** Set by HW when it reads the last 8 bytes of NDF_CMD */
+#define NDF_MISC_RD_DONE BIT_ULL(6)
+/** Set by HW when it reads. SW read of NDF_CMD clears it */
+#define NDF_MISC_RD_VAL BIT_ULL(5)
+/** Let HW read NDF_CMD queue. Cleared on SW NDF_CMD write */
+#define NDF_MISC_RD_CMD BIT_ULL(4)
+/** Boot disable */
+#define NDF_MISC_BT_DIS BIT_ULL(2)
+/** Stop command execution after completing command queue */
+#define NDF_MISC_EX_DIS BIT_ULL(1)
+/** Reset fifo */
+#define NDF_MISC_RST_FF BIT_ULL(0)
+
+/** DMA engine enable */
+#define NDF_DMA_CFG_EN BIT_ULL(63)
+/** Read or write */
+#define NDF_DMA_CFG_RW BIT_ULL(62)
+/** Terminates DMA and clears enable bit */
+#define NDF_DMA_CFG_CLR BIT_ULL(61)
+/** 32-bit swap enable */
+#define NDF_DMA_CFG_SWAP32 BIT_ULL(59)
+/** 16-bit swap enable */
+#define NDF_DMA_CFG_SWAP16 BIT_ULL(58)
+/** 8-bit swap enable */
+#define NDF_DMA_CFG_SWAP8 BIT_ULL(57)
+/** Endian mode */
+#define NDF_DMA_CFG_CMD_BE BIT_ULL(56)
+/** Number of 64 bit transfers */
+#define NDF_DMA_CFG_SIZE GENMASK_ULL(55, 36)
+
+/** Command execution status idle */
+#define NDF_ST_REG_EXE_IDLE BIT_ULL(15)
+/** Command execution SM states */
+#define NDF_ST_REG_EXE_SM GENMASK_ULL(14, 11)
+/** DMA and load SM states */
+#define NDF_ST_REG_BT_SM GENMASK_ULL(10, 7)
+/** Queue read-back SM bad state */
+#define NDF_ST_REG_RD_FF_BAD BIT_ULL(6)
+/** Queue read-back SM states */
+#define NDF_ST_REG_RD_FF GENMASK_ULL(5, 4)
+/** Main SM is in a bad state */
+#define NDF_ST_REG_MAIN_BAD BIT_ULL(3)
+/** Main SM states */
+#define NDF_ST_REG_MAIN_SM GENMASK_ULL(2, 0)
+
+#define MAX_NAND_NAME_LEN 64
+#if (defined(NAND_MAX_PAGESIZE) && (NAND_MAX_PAGESIZE > 4096)) || \
+ !defined(NAND_MAX_PAGESIZE)
+# undef NAND_MAX_PAGESIZE
+# define NAND_MAX_PAGESIZE 4096
+#endif
+#if (defined(NAND_MAX_OOBSIZE) && (NAND_MAX_OOBSIZE > 256)) || \
+ !defined(NAND_MAX_OOBSIZE)
+# undef NAND_MAX_OOBSIZE
+# define NAND_MAX_OOBSIZE 256
+#endif
+
+#define OCTEONTX_NAND_DRIVER_NAME "octeontx_nand"
+
+#define NDF_TIMEOUT 1000 /** Timeout in ms */
+#define USEC_PER_SEC 1000000 /** Linux compatibility */
+#ifndef NAND_MAX_CHIPS
+# define NAND_MAX_CHIPS 8 /** Linux compatibility */
+#endif
+
+struct octeontx_nand_chip {
+ struct list_head node;
+ struct nand_chip nand;
+ struct ndf_set_tm_par_cmd timings;
+ int cs;
+ int selected_page;
+ int iface_mode;
+ int row_bytes;
+ int col_bytes;
+ bool oob_only;
+ bool iface_set;
+};
+
+struct octeontx_nand_buf {
+ u8 *dmabuf;
+ dma_addr_t dmaaddr;
+ int dmabuflen;
+ int data_len;
+ int data_index;
+};
+
+/** NAND flash controller (NDF) related information */
+struct octeontx_nfc {
+ struct nand_hw_control controller;
+ struct udevice *dev;
+ void __iomem *base;
+ struct list_head chips;
+ int selected_chip; /* Currently selected NAND chip number */
+
+ /*
+ * Status is separate from octeontx_nand_buf because
+ * it can be used in parallel and during init.
+ */
+ u8 *stat;
+ dma_addr_t stat_addr;
+ bool use_status;
+
+ struct octeontx_nand_buf buf;
+ union bch_resp *bch_resp;
+ dma_addr_t bch_rhandle;
+
+ /* BCH of all-0xff, so erased pages read as error-free */
+ unsigned char *eccmask;
+};
+
+/* settable timings - 0..7 select timing of alen1..4/clen1..3/etc */
+enum tm_idx {
+ t0, /* fixed at 4<<mult cycles */
+ t1, t2, t3, t4, t5, t6, t7, /* settable per ONFI-timing mode */
+};
+
+struct octeontx_probe_device {
+ struct list_head list;
+ struct udevice *dev;
+};
+
+static struct bch_vf *bch_vf;
+/** Deferred devices due to BCH not being ready */
+LIST_HEAD(octeontx_pci_nand_deferred_devices);
+
+/** default parameters used for probing chips */
+#define MAX_ONFI_MODE 5
+
+static int default_onfi_timing;
+static int slew_ns = 2; /* default timing padding */
+static int def_ecc_size = 512; /* 1024 best for sw_bch, <= 4095 for hw_bch */
+static int default_width = 1; /* 8 bit */
+static int default_page_size = 2048;
+static struct ndf_set_tm_par_cmd default_timing_parms;
+
+/** Port from Linux */
+#define readq_poll_timeout(addr, val, cond, delay_us, timeout_us) \
+({ \
+ ulong __start = get_timer(0); \
+ void *__addr = (addr); \
+ const ulong __timeout_ms = timeout_us / 1000; \
+ do { \
+ (val) = readq(__addr); \
+ if (cond) \
+ break; \
+ if (timeout_us && get_timer(__start) > __timeout_ms) { \
+ (val) = readq(__addr); \
+ break; \
+ } \
+ if (delay_us) \
+ udelay(delay_us); \
+ } while (1); \
+ (cond) ? 0 : -ETIMEDOUT; \
+})
+
+/** Ported from Linux 4.9.0 include/linux/of.h for compatibility */
+static inline int of_get_child_count(const ofnode node)
+{
+ return fdtdec_get_child_count(gd->fdt_blob, ofnode_to_offset(node));
+}
+
+/**
+ * Linux compatibility from Linux 4.9.0 drivers/mtd/nand/nand_base.c
+ */
+static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+
+ if (section || !ecc->total)
+ return -ERANGE;
+
+ oobregion->length = ecc->total;
+ oobregion->offset = mtd->oobsize - oobregion->length;
+
+ return 0;
+}
+
+/**
+ * Linux compatibility from Linux 4.9.0 drivers/mtd/nand/nand_base.c
+ */
+static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+
+ if (section)
+ return -ERANGE;
+
+ oobregion->length = mtd->oobsize - ecc->total - 2;
+ oobregion->offset = 2;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
+ .ecc = nand_ooblayout_ecc_lp,
+ .rfree = nand_ooblayout_free_lp,
+};
+
+static inline struct octeontx_nand_chip *to_otx_nand(struct nand_chip *nand)
+{
+ return container_of(nand, struct octeontx_nand_chip, nand);
+}
+
+static inline struct octeontx_nfc *to_otx_nfc(struct nand_hw_control *ctrl)
+{
+ return container_of(ctrl, struct octeontx_nfc, controller);
+}
+
+static int octeontx_nand_calc_ecc_layout(struct nand_chip *nand)
+{
+ struct nand_ecclayout *layout = nand->ecc.layout;
+ struct octeontx_nfc *tn = to_otx_nfc(nand->controller);
+ struct mtd_info *mtd = &nand->mtd;
+ int oobsize = mtd->oobsize;
+ int i;
+ bool layout_alloc = false;
+
+ if (!layout) {
+ layout = devm_kzalloc(tn->dev, sizeof(*layout), GFP_KERNEL);
+ if (!layout)
+ return -ENOMEM;
+ nand->ecc.layout = layout;
+ layout_alloc = true;
+ }
+ layout->eccbytes = nand->ecc.steps * nand->ecc.bytes;
+ /* Reserve 2 bytes for bad block marker */
+ if (layout->eccbytes + 2 > oobsize) {
+ pr_err("No suitable oob scheme available for oobsize %d eccbytes %u\n",
+ oobsize, layout->eccbytes);
+ goto fail;
+ }
+ /* put ecc bytes at oob tail */
+ for (i = 0; i < layout->eccbytes; i++)
+ layout->eccpos[i] = oobsize - layout->eccbytes + i;
+ layout->oobfree[0].offset = 2;
+ layout->oobfree[0].length = oobsize - 2 - layout->eccbytes;
+ nand->ecc.layout = layout;
+ return 0;
+
+fail:
+ if (layout_alloc)
+ kfree(layout);
+ return -1;
+}
+
+/*
+ * Read a single byte from the temporary buffer. Used after READID
+ * to get the NAND information and for STATUS.
