From: Kumar Gala Date: Tue, 26 Aug 2008 20:01:30 +0000 (-0500) Subject: FSL DDR: Add DDR1 DIMM paramter support X-Git-Tag: v2025.01-rc5-pxa1908~21914 X-Git-Url: http://git.dujemihanovic.xyz/html/%7B%7B%20.RelPermalink%20%7D%7D?a=commitdiff_plain;h=05c05a2363a6ac11e0e405926034546ffad71fad;p=u-boot.git FSL DDR: Add DDR1 DIMM paramter support Compute DIMM parameters based upon the SPD information in spd. Signed-off-by: James Yang Signed-off-by: Jon Loeliger Signed-off-by: Kumar Gala --- diff --git a/cpu/mpc8xxx/ddr/ddr1_dimm_params.c b/cpu/mpc8xxx/ddr/ddr1_dimm_params.c new file mode 100644 index 0000000000..2e0a209b4f --- /dev/null +++ b/cpu/mpc8xxx/ddr/ddr1_dimm_params.c @@ -0,0 +1,343 @@ +/* + * Copyright 2008 Freescale Semiconductor, Inc. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * Version 2 as published by the Free Software Foundation. + */ + +#include +#include + +#include "ddr.h" + +/* + * Calculate the Density of each Physical Rank. + * Returned size is in bytes. + * + * Study these table from Byte 31 of JEDEC SPD Spec. + * + * DDR I DDR II + * Bit Size Size + * --- ----- ------ + * 7 high 512MB 512MB + * 6 256MB 256MB + * 5 128MB 128MB + * 4 64MB 16GB + * 3 32MB 8GB + * 2 16MB 4GB + * 1 2GB 2GB + * 0 low 1GB 1GB + * + * Reorder Table to be linear by stripping the bottom + * 2 or 5 bits off and shifting them up to the top. + */ + +static phys_size_t +compute_ranksize(unsigned int mem_type, unsigned char row_dens) +{ + phys_size_t bsize; + + /* Bottom 2 bits up to the top. */ + bsize = ((row_dens >> 2) | ((row_dens & 3) << 6)); + bsize <<= 24ULL; + debug("DDR: DDR I rank density = 0x%08x\n", bsize); + + return bsize; +} + +/* + * Convert a two-nibble BCD value into a cycle time. + * While the spec calls for nano-seconds, picos are returned. + * + * This implements the tables for bytes 9, 23 and 25 for both + * DDR I and II. No allowance for distinguishing the invalid + * fields absent for DDR I yet present in DDR II is made. + * (That is, cycle times of .25, .33, .66 and .75 ns are + * allowed for both DDR II and I.) + */ +static unsigned int +convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val) +{ + /* Table look up the lower nibble, allow DDR I & II. */ + unsigned int tenths_ps[16] = { + 0, + 100, + 200, + 300, + 400, + 500, + 600, + 700, + 800, + 900, + 250, /* This and the next 3 entries valid ... */ + 330, /* ... only for tCK calculations. */ + 660, + 750, + 0, /* undefined */ + 0 /* undefined */ + }; + + unsigned int whole_ns = (spd_val & 0xF0) >> 4; + unsigned int tenth_ns = spd_val & 0x0F; + unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns]; + + return ps; +} + +static unsigned int +convert_bcd_hundredths_to_cycle_time_ps(unsigned int spd_val) +{ + unsigned int tenth_ns = (spd_val & 0xF0) >> 4; + unsigned int hundredth_ns = spd_val & 0x0F; + unsigned int ps = tenth_ns * 100 + hundredth_ns * 10; + + return ps; +} + +static unsigned int byte40_table_ps[8] = { + 0, + 250, + 330, + 500, + 660, + 750, + 0, /* supposed to be RFC, but not sure what that means */ + 0 /* Undefined */ +}; + +static unsigned int +compute_trfc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trfc) +{ + unsigned int trfc_ps; + + trfc_ps = (((trctrfc_ext & 0x1) * 256) + trfc) * 1000 + + byte40_table_ps[(trctrfc_ext >> 1) & 0x7]; + + return trfc_ps; +} + +static unsigned int +compute_trc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trc) +{ + unsigned int trc_ps; + + trc_ps = trc * 1000 + byte40_table_ps[(trctrfc_ext >> 4) & 0x7]; + + return trc_ps; +} + +/* + * tCKmax from DDR I SPD Byte 43 + * + * Bits 7:2 == whole ns + * Bits 1:0 == quarter ns + * 00 == 0.00 ns + * 01 == 0.25 ns + * 10 == 0.50 ns + * 11 == 0.75 ns + * + * Returns picoseconds. + */ +static unsigned int +compute_tckmax_from_spd_ps(unsigned int byte43) +{ + return (byte43 >> 2) * 1000 + (byte43 & 0x3) * 250; +} + +/* + * Determine Refresh Rate. Ignore self refresh bit on DDR I. + * Table from SPD Spec, Byte 12, converted to picoseconds and + * filled in with "default" normal values. + */ +static unsigned int +determine_refresh_rate_ps(const unsigned int spd_refresh) +{ + unsigned int refresh_time_ps[8] = { + 15625000, /* 0 Normal 1.00x */ + 3900000, /* 1 Reduced .25x */ + 7800000, /* 2 Extended .50x */ + 31300000, /* 3 Extended 2.00x */ + 62500000, /* 4 Extended 4.00x */ + 125000000, /* 5 Extended 8.00x */ + 15625000, /* 6 Normal 1.00x filler */ + 15625000, /* 7 Normal 1.00x filler */ + }; + + return refresh_time_ps[spd_refresh & 0x7]; +} + +/* + * The purpose of this function is to compute a suitable + * CAS latency given the DRAM clock period. The SPD only + * defines at most 3 CAS latencies. Typically the slower in + * frequency the DIMM runs at, the shorter its CAS latency can be. + * If the DIMM is operating at a sufficiently low frequency, + * it may be able to run at a CAS latency shorter than the + * shortest SPD-defined CAS latency. + * + * If a CAS latency is not found, 0 is returned. + * + * Do this by finding in the standard speed bin table the longest + * tCKmin that doesn't exceed the value of mclk_ps (tCK). + * + * An assumption made is that the SDRAM device allows the + * CL to be programmed for a value that is lower than those + * advertised by the SPD. This is not always the case, + * as those modes not defined in the SPD are optional. + * + * CAS latency de-rating based upon values JEDEC Standard No. 79-E + * Table 11. + * + * ordinal 2, ddr1_speed_bins[1] contains tCK for CL=2 + */ + /* CL2.0 CL2.5 CL3.0 */ +unsigned short ddr1_speed_bins[] = {0, 7500, 6000, 5000 }; + +unsigned int +compute_derated_DDR1_CAS_latency(unsigned int mclk_ps) +{ + const unsigned int num_speed_bins = ARRAY_SIZE(ddr1_speed_bins); + unsigned int lowest_tCKmin_found = 0; + unsigned int lowest_tCKmin_CL = 0; + unsigned int i; + + debug("mclk_ps = %u\n", mclk_ps); + + for (i = 0; i < num_speed_bins; i++) { + unsigned int x = ddr1_speed_bins[i]; + debug("i=%u, x = %u, lowest_tCKmin_found = %u\n", + i, x, lowest_tCKmin_found); + if (x && lowest_tCKmin_found <= x && x <= mclk_ps) { + lowest_tCKmin_found = x; + lowest_tCKmin_CL = i + 1; + } + } + + debug("lowest_tCKmin_CL = %u\n", lowest_tCKmin_CL); + + return lowest_tCKmin_CL; +} + +/* + * ddr_compute_dimm_parameters for DDR1 SPD + * + * Compute DIMM parameters based upon the SPD information in spd. + * Writes the results to the dimm_params_t structure pointed by pdimm. + * + * FIXME: use #define for the retvals + */ +unsigned int +ddr_compute_dimm_parameters(const ddr1_spd_eeprom_t *spd, + dimm_params_t *pdimm, + unsigned int dimm_number) +{ + unsigned int retval; + + if (spd->mem_type) { + if (spd->mem_type != SPD_MEMTYPE_DDR) { + printf("DIMM %u: is not a DDR1 SPD.