--- /dev/null
+/*
+ * Copyright (C) 2013, Intel Corporation
+ * Copyright (C) 2015, Bin Meng <bmeng.cn@gmail.com>
+ *
+ * Ported from Intel released Quark UEFI BIOS
+ * QuarkSocPkg/QuarkNorthCluster/MemoryInit/Pei
+ *
+ * SPDX-License-Identifier: Intel
+ */
+
+#include <common.h>
+#include <pci.h>
+#include <asm/arch/device.h>
+#include <asm/arch/mrc.h>
+#include <asm/arch/msg_port.h>
+#include "mrc_util.h"
+#include "hte.h"
+#include "smc.h"
+
+/* t_rfc values (in picoseconds) per density */
+static const uint32_t t_rfc[5] = {
+ 90000, /* 512Mb */
+ 110000, /* 1Gb */
+ 160000, /* 2Gb */
+ 300000, /* 4Gb */
+ 350000, /* 8Gb */
+};
+
+/* t_ck clock period in picoseconds per speed index 800, 1066, 1333 */
+static const uint32_t t_ck[3] = {
+ 2500,
+ 1875,
+ 1500
+};
+
+/* Global variables */
+static const uint16_t ddr_wclk[] = {193, 158};
+static const uint16_t ddr_wctl[] = {1, 217};
+static const uint16_t ddr_wcmd[] = {1, 220};
+
+#ifdef BACKUP_RCVN
+static const uint16_t ddr_rcvn[] = {129, 498};
+#endif
+
+#ifdef BACKUP_WDQS
+static const uint16_t ddr_wdqs[] = {65, 289};
+#endif
+
+#ifdef BACKUP_RDQS
+static const uint8_t ddr_rdqs[] = {32, 24};
+#endif
+
+#ifdef BACKUP_WDQ
+static const uint16_t ddr_wdq[] = {32, 257};
+#endif
+
+/* Stop self refresh driven by MCU */
+void clear_self_refresh(struct mrc_params *mrc_params)
+{
+ ENTERFN();
+
+ /* clear the PMSTS Channel Self Refresh bits */
+ mrc_write_mask(MEM_CTLR, PMSTS, BIT0, BIT0);
+
+ LEAVEFN();
+}
+
+/* It will initialize timing registers in the MCU (DTR0..DTR4) */
+void prog_ddr_timing_control(struct mrc_params *mrc_params)
+{
+ uint8_t tcl, wl;
+ uint8_t trp, trcd, tras, twr, twtr, trrd, trtp, tfaw;
+ uint32_t tck;
+ u32 dtr0, dtr1, dtr2, dtr3, dtr4;
+ u32 tmp1, tmp2;
+
+ ENTERFN();
+
+ /* mcu_init starts */
+ mrc_post_code(0x02, 0x00);
+
+ dtr0 = msg_port_read(MEM_CTLR, DTR0);
+ dtr1 = msg_port_read(MEM_CTLR, DTR1);
+ dtr2 = msg_port_read(MEM_CTLR, DTR2);
+ dtr3 = msg_port_read(MEM_CTLR, DTR3);
+ dtr4 = msg_port_read(MEM_CTLR, DTR4);
+
+ tck = t_ck[mrc_params->ddr_speed]; /* Clock in picoseconds */
+ tcl = mrc_params->params.cl; /* CAS latency in clocks */
+ trp = tcl; /* Per CAT MRC */
+ trcd = tcl; /* Per CAT MRC */
+ tras = MCEIL(mrc_params->params.ras, tck);
+