+ */
+static u8 octeontx_nand_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *nand = mtd_to_nand(mtd);
+ struct octeontx_nfc *tn = to_otx_nfc(nand->controller);
+
+ if (tn->use_status) {
+ tn->use_status = false;
+ return *tn->stat;
+ }
+
+ if (tn->buf.data_index < tn->buf.data_len)
+ return tn->buf.dmabuf[tn->buf.data_index++];
+
+ dev_err(tn->dev, "No data to read, idx: 0x%x, len: 0x%x\n",
+ tn->buf.data_index, tn->buf.data_len);
+
+ return 0xff;
+}
+
+/*
+ * Read a number of pending bytes from the temporary buffer. Used
+ * to get page and OOB data.
+ */
+static void octeontx_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+{
+ struct nand_chip *nand = mtd_to_nand(mtd);
+ struct octeontx_nfc *tn = to_otx_nfc(nand->controller);
+
+ if (len > tn->buf.data_len - tn->buf.data_index) {
+ dev_err(tn->dev, "Not enough data for read of %d bytes\n", len);
+ return;
+ }
+
+ memcpy(buf, tn->buf.dmabuf + tn->buf.data_index, len);
+ tn->buf.data_index += len;
+}
+
+static void octeontx_nand_write_buf(struct mtd_info *mtd,
+ const u8 *buf, int len)
+{
+ struct nand_chip *nand = mtd_to_nand(mtd);
+ struct octeontx_nfc *tn = to_otx_nfc(nand->controller);
+
+ memcpy(tn->buf.dmabuf + tn->buf.data_len, buf, len);
+ tn->buf.data_len += len;
+}
+
+/* Overwrite default function to avoid sync abort on chip = -1. */
+static void octeontx_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+}
+
+static inline int timing_to_cycle(u32 psec, unsigned long clock)
+{
+ unsigned int ns;
+ int ticks;
+
+ ns = DIV_ROUND_UP(psec, 1000);
+ ns += slew_ns;
+
+ /* no rounding needed since clock is multiple of 1MHz */
+ clock /= 1000000;
+ ns *= clock;
+
+ ticks = DIV_ROUND_UP(ns, 1000);
+
+ /* actual delay is (tm_parX+1)<<tim_mult */
+ if (ticks)
+ ticks--;
+
+ return ticks;
+}
+
+static void set_timings(struct octeontx_nand_chip *chip,
+ struct ndf_set_tm_par_cmd *tp,
+ const struct nand_sdr_timings *timings,
+ unsigned long sclk)
+{
+ /* scaled coprocessor-cycle values */
+ u32 s_wh, s_cls, s_clh, s_rp, s_wb, s_wc;
+
+ tp->tim_mult = 0;
+ s_wh = timing_to_cycle(timings->tWH_min, sclk);
+ s_cls = timing_to_cycle(timings->tCLS_min, sclk);
+ s_clh = timing_to_cycle(timings->tCLH_min, sclk);
+ s_rp = timing_to_cycle(timings->tRP_min, sclk);
+ s_wb = timing_to_cycle(timings->tWB_max, sclk);
+ s_wc = timing_to_cycle(timings->tWC_min, sclk);
+
+ tp->tm_par1 = s_wh;
+ tp->tm_par2 = s_clh;
+ tp->tm_par3 = s_rp + 1;
+ tp->tm_par4 = s_cls - s_wh;
+ tp->tm_par5 = s_wc - s_wh + 1;
+ tp->tm_par6 = s_wb;
+ tp->tm_par7 = 0;
+ tp->tim_mult++; /* overcompensate for bad math */
+
+ /* TODO: comment parameter re-use */
+
+ pr_debug("%s: tim_par: mult: %d p1: %d p2: %d p3: %d\n",
+ __func__, tp->tim_mult, tp->tm_par1, tp->tm_par2, tp->tm_par3);
+ pr_debug(" p4: %d p5: %d p6: %d p7: %d\n",
+ tp->tm_par4, tp->tm_par5, tp->tm_par6, tp->tm_par7);
+}
+
+static int set_default_timings(struct octeontx_nfc *tn,
+ const struct nand_sdr_timings *timings)
+{
+ unsigned long sclk = octeontx_get_io_clock();
+
+ set_timings(NULL, &default_timing_parms, timings, sclk);
+ return 0;
+}
+
+static int octeontx_nfc_chip_set_timings(struct octeontx_nand_chip *chip,
+ const struct nand_sdr_timings *timings)
+{
+ /*struct octeontx_nfc *tn = to_otx_nfc(chip->nand.controller);*/
+ unsigned long sclk = octeontx_get_io_clock();
+
+ set_timings(chip, &chip->timings, timings, sclk);
+ return 0;
+}
+
+/* How many bytes are free in the NFD_CMD queue? */
+static int ndf_cmd_queue_free(struct octeontx_nfc *tn)
+{
+ u64 ndf_misc;
+
+ ndf_misc = readq(tn->base + NDF_MISC);
+ return FIELD_GET(NDF_MISC_FR_BYTE, ndf_misc);
+}
+
+/* Submit a command to the NAND command queue. */
+static int ndf_submit(struct octeontx_nfc *tn, union ndf_cmd *cmd)
+{
+ int opcode = cmd->val[0] & 0xf;
+
+ switch (opcode) {
+ /* All these commands fit in one 64bit word */
+ case NDF_OP_NOP:
+ case NDF_OP_SET_TM_PAR:
+ case NDF_OP_WAIT:
+ case NDF_OP_CHIP_EN_DIS:
+ case NDF_OP_CLE_CMD:
+ case NDF_OP_WR_CMD:
+ case NDF_OP_RD_CMD:
+ case NDF_OP_RD_EDO_CMD:
+ case NDF_OP_BUS_ACQ_REL:
+ if (ndf_cmd_queue_free(tn) < 8)
+ goto full;
+ writeq(cmd->val[0], tn->base + NDF_CMD);
+ break;
+ case NDF_OP_ALE_CMD:
+ /* ALE commands take either one or two 64bit words */
+ if (cmd->u.ale_cmd.adr_byte_num < 5) {
+ if (ndf_cmd_queue_free(tn) < 8)
+ goto full;
+ writeq(cmd->val[0], tn->base + NDF_CMD);
+ } else {
+ if (ndf_cmd_queue_free(tn) < 16)
+ goto full;
+ writeq(cmd->val[0], tn->base + NDF_CMD);
+ writeq(cmd->val[1], tn->base + NDF_CMD);
+ }
+ break;
+ case NDF_OP_WAIT_STATUS: /* Wait status commands take two 64bit words */
+ if (ndf_cmd_queue_free(tn) < 16)
+ goto full;
+ writeq(cmd->val[0], tn->base + NDF_CMD);
+ writeq(cmd->val[1], tn->base + NDF_CMD);
+ break;
+ default:
+ dev_err(tn->dev, "%s: unknown command: %u\n", __func__, opcode);
+ return -EINVAL;
+ }
+ return 0;
+
+full:
+ dev_err(tn->dev, "%s: no space left in command queue\n", __func__);
+ return -ENOMEM;
+}
+
+/**
+ * Wait for the ready/busy signal. First wait for busy to be valid,
+ * then wait for busy to de-assert.