\n", dimm_number); + return 1; + } + } else { + memset(pdimm, 0, sizeof(dimm_params_t)); + return 1; + } + + retval = ddr1_spd_check(spd); + if (retval) { + printf("DIMM %u: failed checksum\n", dimm_number); + return 2; + } + + /* + * The part name in ASCII in the SPD EEPROM is not null terminated. + * Guarantee null termination here by presetting all bytes to 0 + * and copying the part name in ASCII from the SPD onto it + */ + memset(pdimm->mpart, 0, sizeof(pdimm->mpart)); + memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1); + + /* DIMM organization parameters */ + pdimm->n_ranks = spd->nrows; + pdimm->rank_density = compute_ranksize(spd->mem_type, spd->bank_dens); + pdimm->capacity = pdimm->n_ranks * pdimm->rank_density; + pdimm->data_width = spd->dataw_lsb; + pdimm->primary_sdram_width = spd->primw; + pdimm->ec_sdram_width = spd->ecw; + + /* + * FIXME: Need to determine registered_dimm status. + * 1 == register buffered + * 0 == unbuffered + */ + pdimm->registered_dimm = 0; /* unbuffered */ + + /* SDRAM device parameters */ + pdimm->n_row_addr = spd->nrow_addr; + pdimm->n_col_addr = spd->ncol_addr; + pdimm->n_banks_per_sdram_device = spd->nbanks; + pdimm->edc_config = spd->config; + pdimm->burst_lengths_bitmask = spd->burstl; + pdimm->row_density = spd->bank_dens; + + /* + * Calculate the Maximum Data Rate based on the Minimum Cycle time. + * The SPD clk_cycle field (tCKmin) is measured in tenths of + * nanoseconds and represented as BCD. + */ + pdimm->tCKmin_X_ps + = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle); + pdimm->tCKmin_X_minus_1_ps + = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle2); + pdimm->tCKmin_X_minus_2_ps + = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle3); + + pdimm->tCKmax_ps = compute_tckmax_from_spd_ps(spd->tckmax); + + /* + * Compute CAS latencies defined by SPD + * The SPD caslat_X should have at least 1 and at most 3 bits set. + * + * If cas_lat after masking is 0, the __ilog2 function returns + * 255 into the variable. This behavior is abused once. + */ + pdimm->caslat_X = __ilog2(spd->cas_lat); + pdimm->caslat_X_minus_1 = __ilog2(spd->cas_lat + & ~(1 << pdimm->caslat_X)); + pdimm->caslat_X_minus_2 = __ilog2(spd->cas_lat + & ~(1 << pdimm->caslat_X) + & ~(1 << pdimm->caslat_X_minus_1)); + + /* Compute CAS latencies below that defined by SPD */ + pdimm->caslat_lowest_derated + = compute_derated_DDR1_CAS_latency(get_memory_clk_period_ps()); + + /* Compute timing parameters */ + pdimm->tRCD_ps = spd->trcd * 250; + pdimm->tRP_ps = spd->trp * 250; + pdimm->tRAS_ps = spd->tras * 1000; + + pdimm->tWR_ps = mclk_to_picos(3); + pdimm->tWTR_ps = mclk_to_picos(1); + pdimm->tRFC_ps = compute_trfc_ps_from_spd(0, spd->trfc); + + pdimm->tRRD_ps = spd->trrd * 250; + pdimm->tRC_ps = compute_trc_ps_from_spd(0, spd->trc); + + pdimm->refresh_rate_ps = determine_refresh_rate_ps(spd->refresh); + + pdimm->tIS_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_setup); + pdimm->tIH_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_hold); + pdimm->tDS_ps + = convert_bcd_hundredths_to_cycle_time_ps(spd->data_setup); + pdimm->tDH_ps + = convert_bcd_hundredths_to_cycle_time_ps(spd->data_hold); + + pdimm->tRTP_ps = mclk_to_picos(2); /* By the book. */ + pdimm->tDQSQ_max_ps = spd->tdqsq * 10; + pdimm->tQHS_ps = spd->tqhs * 10; + + return 0; +}