+ /* Per JEDEC: tWR=15000ps DDR2/3 from 800-1600 */
+ twr = MCEIL(15000, tck);
+
+ twtr = MCEIL(mrc_params->params.wtr, tck);
+ trrd = MCEIL(mrc_params->params.rrd, tck);
+ trtp = 4; /* Valid for 800 and 1066, use 5 for 1333 */
+ tfaw = MCEIL(mrc_params->params.faw, tck);
+
+ wl = 5 + mrc_params->ddr_speed;
+
+ dtr0 &= ~(BIT0 | BIT1);
+ dtr0 |= mrc_params->ddr_speed;
+ dtr0 &= ~(BIT12 | BIT13 | BIT14);
+ tmp1 = tcl - 5;
+ dtr0 |= ((tcl - 5) << 12);
+ dtr0 &= ~(BIT4 | BIT5 | BIT6 | BIT7);
+ dtr0 |= ((trp - 5) << 4); /* 5 bit DRAM Clock */
+ dtr0 &= ~(BIT8 | BIT9 | BIT10 | BIT11);
+ dtr0 |= ((trcd - 5) << 8); /* 5 bit DRAM Clock */
+
+ dtr1 &= ~(BIT0 | BIT1 | BIT2);
+ tmp2 = wl - 3;
+ dtr1 |= (wl - 3);
+ dtr1 &= ~(BIT8 | BIT9 | BIT10 | BIT11);
+ dtr1 |= ((wl + 4 + twr - 14) << 8); /* Change to tWTP */
+ dtr1 &= ~(BIT28 | BIT29 | BIT30);
+ dtr1 |= ((MMAX(trtp, 4) - 3) << 28); /* 4 bit DRAM Clock */
+ dtr1 &= ~(BIT24 | BIT25);
+ dtr1 |= ((trrd - 4) << 24); /* 4 bit DRAM Clock */
+ dtr1 &= ~(BIT4 | BIT5);
+ dtr1 |= (1 << 4);
+ dtr1 &= ~(BIT20 | BIT21 | BIT22 | BIT23);
+ dtr1 |= ((tras - 14) << 20); /* 6 bit DRAM Clock */
+ dtr1 &= ~(BIT16 | BIT17 | BIT18 | BIT19);
+ dtr1 |= ((((tfaw + 1) >> 1) - 5) << 16);/* 4 bit DRAM Clock */
+ /* Set 4 Clock CAS to CAS delay (multi-burst) */
+ dtr1 &= ~(BIT12 | BIT13);
+
+ dtr2 &= ~(BIT0 | BIT1 | BIT2);
+ dtr2 |= 1;
+ dtr2 &= ~(BIT8 | BIT9 | BIT10);
+ dtr2 |= (2 << 8);
+ dtr2 &= ~(BIT16 | BIT17 | BIT18 | BIT19);
+ dtr2 |= (2 << 16);
+
+ dtr3 &= ~(BIT0 | BIT1 | BIT2);
+ dtr3 |= 2;
+ dtr3 &= ~(BIT4 | BIT5 | BIT6);
+ dtr3 |= (2 << 4);
+
+ dtr3 &= ~(BIT8 | BIT9 | BIT10 | BIT11);
+ if (mrc_params->ddr_speed == DDRFREQ_800) {
+ /* Extended RW delay (+1) */
+ dtr3 |= ((tcl - 5 + 1) << 8);
+ } else if (mrc_params->ddr_speed == DDRFREQ_1066) {
+ /* Extended RW delay (+1) */
+ dtr3 |= ((tcl - 5 + 1) << 8);
+ }
+
+ dtr3 &= ~(BIT13 | BIT14 | BIT15 | BIT16);
+ dtr3 |= ((4 + wl + twtr - 11) << 13);
+
+ dtr3 &= ~(BIT22 | BIT23);
+ if (mrc_params->ddr_speed == DDRFREQ_800)
+ dtr3 |= ((MMAX(0, 1 - 1)) << 22);
+ else
+ dtr3 |= ((MMAX(0, 2 - 1)) << 22);
+
+ dtr4 &= ~(BIT0 | BIT1);
+ dtr4 |= 1;
+ dtr4 &= ~(BIT4 | BIT5 | BIT6);
+ dtr4 |= (1 << 4);
+ dtr4 &= ~(BIT8 | BIT9 | BIT10);
+ dtr4 |= ((1 + tmp1 - tmp2 + 2) << 8);
+ dtr4 &= ~(BIT12 | BIT13 | BIT14);