+ */
+static int ndf_build_wait_busy(struct octeontx_nfc *tn)
+{
+ union ndf_cmd cmd;
+
+ memset(&cmd, 0, sizeof(cmd));
+ cmd.u.wait.opcode = NDF_OP_WAIT;
+ cmd.u.wait.r_b = 1;
+ cmd.u.wait.wlen = t6;
+
+ if (ndf_submit(tn, &cmd))
+ return -ENOMEM;
+ return 0;
+}
+
+static bool ndf_dma_done(struct octeontx_nfc *tn)
+{
+ u64 dma_cfg;
+
+ /* Enable bit should be clear after a transfer */
+ dma_cfg = readq(tn->base + NDF_DMA_CFG);
+ if (!(dma_cfg & NDF_DMA_CFG_EN))
+ return true;
+
+ return false;
+}
+
+static int ndf_wait(struct octeontx_nfc *tn)
+{
+ ulong start = get_timer(0);
+ bool done;
+
+ while (!(done = ndf_dma_done(tn)) && get_timer(start) < NDF_TIMEOUT)
+ ;
+
+ if (!done) {
+ dev_err(tn->dev, "%s: timeout error\n", __func__);
+ return -ETIMEDOUT;
+ }
+ return 0;
+}
+
+static int ndf_wait_idle(struct octeontx_nfc *tn)
+{
+ u64 val;
+ u64 dval = 0;
+ int rc;
+ int pause = 100;
+ u64 tot_us = USEC_PER_SEC / 10;
+
+ rc = readq_poll_timeout(tn->base + NDF_ST_REG,
+ val, val & NDF_ST_REG_EXE_IDLE, pause, tot_us);
+ if (!rc)
+ rc = readq_poll_timeout(tn->base + NDF_DMA_CFG,
+ dval, !(dval & NDF_DMA_CFG_EN),
+ pause, tot_us);
+
+ return rc;
+}
+
+/** Issue set timing parameters */
+static int ndf_queue_cmd_timing(struct octeontx_nfc *tn,
+ struct ndf_set_tm_par_cmd *timings)
+{
+ union ndf_cmd cmd;
+
+ memset(&cmd, 0, sizeof(cmd));
+ cmd.u.set_tm_par.opcode = NDF_OP_SET_TM_PAR;
+ cmd.u.set_tm_par.tim_mult = timings->tim_mult;
+ cmd.u.set_tm_par.tm_par1 = timings->tm_par1;
+ cmd.u.set_tm_par.tm_par2 = timings->tm_par2;
+ cmd.u.set_tm_par.tm_par3 = timings->tm_par3;
+ cmd.u.set_tm_par.tm_par4 = timings->tm_par4;
+ cmd.u.set_tm_par.tm_par5 = timings->tm_par5;
+ cmd.u.set_tm_par.tm_par6 = timings->tm_par6;
+ cmd.u.set_tm_par.tm_par7 = timings->tm_par7;
+ return ndf_submit(tn, &cmd);
+}
+
+/** Issue bus acquire or release */
+static int ndf_queue_cmd_bus(struct octeontx_nfc *tn, int direction)
+{
+ union ndf_cmd cmd;
+
+ memset(&cmd, 0, sizeof(cmd));
+ cmd.u.bus_acq_rel.opcode = NDF_OP_BUS_ACQ_REL;
+ cmd.u.bus_acq_rel.direction = direction;
+ return ndf_submit(tn, &cmd);
+}
+
+/* Issue chip select or deselect */
+static int ndf_queue_cmd_chip(struct octeontx_nfc *tn, int enable, int chip,
+ int width)
+{
+ union ndf_cmd cmd;
+
+ memset(&cmd, 0, sizeof(cmd));
+ cmd.u.chip_en_dis.opcode = NDF_OP_CHIP_EN_DIS;
+ cmd.u.chip_en_dis.chip = chip;
+ cmd.u.chip_en_dis.enable = enable;
+ cmd.u.chip_en_dis.bus_width = width;
+ return ndf_submit(tn, &cmd);
+}
+
+static int ndf_queue_cmd_wait(struct octeontx_nfc *tn, int t_delay)
+{
+ union ndf_cmd cmd;
+
+ memset(&cmd, 0, sizeof(cmd));
+ cmd.u.wait.opcode = NDF_OP_WAIT;
+ cmd.u.wait.wlen = t_delay;
+ return ndf_submit(tn, &cmd);
+}
+
+static int ndf_queue_cmd_cle(struct octeontx_nfc *tn, int command)
+{
+ union ndf_cmd cmd;
+
+ memset(&cmd, 0, sizeof(cmd));
+ cmd.u.cle_cmd.opcode = NDF_OP_CLE_CMD;
+ cmd.u.cle_cmd.cmd_data = command;
+ cmd.u.cle_cmd.clen1 = t4;
+ cmd.u.cle_cmd.clen2 = t1;
+ cmd.u.cle_cmd.clen3 = t2;
+ return ndf_submit(tn, &cmd);
+}
+
+static int ndf_queue_cmd_ale(struct octeontx_nfc *tn, int addr_bytes,
+ struct nand_chip *nand, u64 page,
+ u32 col, int page_size)
+{
+ struct octeontx_nand_chip *octeontx_nand = (nand) ?
+ to_otx_nand(nand) : NULL;
+ union ndf_cmd cmd;
+
+ memset(&cmd, 0, sizeof(cmd));
+ cmd.u.ale_cmd.opcode = NDF_OP_ALE_CMD;
+ cmd.u.ale_cmd.adr_byte_num = addr_bytes;
+
+ /* set column bit for OOB area, assume OOB follows page */
+ if (octeontx_nand && octeontx_nand->oob_only)
+ col += page_size;
+
+ /* page is u64 for this generality, even if cmdfunc() passes int */
+ switch (addr_bytes) {
+ /* 4-8 bytes: page, then 2-byte col */
+ case 8:
+ cmd.u.ale_cmd.adr_byt8 = (page >> 40) & 0xff;
+ fallthrough;
+ case 7:
+ cmd.u.ale_cmd.adr_byt7 = (page >> 32) & 0xff;
+ fallthrough;
+ case 6:
+ cmd.u.ale_cmd.adr_byt6 = (page >> 24) & 0xff;
+ fallthrough;
+ case 5:
+ cmd.u.ale_cmd.adr_byt5 = (page >> 16) & 0xff;
+ fallthrough;
+ case 4:
+ cmd.u.ale_cmd.adr_byt4 = (page >> 8) & 0xff;
+ cmd.u.ale_cmd.adr_byt3 = page & 0xff;
+ cmd.u.ale_cmd.adr_byt2 = (col >> 8) & 0xff;
+ cmd.u.ale_cmd.adr_byt1 = col & 0xff;
+ break;
+ /* 1-3 bytes: just the page address */
+ case 3:
+ cmd.u.ale_cmd.adr_byt3 = (page >> 16) & 0xff;
+ fallthrough;
+ case 2:
+ cmd.u.ale_cmd.adr_byt2 = (page >> 8) & 0xff;
+ fallthrough;
+ case 1:
+ cmd.u.ale_cmd.adr_byt1 = page & 0xff;
+ break;
+ default:
+ break;
+ }
+
+ cmd.u.ale_cmd.alen1 = t3;
+ cmd.u.ale_cmd.alen2 = t1;
+ cmd.u.ale_cmd.alen3 = t5;
+ cmd.u.ale_cmd.alen4 = t2;
+ return ndf_submit(tn, &cmd);
+}
+
+static int ndf_queue_cmd_write(struct octeontx_nfc *tn, int len)
+{
+ union ndf_cmd cmd;
+
+ memset(&cmd, 0, sizeof(cmd));
+ cmd.u.wr_cmd.opcode = NDF_OP_WR_CMD;
+ cmd.u.wr_cmd.data = len;
+ cmd.u.wr_cmd.wlen1 = t3;
+ cmd.u.wr_cmd.wlen2 = t1;
+ return ndf_submit(tn, &cmd);
+}
+
+static int ndf_build_pre_cmd(struct octeontx_nfc *tn, int cmd1,
+ int addr_bytes, u64 page, u32 col, int cmd2)
+{
+ struct nand_chip *nand = tn->controller.active;
+ struct octeontx_nand_chip *octeontx_nand;
+ struct ndf_set_tm_par_cmd *timings;
+ int width, page_size, rc;
+
+ /* Also called before chip probing is finished */
+ if (!nand) {
+ timings = &default_timing_parms;
+ page_size = default_page_size;
+ width = default_width;
+ } else {
+ octeontx_nand = to_otx_nand(nand);
+ timings = &octeontx_nand->timings;
+ page_size = nand->mtd.writesize;
+ if (nand->options & NAND_BUSWIDTH_16)
+ width = 2;
+ else
+ width = 1;
+ }
+ rc = ndf_queue_cmd_timing(tn, timings);
+ if (rc)
+ return rc;
+
+ rc = ndf_queue_cmd_bus(tn, NDF_BUS_ACQUIRE);
+ if (rc)
+ return rc;
+
+ rc = ndf_queue_cmd_chip(tn, 1, tn->selected_chip, width);
+ if (rc)
+ return rc;
+
+ rc = ndf_queue_cmd_wait(tn, t1);
+ if (rc)
+ return rc;
+
+ rc = ndf_queue_cmd_cle(tn, cmd1);
+ if (rc)
+ return rc;
+
+ if (addr_bytes) {
+ rc = ndf_build_wait_busy(tn);
+ if (rc)
+ return rc;
+
+ rc = ndf_queue_cmd_ale(tn, addr_bytes, nand,
+ page, col, page_size);
+ if (rc)
+ return rc;
+ }
+
+ /* CLE 2 */
+ if (cmd2) {
+ rc = ndf_build_wait_busy(tn);
+ if (rc)
+ return rc;
+
+ rc = ndf_queue_cmd_cle(tn, cmd2);
+ if (rc)
+ return rc;
+ }
+ return 0;
+}
+
+static int ndf_build_post_cmd(struct octeontx_nfc *tn, int hold_time)
+{
+ int rc;
+
+ /* Deselect chip */
+ rc = ndf_queue_cmd_chip(tn, 0, 0, 0);
+ if (rc)
+ return rc;
+
+ rc = ndf_queue_cmd_wait(tn, t2);
+ if (rc)
+ return rc;
+
+ /* Release bus */
+ rc = ndf_queue_cmd_bus(tn, 0);
+ if (rc)
+ return rc;
+
+ rc = ndf_queue_cmd_wait(tn, hold_time);
+ if (rc)
+ return rc;
+
+ /*
+ * Last action is ringing the doorbell with number of bus
+ * acquire-releases cycles (currently 1).
+ */
+ writeq(1, tn->base + NDF_DRBELL);
+ return 0;
+}
+
+/* Setup the NAND DMA engine for a transfer. */
+static void ndf_setup_dma(struct octeontx_nfc *tn, int is_write,
+ dma_addr_t bus_addr, int len)
+{
+ u64 dma_cfg;
+
+ dma_cfg = FIELD_PREP(NDF_DMA_CFG_RW, is_write) |
+ FIELD_PREP(NDF_DMA_CFG_SIZE, (len >> 3) - 1);
+ dma_cfg |= NDF_DMA_CFG_EN;
+ writeq(bus_addr, tn->base + NDF_DMA_ADR);
+ writeq(dma_cfg, tn->base + NDF_DMA_CFG);
+}
+
+static int octeontx_nand_reset(struct octeontx_nfc *tn)
+{
+ int rc;
+
+ rc = ndf_build_pre_cmd(tn, NAND_CMD_RESET, 0, 0, 0, 0);
+ if (rc)
+ return rc;
+
+ rc = ndf_build_wait_busy(tn);
+ if (rc)
+ return rc;
+
+ rc = ndf_build_post_cmd(tn, t2);
+ if (rc)
+ return rc;
+
+ return 0;
+}
+
+static int ndf_read(struct octeontx_nfc *tn, int cmd1, int addr_bytes,
+ u64 page, u32 col, int cmd2, int len)
+{
+ dma_addr_t bus_addr = tn->use_status ? tn->stat_addr : tn->buf.dmaaddr;
+ struct nand_chip *nand = tn->controller.active;
+ int timing_mode, bytes, rc;
+ union ndf_cmd cmd;
+ u64 start, end;
+
+ pr_debug("%s(%p, 0x%x, 0x%x, 0x%llx, 0x%x, 0x%x, 0x%x)\n", __func__,
+ tn, cmd1, addr_bytes, page, col, cmd2, len);
+ if (!nand)
+ timing_mode = default_onfi_timing;
+ else
+ timing_mode = nand->onfi_timing_mode_default;
+
+ /* Build the command and address cycles */
+ rc = ndf_build_pre_cmd(tn, cmd1, addr_bytes, page, col, cmd2);
+ if (rc) {
+ dev_err(tn->dev, "Build pre command failed\n");
+ return rc;
+ }
+
+ /* This waits for some time, then waits for busy to be de-asserted. */
+ rc = ndf_build_wait_busy(tn);
+ if (rc) {
+ dev_err(tn->dev, "Wait timeout\n");
+ return rc;
+ }
+
+ memset(&cmd, 0, sizeof(cmd));
+
+ if (timing_mode < 4)
+ cmd.u.rd_cmd.opcode = NDF_OP_RD_CMD;
+ else
+ cmd.u.rd_cmd.opcode = NDF_OP_RD_EDO_CMD;
+
+ cmd.u.rd_cmd.data = len;
+ cmd.u.rd_cmd.rlen1 = t7;
+ cmd.u.rd_cmd.rlen2 = t3;
+ cmd.u.rd_cmd.rlen3 = t1;
+ cmd.u.rd_cmd.rlen4 = t7;
+ rc = ndf_submit(tn, &cmd);
+ if (rc) {
+ dev_err(tn->dev, "Error submitting command\n");
+ return rc;
+ }
+
+ start = (u64)bus_addr;
+ ndf_setup_dma(tn, 0, bus_addr, len);
+
+ rc = ndf_build_post_cmd(tn, t2);
+ if (rc) {
+ dev_err(tn->dev, "Build post command failed\n");
+ return rc;
+ }
+
+ /* Wait for the DMA to complete */
+ rc = ndf_wait(tn);
+ if (rc) {
+ dev_err(tn->dev, "DMA timed out\n");
+ return rc;
+ }
+
+ end = readq(tn->base + NDF_DMA_ADR);
+ bytes = end - start;
+
+ /* Make sure NDF is really done */
+ rc = ndf_wait_idle(tn);
+ if (rc) {
+ dev_err(tn->dev, "poll idle failed\n");
+ return rc;
+ }
+
+ pr_debug("%s: Read %d bytes\n", __func__, bytes);
+ return bytes;
+}
+
+static int octeontx_nand_get_features(struct mtd_info *mtd,
+ struct nand_chip *chip, int feature_addr,
+ u8 *subfeature_para)
+{
+ struct nand_chip *nand = chip;
+ struct octeontx_nfc *tn = to_otx_nfc(nand->controller);
+ int len = 8;
+ int rc;
+
+ pr_debug("%s: feature addr: 0x%x\n", __func__, feature_addr);
+ memset(tn->buf.dmabuf, 0xff, len);
+ tn->buf.data_index = 0;
+ tn->buf.data_len = 0;
+ rc = ndf_read(tn, NAND_CMD_GET_FEATURES, 1, feature_addr, 0, 0, len);
+ if (rc)
+ return rc;
+
+ memcpy(subfeature_para, tn->buf.dmabuf, ONFI_SUBFEATURE_PARAM_LEN);
+
+ return 0;
+}
+
+static int octeontx_nand_set_features(struct mtd_info *mtd,
+ struct nand_chip *chip, int feature_addr,
+ u8 *subfeature_para)
+{
+ struct nand_chip *nand = chip;
+ struct octeontx_nfc *tn = to_otx_nfc(nand->controller);
+ const int len = ONFI_SUBFEATURE_PARAM_LEN;
+ int rc;
+
+ rc = ndf_build_pre_cmd(tn, NAND_CMD_SET_FEATURES,
+ 1, feature_addr, 0, 0);
+ if (rc)
+ return rc;
+
+ memcpy(tn->buf.dmabuf, subfeature_para, len);
+ memset(tn->buf.dmabuf + len, 0, 8 - len);
+
+ ndf_setup_dma(tn, 1, tn->buf.dmaaddr, 8);
+
+ rc = ndf_queue_cmd_write(tn, 8);
+ if (rc)
+ return rc;
+
+ rc = ndf_build_wait_busy(tn);
+ if (rc)
+ return rc;
+
+ rc = ndf_build_post_cmd(tn, t2);
+ if (rc)
+ return rc;
+
+ return 0;
+}
+
+/*
+ * Read a page from NAND. If the buffer has room, the out of band
+ * data will be included.
+ */
+static int ndf_page_read(struct octeontx_nfc *tn, u64 page, int col, int len)
+{
+ debug("%s(%p, 0x%llx, 0x%x, 0x%x) active: %p\n", __func__,
+ tn, page, col, len, tn->controller.active);
+ struct nand_chip *nand = tn->controller.active;
+ struct octeontx_nand_chip *chip = to_otx_nand(nand);
+ int addr_bytes = chip->row_bytes + chip->col_bytes;
+
+ memset(tn->buf.dmabuf, 0xff, len);
+ return ndf_read(tn, NAND_CMD_READ0, addr_bytes,
+ page, col, NAND_CMD_READSTART, len);
+}
+
+/* Erase a NAND block */
+static int ndf_block_erase(struct octeontx_nfc *tn, u64 page_addr)
+{
+ struct nand_chip *nand = tn->controller.active;
+ struct octeontx_nand_chip *chip = to_otx_nand(nand);
+ int addr_bytes = chip->row_bytes;
+ int rc;
+
+ rc = ndf_build_pre_cmd(tn, NAND_CMD_ERASE1, addr_bytes,
+ page_addr, 0, NAND_CMD_ERASE2);
+ if (rc)
+ return rc;
+
+ /* Wait for R_B to signal erase is complete */
+ rc = ndf_build_wait_busy(tn);
+ if (rc)
+ return rc;
+
+ rc = ndf_build_post_cmd(tn, t2);
+ if (rc)
+ return rc;
+
+ /* Wait until the command queue is idle */
+ return ndf_wait_idle(tn);
+}
+
+/*
+ * Write a page (or less) to NAND.