+ dtr4 |= ((1 + tmp1 - tmp2 + 2) << 12);
+ dtr4 &= ~(BIT15 | BIT16);
+
+ msg_port_write(MEM_CTLR, DTR0, dtr0);
+ msg_port_write(MEM_CTLR, DTR1, dtr1);
+ msg_port_write(MEM_CTLR, DTR2, dtr2);
+ msg_port_write(MEM_CTLR, DTR3, dtr3);
+ msg_port_write(MEM_CTLR, DTR4, dtr4);
+
+ LEAVEFN();
+}
+
+/* Configure MCU before jedec init sequence */
+void prog_decode_before_jedec(struct mrc_params *mrc_params)
+{
+ u32 drp;
+ u32 drfc;
+ u32 dcal;
+ u32 dsch;
+ u32 dpmc0;
+
+ ENTERFN();
+
+ /* Disable power saving features */
+ dpmc0 = msg_port_read(MEM_CTLR, DPMC0);
+ dpmc0 |= (BIT24 | BIT25);
+ dpmc0 &= ~(BIT16 | BIT17 | BIT18);
+ dpmc0 &= ~BIT23;
+ msg_port_write(MEM_CTLR, DPMC0, dpmc0);
+
+ /* Disable out of order transactions */
+ dsch = msg_port_read(MEM_CTLR, DSCH);
+ dsch |= (BIT8 | BIT12);
+ msg_port_write(MEM_CTLR, DSCH, dsch);
+
+ /* Disable issuing the REF command */
+ drfc = msg_port_read(MEM_CTLR, DRFC);
+ drfc &= ~(BIT12 | BIT13 | BIT14);
+ msg_port_write(MEM_CTLR, DRFC, drfc);
+
+ /* Disable ZQ calibration short */
+ dcal = msg_port_read(MEM_CTLR, DCAL);
+ dcal &= ~(BIT8 | BIT9 | BIT10);
+ dcal &= ~(BIT12 | BIT13);
+ msg_port_write(MEM_CTLR, DCAL, dcal);
+
+ /*
+ * Training performed in address mode 0, rank population has limited
+ * impact, however simulator complains if enabled non-existing rank.
+ */
+ drp = 0;
+ if (mrc_params->rank_enables & 1)
+ drp |= BIT0;
+ if (mrc_params->rank_enables & 2)
+ drp |= BIT1;
+ msg_port_write(MEM_CTLR, DRP, drp);
+
+ LEAVEFN();
+}
+
+/*
+ * After Cold Reset, BIOS should set COLDWAKE bit to 1 before
+ * sending the WAKE message to the Dunit.
+ *
+ * For Standby Exit, or any other mode in which the DRAM is in
+ * SR, this bit must be set to 0.
+ */
+void perform_ddr_reset(struct mrc_params *mrc_params)
+{
+ ENTERFN();
+
+ /* Set COLDWAKE bit before sending the WAKE message */
+ mrc_write_mask(MEM_CTLR, DRMC, BIT16, BIT16);
+
+ /* Send wake command to DUNIT (MUST be done before JEDEC) */
+ dram_wake_command();
+
+ /* Set default value */
+ msg_port_write(MEM_CTLR, DRMC,
+ (mrc_params->rd_odt_value == 0 ? BIT12 : 0));
+
+ LEAVEFN();
+}
+
+
+/*
+ * This function performs some initialization on the DDRIO unit.
+ * This function is dependent on BOARD_ID, DDR_SPEED, and CHANNEL_ENABLES.