+ */
+static int ndf_page_write(struct octeontx_nfc *tn, int page)
+{
+ int len, rc;
+ struct nand_chip *nand = tn->controller.active;
+ struct octeontx_nand_chip *chip = to_otx_nand(nand);
+ int addr_bytes = chip->row_bytes + chip->col_bytes;
+
+ len = tn->buf.data_len - tn->buf.data_index;
+ chip->oob_only = (tn->buf.data_index >= nand->mtd.writesize);
+ WARN_ON_ONCE(len & 0x7);
+
+ ndf_setup_dma(tn, 1, tn->buf.dmaaddr + tn->buf.data_index, len);
+ rc = ndf_build_pre_cmd(tn, NAND_CMD_SEQIN, addr_bytes, page, 0, 0);
+ if (rc)
+ return rc;
+
+ rc = ndf_queue_cmd_write(tn, len);
+ if (rc)
+ return rc;
+
+ rc = ndf_queue_cmd_cle(tn, NAND_CMD_PAGEPROG);
+ if (rc)
+ return rc;
+
+ /* Wait for R_B to signal program is complete */
+ rc = ndf_build_wait_busy(tn);
+ if (rc)
+ return rc;
+
+ rc = ndf_build_post_cmd(tn, t2);
+ if (rc)
+ return rc;
+
+ /* Wait for the DMA to complete */
+ rc = ndf_wait(tn);
+ if (rc)
+ return rc;
+
+ /* Data transfer is done but NDF is not, it is waiting for R/B# */
+ return ndf_wait_idle(tn);
+}
+
+static void octeontx_nand_cmdfunc(struct mtd_info *mtd, unsigned int command,
+ int column, int page_addr)
+{
+ struct nand_chip *nand = mtd_to_nand(mtd);
+ struct octeontx_nand_chip *octeontx_nand = to_otx_nand(nand);
+ struct octeontx_nfc *tn = to_otx_nfc(nand->controller);
+ int rc;
+
+ tn->selected_chip = octeontx_nand->cs;
+ if (tn->selected_chip < 0 || tn->selected_chip >= NAND_MAX_CHIPS) {
+ dev_err(tn->dev, "invalid chip select\n");
+ return;
+ }
+
+ tn->use_status = false;
+
+ pr_debug("%s(%p, 0x%x, 0x%x, 0x%x) cs: %d\n", __func__, mtd, command,
+ column, page_addr, tn->selected_chip);
+ switch (command) {
+ case NAND_CMD_READID:
+ tn->buf.data_index = 0;
+ octeontx_nand->oob_only = false;
+ rc = ndf_read(tn, command, 1, column, 0, 0, 8);
+ if (rc < 0)
+ dev_err(tn->dev, "READID failed with %d\n", rc);
+ else
+ tn->buf.data_len = rc;
+ break;
+
+ case NAND_CMD_READOOB:
+ octeontx_nand->oob_only = true;
+ tn->buf.data_index = 0;
+ tn->buf.data_len = 0;
+ rc = ndf_page_read(tn, page_addr, column, mtd->oobsize);
+ if (rc < mtd->oobsize)
+ dev_err(tn->dev, "READOOB failed with %d\n",
+ tn->buf.data_len);
+ else
+ tn->buf.data_len = rc;
+ break;
+
+ case NAND_CMD_READ0:
+ octeontx_nand->oob_only = false;
+ tn->buf.data_index = 0;
+ tn->buf.data_len = 0;
+ rc = ndf_page_read(tn, page_addr, column,
+ mtd->writesize + mtd->oobsize);
+
+ if (rc < mtd->writesize + mtd->oobsize)
+ dev_err(tn->dev, "READ0 failed with %d\n", rc);
+ else
+ tn->buf.data_len = rc;
+ break;
+
+ case NAND_CMD_STATUS:
+ /* used in oob/not states */
+ tn->use_status = true;
+ rc = ndf_read(tn, command, 0, 0, 0, 0, 8);
+ if (rc < 0)
+ dev_err(tn->dev, "STATUS failed with %d\n", rc);
+ break;
+
+ case NAND_CMD_RESET:
+ /* used in oob/not states */
+ rc = octeontx_nand_reset(tn);
+ if (rc < 0)
+ dev_err(tn->dev, "RESET failed with %d\n", rc);
+ break;
+
+ case NAND_CMD_PARAM:
+ octeontx_nand->oob_only = false;
+ tn->buf.data_index = 0;
+ rc = ndf_read(tn, command, 1, 0, 0, 0,
+ min(tn->buf.dmabuflen, 3 * 512));
+ if (rc < 0)
+ dev_err(tn->dev, "PARAM failed with %d\n", rc);
+ else
+ tn->buf.data_len = rc;
+ break;
+
+ case NAND_CMD_RNDOUT:
+ tn->buf.data_index = column;
+ break;
+
+ case NAND_CMD_ERASE1:
+ if (ndf_block_erase(tn, page_addr))
+ dev_err(tn->dev, "ERASE1 failed\n");
+ break;
+
+ case NAND_CMD_ERASE2:
+ /* We do all erase processing in the first command, so ignore
+ * this one.
+ */
+ break;
+
+ case NAND_CMD_SEQIN:
+ octeontx_nand->oob_only = (column >= mtd->writesize);
+ tn->buf.data_index = column;
+ tn->buf.data_len = column;
+
+ octeontx_nand->selected_page = page_addr;
+ break;
+
+ case NAND_CMD_PAGEPROG:
+ rc = ndf_page_write(tn, octeontx_nand->selected_page);
+ if (rc)
+ dev_err(tn->dev, "PAGEPROG failed with %d\n", rc);
+ break;
+
+ case NAND_CMD_SET_FEATURES:
+ octeontx_nand->oob_only = false;
+ /* assume tn->buf.data_len == 4 of data has been set there */
+ rc = octeontx_nand_set_features(mtd, nand,
+ page_addr, tn->buf.dmabuf);
+ if (rc)
+ dev_err(tn->dev, "SET_FEATURES failed with %d\n", rc);
+ break;
+
+ case NAND_CMD_GET_FEATURES:
+ octeontx_nand->oob_only = false;
+ rc = octeontx_nand_get_features(mtd, nand,
+ page_addr, tn->buf.dmabuf);
+ if (!rc) {
+ tn->buf.data_index = 0;
+ tn->buf.data_len = 4;
+ } else {
+ dev_err(tn->dev, "GET_FEATURES failed with %d\n", rc);
+ }
+ break;
+
+ default:
+ WARN_ON_ONCE(1);
+ dev_err(tn->dev, "unhandled nand cmd: %x\n", command);
+ }
+}
+
+static int octeontx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
+{
+ struct octeontx_nfc *tn = to_otx_nfc(chip->controller);
+ int ret;
+
+ ret = ndf_wait_idle(tn);
+ return (ret < 0) ? -EIO : 0;
+}
+
+/* check compatibility with ONFI timing mode#N, and optionally apply */
+/* TODO: Implement chipnr support? */
+static int octeontx_nand_setup_dat_intf(struct mtd_info *mtd, int chipnr,
+ const struct nand_data_interface *conf)
+{
+ static const bool check_only;
+ struct nand_chip *nand = mtd_to_nand(mtd);
+ struct octeontx_nand_chip *chip = to_otx_nand(nand);
+ static u64 t_wc_n[MAX_ONFI_MODE + 2]; /* cache a mode signature */
+ int mode; /* deduced mode number, for reporting and restricting */
+ int rc;
+
+ /*
+ * Cache timing modes for reporting, and reducing needless change.
+ *
+ * Challenge: caller does not pass ONFI mode#, but reporting the mode
+ * and restricting to a maximum, or a list, are useful for diagnosing
+ * new hardware. So use tWC_min, distinct and monotonic across modes,
+ * to discover the requested/accepted mode number
+ */
+ for (mode = MAX_ONFI_MODE; mode >= 0 && !t_wc_n[0]; mode--) {
+ const struct nand_sdr_timings *t;
+
+ t = onfi_async_timing_mode_to_sdr_timings(mode);
+ if (!t)
+ continue;
+ t_wc_n[mode] = t->tWC_min;
+ }
+
+ if (!conf) {
+ rc = -EINVAL;
+ } else if (check_only) {
+ rc = 0;
+ } else if (nand->data_interface &&
+ chip->iface_set && chip->iface_mode == mode) {
+ /*
+ * Cases:
+ * - called from nand_reset, which clears DDR timing
+ * mode back to SDR. BUT if we're already in SDR,
+ * timing mode persists over resets.
+ * While mtd/nand layer only supports SDR,
+ * this is always safe. And this driver only supports SDR.
+ *
+ * - called from post-power-event nand_reset (maybe
+ * NFC+flash power down, or system hibernate.
+ * Address this when CONFIG_PM support added
+ */
+ rc = 0;
+ } else {
+ rc = octeontx_nfc_chip_set_timings(chip, &conf->timings.sdr);
+ if (!rc) {
+ chip->iface_mode = mode;
+ chip->iface_set = true;
+ }
+ }
+ return rc;
+}
+
+static void octeontx_bch_reset(void)
+{
+}
+
+/*
+ * Given a page, calculate the ECC code
+ *
+ * chip: Pointer to NAND chip data structure
+ * buf: Buffer to calculate ECC on
+ * code: Buffer to hold ECC data
+ *
+ * Return 0 on success or -1 on failure
+ */
+static int octeontx_nand_bch_calculate_ecc_internal(struct mtd_info *mtd,
+ dma_addr_t ihandle,
+ u8 *code)
+{
+ struct nand_chip *nand = mtd_to_nand(mtd);
+ struct octeontx_nfc *tn = to_otx_nfc(nand->controller);
+ int rc;
+ int i;
+ static u8 *ecc_buffer;
+ static int ecc_size;
+ static unsigned long ecc_handle;
+ union bch_resp *r = tn->bch_resp;
+
+ if (!ecc_buffer || ecc_size < nand->ecc.size) {
+ ecc_size = nand->ecc.size;
+ ecc_buffer = dma_alloc_coherent(ecc_size,
+ (unsigned long *)&ecc_handle);
+ }
+
+ memset(ecc_buffer, 0, nand->ecc.bytes);
+
+ r->u16 = 0;
+ __iowmb(); /* flush done=0 before making request */
+
+ rc = octeontx_bch_encode(bch_vf, ihandle, nand->ecc.size,
+ nand->ecc.strength,
+ (dma_addr_t)ecc_handle, tn->bch_rhandle);
+
+ if (!rc) {
+ octeontx_bch_wait(bch_vf, r, tn->bch_rhandle);
+ } else {
+ dev_err(tn->dev, "octeontx_bch_encode failed\n");
+ return -1;
+ }
+
+ if (!r->s.done || r->s.uncorrectable) {
+ dev_err(tn->dev,
+ "%s timeout, done:%d uncorr:%d corr:%d erased:%d\n",
+ __func__, r->s.done, r->s.uncorrectable,
+ r->s.num_errors, r->s.erased);
+ octeontx_bch_reset();
+ return -1;
+ }
+
+ memcpy(code, ecc_buffer, nand->ecc.bytes);
+
+ for (i = 0; i < nand->ecc.bytes; i++)
+ code[i] ^= tn->eccmask[i];
+
+ return tn->bch_resp->s.num_errors;
+}
+
+/*
+ * Given a page, calculate the ECC code
+ *
+ * mtd: MTD block structure
+ * dat: raw data (unused)
+ * ecc_code: buffer for ECC
+ */
+static int octeontx_nand_bch_calculate(struct mtd_info *mtd,
+ const u8 *dat, u8 *ecc_code)
+{
+ struct nand_chip *nand = mtd_to_nand(mtd);
+ dma_addr_t handle = dma_map_single((u8 *)dat,
+ nand->ecc.size, DMA_TO_DEVICE);
+ int ret;
+
+ ret = octeontx_nand_bch_calculate_ecc_internal(mtd, handle,
+ (void *)ecc_code);
+
+ return ret;
+}
+
+/*
+ * Detect and correct multi-bit ECC for a page
+ *
+ * mtd: MTD block structure
+ * dat: raw data read from the chip
+ * read_ecc: ECC from the chip (unused)
+ * isnull: unused
+ *
+ * Returns number of bits corrected or -1 if unrecoverable
+ */
+static int octeontx_nand_bch_correct(struct mtd_info *mtd, u_char *dat,
+ u_char *read_ecc, u_char *isnull)
+{
+ struct nand_chip *nand = mtd_to_nand(mtd);
+ struct octeontx_nfc *tn = to_otx_nfc(nand->controller);
+ int i = nand->ecc.size + nand->ecc.bytes;
+ static u8 *data_buffer;
+ static dma_addr_t ihandle;
+ static int buffer_size;
+ dma_addr_t ohandle;
+ union bch_resp *r = tn->bch_resp;
+ int rc;
+
+ if (i > buffer_size) {
+ if (buffer_size)
+ free(data_buffer);
+ data_buffer = dma_alloc_coherent(i,
+ (unsigned long *)&ihandle);
+ if (!data_buffer) {
+ dev_err(tn->dev,
+ "%s: Could not allocate %d bytes for buffer\n",
+ __func__, i);
+ goto error;
+ }
+ buffer_size = i;
+ }
+
+ memcpy(data_buffer, dat, nand->ecc.size);
+ memcpy(data_buffer + nand->ecc.size, read_ecc, nand->ecc.bytes);
+
+ for (i = 0; i < nand->ecc.bytes; i++)
+ data_buffer[nand->ecc.size + i] ^= tn->eccmask[i];
+
+ r->u16 = 0;
+ __iowmb(); /* flush done=0 before making request */
+
+ ohandle = dma_map_single(dat, nand->ecc.size, DMA_FROM_DEVICE);
+ rc = octeontx_bch_decode(bch_vf, ihandle, nand->ecc.size,
+ nand->ecc.strength, ohandle, tn->bch_rhandle);
+
+ if (!rc)
+ octeontx_bch_wait(bch_vf, r, tn->bch_rhandle);
+
+ if (rc) {
+ dev_err(tn->dev, "octeontx_bch_decode failed\n");
+ goto error;
+ }
+
+ if (!r->s.done) {
+ dev_err(tn->dev, "Error: BCH engine timeout\n");
+ octeontx_bch_reset();
+ goto error;
+ }
+
+ if (r->s.erased) {
+ debug("Info: BCH block is erased\n");
+ return 0;
+ }
+
+ if (r->s.uncorrectable) {
+ debug("Cannot correct NAND block, response: 0x%x\n",
+ r->u16);
+ goto error;
+ }
+
+ return r->s.num_errors;
+
+error:
+ debug("Error performing bch correction\n");
+ return -1;
+}
+
+void octeontx_nand_bch_hwctl(struct mtd_info *mtd, int mode)
+{
+ /* Do nothing. */
+}
+
+static int octeontx_nand_hw_bch_read_page(struct mtd_info *mtd,
+ struct nand_chip *chip, u8 *buf,
+ int oob_required, int page)
+{
+ struct nand_chip *nand = mtd_to_nand(mtd);
+ struct octeontx_nfc *tn = to_otx_nfc(nand->controller);
+ int i, eccsize = chip->ecc.size, ret;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ u8 *p;
+ u8 *ecc_code = chip->buffers->ecccode;
+ unsigned int max_bitflips = 0;
+
+ /* chip->read_buf() insists on sequential order, we do OOB first */
+ memcpy(chip->oob_poi, tn->buf.dmabuf + mtd->writesize, mtd->oobsize);
+
+ /* Use private buffer as input for ECC correction */
+ p = tn->buf.dmabuf;
+
+ ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
+ chip->ecc.total);
+ if (ret)
+ return ret;
+
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+ int stat;
+
+ debug("Correcting block offset %lx, ecc offset %x\n",
+ p - buf, i);
+ stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
+
+ if (stat < 0) {
+ mtd->ecc_stats.failed++;
+ debug("Cannot correct NAND page %d\n", page);
+ } else {
+ mtd->ecc_stats.corrected += stat;
+ max_bitflips = max_t(unsigned int, max_bitflips, stat);
+ }
+ }
+
+ /* Copy corrected data to caller's buffer now */
+ memcpy(buf, tn->buf.dmabuf, mtd->writesize);
+
+ return max_bitflips;
+}
+
+static int octeontx_nand_hw_bch_write_page(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ const u8 *buf, int oob_required,
+ int page)
+{
+ struct octeontx_nfc *tn = to_otx_nfc(chip->controller);
+ int i, eccsize = chip->ecc.size, ret;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ const u8 *p;
+ u8 *ecc_calc = chip->buffers->ecccalc;
+
+ debug("%s(buf?%p, oob%d p%x)\n",
+ __func__, buf, oob_required, page);
+ for (i = 0; i < chip->ecc.total; i++)
+ ecc_calc[i] = 0xFF;
+
+ /* Copy the page data from caller's buffers to private buffer */
+ chip->write_buf(mtd, buf, mtd->writesize);
+ /* Use private date as source for ECC calculation */
+ p = tn->buf.dmabuf;
+
+ /* Hardware ECC calculation */
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+ int ret;
+
+ ret = chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+ if (ret < 0)
+ debug("calculate(mtd, p?%p, &ecc_calc[%d]?%p) returned %d\n",
+ p, i, &ecc_calc[i], ret);
+
+ debug("block offset %lx, ecc offset %x\n", p - buf, i);
+ }
+
+ ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
+ chip->ecc.total);
+ if (ret)
+ return ret;
+
+ /* Store resulting OOB into private buffer, will be sent to HW */
+ chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+ return 0;
+}
+
+/**
+ * nand_write_page_raw - [INTERN] raw page write function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page: page number to write
+ *
+ * Not for syndrome calculating ECC controllers, which use a special oob layout.
+ */
+static int octeontx_nand_write_page_raw(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ const u8 *buf, int oob_required,
+ int page)
+{
+ chip->write_buf(mtd, buf, mtd->writesize);
+ if (oob_required)
+ chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+ return 0;
+}
+
+/**
+ * octeontx_nand_write_oob_std - [REPLACEABLE] the most common OOB data write
+ * function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @page: page number to write
+ */
+static int octeontx_nand_write_oob_std(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ int page)
+{
+ int status = 0;
+ const u8 *buf = chip->oob_poi;
+ int length = mtd->oobsize;
+
+ chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
+ chip->write_buf(mtd, buf, length);
+ /* Send command to program the OOB data */
+ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+ status = chip->waitfunc(mtd, chip);
+
+ return status & NAND_STATUS_FAIL ? -EIO : 0;
+}
+
+/**
+ * octeontx_nand_read_page_raw - [INTERN] read raw page data without ecc
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * Not for syndrome calculating ECC controllers, which use a special oob layout.