+ */
+void ddrphy_init(struct mrc_params *mrc_params)
+{
+ uint32_t temp;
+ uint8_t ch; /* channel counter */
+ uint8_t rk; /* rank counter */
+ uint8_t bl_grp; /* byte lane group counter (2 BLs per module) */
+ uint8_t bl_divisor = 1; /* byte lane divisor */
+ /* For DDR3 --> 0 == 800, 1 == 1066, 2 == 1333 */
+ uint8_t speed = mrc_params->ddr_speed & (BIT1 | BIT0);
+ uint8_t cas;
+ uint8_t cwl;
+
+ ENTERFN();
+
+ cas = mrc_params->params.cl;
+ cwl = 5 + mrc_params->ddr_speed;
+
+ /* ddrphy_init starts */
+ mrc_post_code(0x03, 0x00);
+
+ /*
+ * HSD#231531
+ * Make sure IOBUFACT is deasserted before initializing the DDR PHY
+ *
+ * HSD#234845
+ * Make sure WRPTRENABLE is deasserted before initializing the DDR PHY
+ */
+ for (ch = 0; ch < NUM_CHANNELS; ch++) {
+ if (mrc_params->channel_enables & (1 << ch)) {
+ /* Deassert DDRPHY Initialization Complete */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDPMCONFIG0 + (ch * DDRIOCCC_CH_OFFSET)),
+ ~BIT20, BIT20); /* SPID_INIT_COMPLETE=0 */
+ /* Deassert IOBUFACT */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDCFGREG0 + (ch * DDRIOCCC_CH_OFFSET)),
+ ~BIT2, BIT2); /* IOBUFACTRST_N=0 */
+ /* Disable WRPTR */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDPTRREG + (ch * DDRIOCCC_CH_OFFSET)),
+ ~BIT0, BIT0); /* WRPTRENABLE=0 */
+ }
+ }
+
+ /* Put PHY in reset */
+ mrc_alt_write_mask(DDRPHY, MASTERRSTN, 0, BIT0);
+
+ /* Initialize DQ01, DQ23, CMD, CLK-CTL, COMP modules */
+
+ /* STEP0 */
+ mrc_post_code(0x03, 0x10);
+ for (ch = 0; ch < NUM_CHANNELS; ch++) {
+ if (mrc_params->channel_enables & (1 << ch)) {
+ /* DQ01-DQ23 */
+ for (bl_grp = 0;
+ bl_grp < ((NUM_BYTE_LANES / bl_divisor) / 2);
+ bl_grp++) {
+ /* Analog MUX select - IO2xCLKSEL */
+ mrc_alt_write_mask(DDRPHY,
+ (DQOBSCKEBBCTL +
+ (bl_grp * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ ((bl_grp) ? (0x00) : (BIT22)), (BIT22));
+
+ /* ODT Strength */
+ switch (mrc_params->rd_odt_value) {
+ case 1:
+ temp = 0x3;
+ break; /* 60 ohm */
+ case 2:
+ temp = 0x3;
+ break; /* 120 ohm */
+ case 3:
+ temp = 0x3;
+ break; /* 180 ohm */
+ default:
+ temp = 0x3;
+ break; /* 120 ohm */
+ }
+
+ /* ODT strength */
+ mrc_alt_write_mask(DDRPHY,
+ (B0RXIOBUFCTL +
+ (bl_grp * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ (temp << 5), (BIT6 | BIT5));
+ /* ODT strength */
+ mrc_alt_write_mask(DDRPHY,
+ (B1RXIOBUFCTL +
+ (bl_grp * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ (temp << 5), (BIT6 | BIT5));
+
+ /* Dynamic ODT/DIFFAMP */
+ temp = (((cas) << 24) | ((cas) << 16) |
+ ((cas) << 8) | ((cas) << 0));
+ switch (speed) {
+ case 0:
+ temp -= 0x01010101;
+ break; /* 800 */
+ case 1:
+ temp -= 0x02020202;
+ break; /* 1066 */
+ case 2:
+ temp -= 0x03030303;