+ */
+static int octeontx_nand_read_page_raw(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ u8 *buf, int oob_required, int page)
+{
+ chip->read_buf(mtd, buf, mtd->writesize);
+ if (oob_required)
+ chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+ return 0;
+}
+
+static int octeontx_nand_read_oob_std(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ int page)
+
+{
+ chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
+ chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+ return 0;
+}
+
+static int octeontx_nand_calc_bch_ecc_strength(struct nand_chip *nand)
+{
+ struct mtd_info *mtd = nand_to_mtd(nand);
+ struct nand_ecc_ctrl *ecc = &nand->ecc;
+ struct octeontx_nfc *tn = to_otx_nfc(nand->controller);
+ int nsteps = mtd->writesize / ecc->size;
+ int oobchunk = mtd->oobsize / nsteps;
+
+ /* ecc->strength determines ecc_level and OOB's ecc_bytes. */
+ const u8 strengths[] = {4, 8, 16, 24, 32, 40, 48, 56, 60, 64};
+ /* first set the desired ecc_level to match strengths[] */
+ int index = ARRAY_SIZE(strengths) - 1;
+ int need;
+
+ while (index > 0 && !(ecc->options & NAND_ECC_MAXIMIZE) &&
+ strengths[index - 1] >= ecc->strength)
+ index--;
+
+ do {
+ need = DIV_ROUND_UP(15 * strengths[index], 8);
+ if (need <= oobchunk - 2)
+ break;
+ } while (index > 0);
+
+ debug("%s: steps ds: %d, strength ds: %d\n", __func__,
+ nand->ecc_step_ds, nand->ecc_strength_ds);
+ ecc->strength = strengths[index];
+ ecc->bytes = need;
+ debug("%s: strength: %d, bytes: %d\n", __func__, ecc->strength,
+ ecc->bytes);
+
+ if (!tn->eccmask)
+ tn->eccmask = devm_kzalloc(tn->dev, ecc->bytes, GFP_KERNEL);
+ if (!tn->eccmask)
+ return -ENOMEM;
+
+ return 0;
+}
+
+/* sample the BCH signature of an erased (all 0xff) page,
+ * to XOR into all page traffic, so erased pages have no ECC errors
+ */
+static int octeontx_bch_save_empty_eccmask(struct nand_chip *nand)
+{
+ struct mtd_info *mtd = nand_to_mtd(nand);
+ struct octeontx_nfc *tn = to_otx_nfc(nand->controller);
+ unsigned int eccsize = nand->ecc.size;
+ unsigned int eccbytes = nand->ecc.bytes;
+ u8 erased_ecc[eccbytes];
+ unsigned long erased_handle;
+ unsigned char *erased_page = dma_alloc_coherent(eccsize,
+ &erased_handle);
+ int i;
+ int rc = 0;
+
+ if (!erased_page)
+ return -ENOMEM;
+
+ memset(erased_page, 0xff, eccsize);
+ memset(erased_ecc, 0, eccbytes);
+
+ rc = octeontx_nand_bch_calculate_ecc_internal(mtd,
+ (dma_addr_t)erased_handle,
+ erased_ecc);
+
+ free(erased_page);
+
+ for (i = 0; i < eccbytes; i++)
+ tn->eccmask[i] = erased_ecc[i] ^ 0xff;
+
+ return rc;
+}
+
+static void octeontx_nfc_chip_sizing(struct nand_chip *nand)
+{
+ struct octeontx_nand_chip *chip = to_otx_nand(nand);
+ struct mtd_info *mtd = nand_to_mtd(nand);
+ struct nand_ecc_ctrl *ecc = &nand->ecc;
+
+ chip->row_bytes = nand->onfi_params.addr_cycles & 0xf;
+ chip->col_bytes = nand->onfi_params.addr_cycles >> 4;
+ debug("%s(%p) row bytes: %d, col bytes: %d, ecc mode: %d\n",
+ __func__, nand, chip->row_bytes, chip->col_bytes, ecc->mode);
+
+ /*
+ * HW_BCH using OcteonTX BCH engine, or SOFT_BCH laid out in
+ * HW_BCH-compatible fashion, depending on devtree advice
+ * and kernel config.
+ * BCH/NFC hardware capable of subpage ops, not implemented.
+ */
+ mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
+ nand->options |= NAND_NO_SUBPAGE_WRITE;
+ debug("%s: start steps: %d, size: %d, bytes: %d\n",
+ __func__, ecc->steps, ecc->size, ecc->bytes);
+ debug("%s: step ds: %d, strength ds: %d\n", __func__,
+ nand->ecc_step_ds, nand->ecc_strength_ds);
+
+ if (ecc->mode != NAND_ECC_NONE) {
+ int nsteps = ecc->steps ? ecc->steps : 1;
+
+ if (ecc->size && ecc->size != mtd->writesize)
+ nsteps = mtd->writesize / ecc->size;
+ else if (mtd->writesize > def_ecc_size &&
+ !(mtd->writesize & (def_ecc_size - 1)))
+ nsteps = mtd->writesize / def_ecc_size;
+ ecc->steps = nsteps;
+ ecc->size = mtd->writesize / nsteps;
+ ecc->bytes = mtd->oobsize / nsteps;
+
+ if (nand->ecc_strength_ds)
+ ecc->strength = nand->ecc_strength_ds;
+ if (nand->ecc_step_ds)
+ ecc->size = nand->ecc_step_ds;
+ /*
+ * no subpage ops, but set subpage-shift to match ecc->steps
+ * so mtd_nandbiterrs tests appropriate boundaries
+ */
+ if (!mtd->subpage_sft && !(ecc->steps & (ecc->steps - 1)))
+ mtd->subpage_sft = fls(ecc->steps) - 1;
+
+ if (IS_ENABLED(CONFIG_NAND_OCTEONTX_HW_ECC)) {
+ debug("%s: ecc mode: %d\n", __func__, ecc->mode);
+ if (ecc->mode != NAND_ECC_SOFT &&
+ !octeontx_nand_calc_bch_ecc_strength(nand)) {
+ struct octeontx_nfc *tn =
+ to_otx_nfc(nand->controller);
+
+ debug("Using hardware BCH engine support\n");
+ ecc->mode = NAND_ECC_HW_SYNDROME;
+ ecc->read_page = octeontx_nand_hw_bch_read_page;
+ ecc->write_page =
+ octeontx_nand_hw_bch_write_page;
+ ecc->read_page_raw =
+ octeontx_nand_read_page_raw;
+ ecc->write_page_raw =
+ octeontx_nand_write_page_raw;
+ ecc->read_oob = octeontx_nand_read_oob_std;
+ ecc->write_oob = octeontx_nand_write_oob_std;
+
+ ecc->calculate = octeontx_nand_bch_calculate;
+ ecc->correct = octeontx_nand_bch_correct;
+ ecc->hwctl = octeontx_nand_bch_hwctl;
+
+ debug("NAND chip %d using hw_bch\n",
+ tn->selected_chip);
+ debug(" %d bytes ECC per %d byte block\n",
+ ecc->bytes, ecc->size);
+ debug(" for %d bits of correction per block.",
+ ecc->strength);
+ octeontx_nand_calc_ecc_layout(nand);
+ octeontx_bch_save_empty_eccmask(nand);
+ }
+ }
+ }
+}
+
+static int octeontx_nfc_chip_init(struct octeontx_nfc *tn, struct udevice *dev,
+ ofnode node)
+{
+ struct octeontx_nand_chip *chip;
+ struct nand_chip *nand;
+ struct mtd_info *mtd;
+ int ret;
+
+ chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
+ if (!chip)
+ return -ENOMEM;
+
+ debug("%s: Getting chip select\n", __func__);
+ ret = ofnode_read_s32(node, "reg", &chip->cs);
+ if (ret) {
+ dev_err(dev, "could not retrieve reg property: %d\n", ret);
+ return ret;
+ }
+
+ if (chip->cs >= NAND_MAX_CHIPS) {
+ dev_err(dev, "invalid reg value: %u (max CS = 7)\n", chip->cs);
+ return -EINVAL;
+ }
+ debug("%s: chip select: %d\n", __func__, chip->cs);
+ nand = &chip->nand;
+ nand->controller = &tn->controller;
+ if (!tn->controller.active)
+ tn->controller.active = nand;
+
+ debug("%s: Setting flash node\n", __func__);
+ nand_set_flash_node(nand, node);
+
+ nand->options = 0;
+ nand->select_chip = octeontx_nand_select_chip;
+ nand->cmdfunc = octeontx_nand_cmdfunc;
+ nand->waitfunc = octeontx_nand_waitfunc;
+ nand->read_byte = octeontx_nand_read_byte;
+ nand->read_buf = octeontx_nand_read_buf;
+ nand->write_buf = octeontx_nand_write_buf;
+ nand->onfi_set_features = octeontx_nand_set_features;
+ nand->onfi_get_features = octeontx_nand_get_features;
+ nand->setup_data_interface = octeontx_nand_setup_dat_intf;
+
+ mtd = nand_to_mtd(nand);
+ debug("%s: mtd: %p\n", __func__, mtd);
+ mtd->dev->parent = dev;
+
+ debug("%s: NDF_MISC: 0x%llx\n", __func__,
+ readq(tn->base + NDF_MISC));
+
+ /* TODO: support more then 1 chip */
+ debug("%s: Scanning identification\n", __func__);
+ ret = nand_scan_ident(mtd, 1, NULL);
+ if (ret)
+ return ret;
+
+ debug("%s: Sizing chip\n", __func__);
+ octeontx_nfc_chip_sizing(nand);
+
+ debug("%s: Scanning tail\n", __func__);
+ ret = nand_scan_tail(mtd);
+ if (ret) {
+ dev_err(dev, "nand_scan_tail failed: %d\n", ret);
+ return ret;
+ }
+