+ break; /* 1333 */
+ case 3:
+ temp -= 0x04040404;
+ break; /* 1600 */
+ }
+
+ /* Launch Time: ODT, DIFFAMP, ODT, DIFFAMP */
+ mrc_alt_write_mask(DDRPHY,
+ (B01LATCTL1 +
+ (bl_grp * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ temp,
+ (BIT28 | BIT27 | BIT26 | BIT25 | BIT24 |
+ BIT20 | BIT19 | BIT18 | BIT17 | BIT16 |
+ BIT12 | BIT11 | BIT10 | BIT9 | BIT8 |
+ BIT4 | BIT3 | BIT2 | BIT1 | BIT0));
+ switch (speed) {
+ /* HSD#234715 */
+ case 0:
+ temp = ((0x06 << 16) | (0x07 << 8));
+ break; /* 800 */
+ case 1:
+ temp = ((0x07 << 16) | (0x08 << 8));
+ break; /* 1066 */
+ case 2:
+ temp = ((0x09 << 16) | (0x0A << 8));
+ break; /* 1333 */
+ case 3:
+ temp = ((0x0A << 16) | (0x0B << 8));
+ break; /* 1600 */
+ }
+
+ /* On Duration: ODT, DIFFAMP */
+ mrc_alt_write_mask(DDRPHY,
+ (B0ONDURCTL +
+ (bl_grp * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ temp,
+ (BIT21 | BIT20 | BIT19 | BIT18 | BIT17 |
+ BIT16 | BIT13 | BIT12 | BIT11 | BIT10 |
+ BIT9 | BIT8));
+ /* On Duration: ODT, DIFFAMP */
+ mrc_alt_write_mask(DDRPHY,
+ (B1ONDURCTL +
+ (bl_grp * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ temp,
+ (BIT21 | BIT20 | BIT19 | BIT18 | BIT17 |
+ BIT16 | BIT13 | BIT12 | BIT11 | BIT10 |
+ BIT9 | BIT8));
+
+ switch (mrc_params->rd_odt_value) {
+ case 0:
+ /* override DIFFAMP=on, ODT=off */
+ temp = ((0x3F << 16) | (0x3f << 10));
+ break;
+ default:
+ /* override DIFFAMP=on, ODT=on */
+ temp = ((0x3F << 16) | (0x2A << 10));
+ break;
+ }
+
+ /* Override: DIFFAMP, ODT */
+ mrc_alt_write_mask(DDRPHY,
+ (B0OVRCTL +
+ (bl_grp * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ temp,
+ (BIT21 | BIT20 | BIT19 | BIT18 | BIT17 |
+ BIT16 | BIT15 | BIT14 | BIT13 | BIT12 |
+ BIT11 | BIT10));
+ /* Override: DIFFAMP, ODT */
+ mrc_alt_write_mask(DDRPHY,
+ (B1OVRCTL +
+ (bl_grp * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ temp,
+ (BIT21 | BIT20 | BIT19 | BIT18 | BIT17 |
+ BIT16 | BIT15 | BIT14 | BIT13 | BIT12 |
+ BIT11 | BIT10));
+
+ /* DLL Setup */
+
+ /* 1xCLK Domain Timings: tEDP,RCVEN,WDQS (PO) */
+ mrc_alt_write_mask(DDRPHY,
+ (B0LATCTL0 +
+ (bl_grp * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ (((cas + 7) << 16) | ((cas - 4) << 8) |
+ ((cwl - 2) << 0)),
+ (BIT21 | BIT20 | BIT19 | BIT18 | BIT17 |
+ BIT16 | BIT12 | BIT11 | BIT10 | BIT9 |
+ BIT8 | BIT4 | BIT3 | BIT2 | BIT1 |
+ BIT0));
+ mrc_alt_write_mask(DDRPHY,
+ (B1LATCTL0 +
+ (bl_grp * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ (((cas + 7) << 16) | ((cas - 4) << 8) |
+ ((cwl - 2) << 0)),
+ (BIT21 | BIT20 | BIT19 | BIT18 | BIT17 |
+ BIT16 | BIT12 | BIT11 | BIT10 | BIT9 |
+ BIT8 | BIT4 | BIT3 | BIT2 | BIT1 |
+ BIT0));
+
+ /* RCVEN Bypass (PO) */
+ mrc_alt_write_mask(DDRPHY,
+ (B0RXIOBUFCTL +