+ debug("%s: Registering mtd\n", __func__);
+ ret = nand_register(0, mtd);
+
+ debug("%s: Adding tail\n", __func__);
+ list_add_tail(&chip->node, &tn->chips);
+ return 0;
+}
+
+static int octeontx_nfc_chips_init(struct octeontx_nfc *tn)
+{
+ struct udevice *dev = tn->dev;
+ ofnode node = dev->node;
+ ofnode nand_node;
+ int nr_chips = of_get_child_count(node);
+ int ret;
+
+ debug("%s: node: %s\n", __func__, ofnode_get_name(node));
+ debug("%s: %d chips\n", __func__, nr_chips);
+ if (nr_chips > NAND_MAX_CHIPS) {
+ dev_err(dev, "too many NAND chips: %d\n", nr_chips);
+ return -EINVAL;
+ }
+
+ if (!nr_chips) {
+ debug("no DT NAND chips found\n");
+ return -ENODEV;
+ }
+
+ pr_info("%s: scanning %d chips DTs\n", __func__, nr_chips);
+
+ ofnode_for_each_subnode(nand_node, node) {
+ debug("%s: Calling octeontx_nfc_chip_init(%p, %s, %ld)\n",
+ __func__, tn, dev->name, nand_node.of_offset);
+ ret = octeontx_nfc_chip_init(tn, dev, nand_node);
+ if (ret)
+ return ret;
+ }
+ return 0;
+}
+
+/* Reset NFC and initialize registers. */
+static int octeontx_nfc_init(struct octeontx_nfc *tn)
+{
+ const struct nand_sdr_timings *timings;
+ u64 ndf_misc;
+ int rc;
+
+ /* Initialize values and reset the fifo */
+ ndf_misc = readq(tn->base + NDF_MISC);
+
+ ndf_misc &= ~NDF_MISC_EX_DIS;
+ ndf_misc |= (NDF_MISC_BT_DIS | NDF_MISC_RST_FF);
+ writeq(ndf_misc, tn->base + NDF_MISC);
+ debug("%s: NDF_MISC: 0x%llx\n", __func__, readq(tn->base + NDF_MISC));
+
+ /* Bring the fifo out of reset */
+ ndf_misc &= ~(NDF_MISC_RST_FF);
+
+ /* Maximum of co-processor cycles for glitch filtering */
+ ndf_misc |= FIELD_PREP(NDF_MISC_WAIT_CNT, 0x3f);
+
+ writeq(ndf_misc, tn->base + NDF_MISC);
+
+ /* Set timing parameters to onfi mode 0 for probing */
+ timings = onfi_async_timing_mode_to_sdr_timings(0);
+ if (IS_ERR(timings))
+ return PTR_ERR(timings);
+ rc = set_default_timings(tn, timings);
+ if (rc)
+ return rc;
+
+ return 0;
+}
+
+static int octeontx_pci_nand_probe(struct udevice *dev)
+{
+ struct octeontx_nfc *tn = dev_get_priv(dev);
+ int ret;
+ static bool probe_done;
+
+ debug("%s(%s) tn: %p\n", __func__, dev->name, tn);
+ if (probe_done)
+ return 0;
+
+ if (IS_ENABLED(CONFIG_NAND_OCTEONTX_HW_ECC)) {
+ bch_vf = octeontx_bch_getv();
+ if (!bch_vf) {
+ struct octeontx_probe_device *probe_dev;
+
+ debug("%s: bch not yet initialized\n", __func__);
+ probe_dev = calloc(sizeof(*probe_dev), 1);
+ if (!probe_dev) {
+ printf("%s: Out of memory\n", __func__);
+ return -ENOMEM;
+ }
+ probe_dev->dev = dev;
+ INIT_LIST_HEAD(&probe_dev->list);
+ list_add_tail(&probe_dev->list,
+ &octeontx_pci_nand_deferred_devices);
+ debug("%s: Defering probe until after BCH initialization\n",
+ __func__);
+ return 0;
+ }
+ }
+
+ tn->dev = dev;
+ INIT_LIST_HEAD(&tn->chips);
+
+ tn->base = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_0, PCI_REGION_MEM);
+ if (!tn->base) {
+ ret = -EINVAL;
+ goto release;
+ }
+ debug("%s: bar at %p\n", __func__, tn->base);
+ tn->buf.dmabuflen = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
+ tn->buf.dmabuf = dma_alloc_coherent(tn->buf.dmabuflen,
+ (unsigned long *)&tn->buf.dmaaddr);
+ if (!tn->buf.dmabuf) {
+ ret = -ENOMEM;
+ debug("%s: Could not allocate DMA buffer\n", __func__);
+ goto unclk;
+ }
+
+ /* one hw-bch response, for one outstanding transaction */
+ tn->bch_resp = dma_alloc_coherent(sizeof(*tn->bch_resp),
+ (unsigned long *)&tn->bch_rhandle);
+
+ tn->stat = dma_alloc_coherent(8, (unsigned long *)&tn->stat_addr);
+ if (!tn->stat || !tn->bch_resp) {
+ debug("%s: Could not allocate bch status or response\n",
+ __func__);
+ ret = -ENOMEM;
+ goto unclk;
+ }
+
+ debug("%s: Calling octeontx_nfc_init()\n", __func__);
+ octeontx_nfc_init(tn);
+ debug("%s: Initializing chips\n", __func__);
+ ret = octeontx_nfc_chips_init(tn);
+ debug("%s: init chips ret: %d\n", __func__, ret);
+ if (ret) {
+ if (ret != -ENODEV)
+ dev_err(dev, "failed to init nand chips\n");
+ goto unclk;
+ }
+ dev_info(dev, "probed\n");
+ return 0;
+
+unclk:
+release:
+ return ret;
+}
+
+int octeontx_pci_nand_disable(struct udevice *dev)
+{
+ struct octeontx_nfc *tn = dev_get_priv(dev);
+ u64 dma_cfg;
+ u64 ndf_misc;
+
+ debug("%s: Disabling NAND device %s\n", __func__, dev->name);
+ dma_cfg = readq(tn->base + NDF_DMA_CFG);
+ dma_cfg &= ~NDF_DMA_CFG_EN;
+ dma_cfg |= NDF_DMA_CFG_CLR;
+ writeq(dma_cfg, tn->base + NDF_DMA_CFG);
+
+ /* Disable execution and put FIFO in reset mode */
+ ndf_misc = readq(tn->base + NDF_MISC);
+ ndf_misc |= NDF_MISC_EX_DIS | NDF_MISC_RST_FF;
+ writeq(ndf_misc, tn->base + NDF_MISC);
+ ndf_misc &= ~NDF_MISC_RST_FF;
+ writeq(ndf_misc, tn->base + NDF_MISC);
+#ifdef DEBUG
+ printf("%s: NDF_MISC: 0x%llx\n", __func__, readq(tn->base + NDF_MISC));
+#endif
+ /* Clear any interrupts and enable bits */
+ writeq(~0ull, tn->base + NDF_INT_ENA_W1C);
+ writeq(~0ull, tn->base + NDF_INT);
+ debug("%s: NDF_ST_REG: 0x%llx\n", __func__,
+ readq(tn->base + NDF_ST_REG));
+ return 0;
+}
+
+/**
+ * Since it's possible (and even likely) that the NAND device will be probed
+ * before the BCH device has been probed, we may need to defer the probing.
+ *
+ * In this case, the initial probe returns success but the actual probing
+ * is deferred until the BCH VF has been probed.
+ *
+ * @return 0 for success, otherwise error
+ */
+int octeontx_pci_nand_deferred_probe(void)
+{
+ int rc = 0;
+ struct octeontx_probe_device *pdev;
+
+ debug("%s: Performing deferred probing\n", __func__);
+ list_for_each_entry(pdev, &octeontx_pci_nand_deferred_devices, list) {
+ debug("%s: Probing %s\n", __func__, pdev->dev->name);
+ pdev->dev->flags &= ~DM_FLAG_ACTIVATED;
+ rc = device_probe(pdev->dev);
+ if (rc && rc != -ENODEV) {
+ printf("%s: Error %d with deferred probe of %s\n",
+ __func__, rc, pdev->dev->name);
+ break;
+ }
+ }
+ return rc;
+}
+
+static const struct pci_device_id octeontx_nfc_pci_id_table[] = {
+ { PCI_VDEVICE(CAVIUM, 0xA04F) },
+ {}
+};
+
+static int octeontx_nand_ofdata_to_platdata(struct udevice *dev)
+{
+ return 0;
+}
+
+static const struct udevice_id octeontx_nand_ids[] = {
+ { .compatible = "cavium,cn8130-nand" },
+ { },
+};
+
+U_BOOT_DRIVER(octeontx_pci_nand) = {
+ .name = OCTEONTX_NAND_DRIVER_NAME,
+ .id = UCLASS_MTD,
+ .of_match = of_match_ptr(octeontx_nand_ids),
+ .ofdata_to_platdata = octeontx_nand_ofdata_to_platdata,
+ .probe = octeontx_pci_nand_probe,
+ .priv_auto_alloc_size = sizeof(struct octeontx_nfc),
+ .remove = octeontx_pci_nand_disable,
+ .flags = DM_FLAG_OS_PREPARE,
+};
+
+U_BOOT_PCI_DEVICE(octeontx_pci_nand, octeontx_nfc_pci_id_table);
+
+void board_nand_init(void)
+{
+ struct udevice *dev;
+ int ret;
+
+ if (IS_ENABLED(CONFIG_NAND_OCTEONTX_HW_ECC)) {
+ ret = uclass_get_device_by_driver(UCLASS_MISC,
+ DM_GET_DRIVER(octeontx_pci_bchpf),
+ &dev);
+ if (ret && ret != -ENODEV) {
+ pr_err("Failed to initialize OcteonTX BCH PF controller. (error %d)\n",
+ ret);
+ }
+ ret = uclass_get_device_by_driver(UCLASS_MISC,
+ DM_GET_DRIVER(octeontx_pci_bchvf),
+ &dev);
+ if (ret && ret != -ENODEV) {
+ pr_err("Failed to initialize OcteonTX BCH VF controller. (error %d)\n",
+ ret);
+ }
+ }
+
+ ret = uclass_get_device_by_driver(UCLASS_MTD,
+ DM_GET_DRIVER(octeontx_pci_nand),
+ &dev);
+ if (ret && ret != -ENODEV)
+ pr_err("Failed to initialize OcteonTX NAND controller. (error %d)\n",
+ ret);
+}