+ (bl_grp * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ ((0x0 << 7) | (0x0 << 0)),
+ (BIT7 | BIT0));
+ mrc_alt_write_mask(DDRPHY,
+ (B1RXIOBUFCTL +
+ (bl_grp * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ ((0x0 << 7) | (0x0 << 0)),
+ (BIT7 | BIT0));
+
+ /* TX */
+ mrc_alt_write_mask(DDRPHY,
+ (DQCTL +
+ (bl_grp * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ (BIT16), (BIT16));
+ mrc_alt_write_mask(DDRPHY,
+ (B01PTRCTL1 +
+ (bl_grp * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ (BIT8), (BIT8));
+
+ /* RX (PO) */
+ /* Internal Vref Code, Enable#, Ext_or_Int (1=Ext) */
+ mrc_alt_write_mask(DDRPHY,
+ (B0VREFCTL +
+ (bl_grp * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ ((0x03 << 2) | (0x0 << 1) | (0x0 << 0)),
+ (BIT7 | BIT6 | BIT5 | BIT4 | BIT3 |
+ BIT2 | BIT1 | BIT0));
+ /* Internal Vref Code, Enable#, Ext_or_Int (1=Ext) */
+ mrc_alt_write_mask(DDRPHY,
+ (B1VREFCTL +
+ (bl_grp * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ ((0x03 << 2) | (0x0 << 1) | (0x0 << 0)),
+ (BIT7 | BIT6 | BIT5 | BIT4 | BIT3 |
+ BIT2 | BIT1 | BIT0));
+ /* Per-Bit De-Skew Enable */
+ mrc_alt_write_mask(DDRPHY,
+ (B0RXIOBUFCTL +
+ (bl_grp * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ (0), (BIT4));
+ /* Per-Bit De-Skew Enable */
+ mrc_alt_write_mask(DDRPHY,
+ (B1RXIOBUFCTL +
+ (bl_grp * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ (0), (BIT4));
+ }
+
+ /* CLKEBB */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDOBSCKEBBCTL + (ch * DDRIOCCC_CH_OFFSET)),
+ 0, (BIT23));
+
+ /* Enable tristate control of cmd/address bus */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDCFGREG0 + (ch * DDRIOCCC_CH_OFFSET)),
+ 0, (BIT1 | BIT0));
+
+ /* ODT RCOMP */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDRCOMPODT + (ch * DDRIOCCC_CH_OFFSET)),
+ ((0x03 << 5) | (0x03 << 0)),
+ (BIT9 | BIT8 | BIT7 | BIT6 | BIT5 | BIT4 |
+ BIT3 | BIT2 | BIT1 | BIT0));
+
+ /* CMDPM* registers must be programmed in this order */
+
+ /* Turn On Delays: SFR (regulator), MPLL */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDPMDLYREG4 + (ch * DDRIOCCC_CH_OFFSET)),
+ ((0xFFFFU << 16) | (0xFFFF << 0)),
+ 0xFFFFFFFF);
+ /*
+ * Delays: ASSERT_IOBUFACT_to_ALLON0_for_PM_MSG_3,
+ * VREG (MDLL) Turn On, ALLON0_to_DEASSERT_IOBUFACT
+ * for_PM_MSG_gt0, MDLL Turn On
+ */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDPMDLYREG3 + (ch * DDRIOCCC_CH_OFFSET)),
+ ((0xFU << 28) | (0xFFF << 16) | (0xF << 12) |
+ (0x616 << 0)), 0xFFFFFFFF);
+ /* MPLL Divider Reset Delays */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDPMDLYREG2 + (ch * DDRIOCCC_CH_OFFSET)),
+ ((0xFFU << 24) | (0xFF << 16) | (0xFF << 8) |
+ (0xFF << 0)), 0xFFFFFFFF);
+ /* Turn Off Delays: VREG, Staggered MDLL, MDLL, PI */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDPMDLYREG1 + (ch * DDRIOCCC_CH_OFFSET)),
+ ((0xFFU << 24) | (0xFF << 16) | (0xFF << 8) |
+ (0xFF << 0)), 0xFFFFFFFF);
+ /* Turn On Delays: MPLL, Staggered MDLL, PI, IOBUFACT */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDPMDLYREG0 + (ch * DDRIOCCC_CH_OFFSET)),
+ ((0xFFU << 24) | (0xFF << 16) | (0xFF << 8) |
+ (0xFF << 0)), 0xFFFFFFFF);
+ /* Allow PUnit signals */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDPMCONFIG0 + (ch * DDRIOCCC_CH_OFFSET)),
+ ((0x6 << 8) | BIT6 | (0x4 << 0)),
+ (BIT31 | BIT30 | BIT29 | BIT28 | BIT27 | BIT26 |
+ BIT25 | BIT24 | BIT23 | BIT22 | BIT21 | BIT11 |
+ BIT10 | BIT9 | BIT8 | BIT6 | BIT3 | BIT2 |
+ BIT1 | BIT0));
+ /* DLL_VREG Bias Trim, VREF Tuning for DLL_VREG */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDMDLLCTL + (ch * DDRIOCCC_CH_OFFSET)),
+ ((0x3 << 4) | (0x7 << 0)),
+ (BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 |
+ BIT0));
+
+ /* CLK-CTL */
+ mrc_alt_write_mask(DDRPHY,
+ (CCOBSCKEBBCTL + (ch * DDRIOCCC_CH_OFFSET)),
+ 0, BIT24); /* CLKEBB */
+ /* Buffer Enable: CS,CKE,ODT,CLK */
+ mrc_alt_write_mask(DDRPHY,
+ (CCCFGREG0 + (ch * DDRIOCCC_CH_OFFSET)),
+ ((0x0 << 16) | (0x0 << 12) | (0x0 << 8) |
+ (0xF << 4) | BIT0),
+ (BIT19 | BIT18 | BIT17 | BIT16 | BIT15 | BIT14 |
+ BIT13 | BIT12 | BIT11 | BIT10 | BIT9 | BIT8 |
+ BIT7 | BIT6 | BIT5 | BIT4 | BIT0));
+ /* ODT RCOMP */
+ mrc_alt_write_mask(DDRPHY,
+ (CCRCOMPODT + (ch * DDRIOCCC_CH_OFFSET)),
+ ((0x03 << 8) | (0x03 << 0)),
+ (BIT12 | BIT11 | BIT10 | BIT9 | BIT8 | BIT4 |
+ BIT3 | BIT2 | BIT1 | BIT0));
+ /* DLL_VREG Bias Trim, VREF Tuning for DLL_VREG */
+ mrc_alt_write_mask(DDRPHY,
+ (CCMDLLCTL + (ch * DDRIOCCC_CH_OFFSET)),
+ ((0x3 << 4) | (0x7 << 0)),
+ (BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 |
+ BIT0));
+
+ /*
+ * COMP (RON channel specific)
+ * - DQ/DQS/DM RON: 32 Ohm
+ * - CTRL/CMD RON: 27 Ohm
+ * - CLK RON: 26 Ohm
+ */
+ /* RCOMP Vref PU/PD */
+ mrc_alt_write_mask(DDRPHY,
+ (DQVREFCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ ((0x08 << 24) | (0x03 << 16)),
+ (BIT29 | BIT28 | BIT27 | BIT26 | BIT25 |
+ BIT24 | BIT21 | BIT20 | BIT19 | BIT18 |
+ BIT17 | BIT16));
+ /* RCOMP Vref PU/PD */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDVREFCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ ((0x0C << 24) | (0x03 << 16)),
+ (BIT29 | BIT28 | BIT27 | BIT26 | BIT25 |
+ BIT24 | BIT21 | BIT20 | BIT19 | BIT18 |
+ BIT17 | BIT16));
+ /* RCOMP Vref PU/PD */
+ mrc_alt_write_mask(DDRPHY,
+ (CLKVREFCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ ((0x0F << 24) | (0x03 << 16)),
+ (BIT29 | BIT28 | BIT27 | BIT26 | BIT25 |
+ BIT24 | BIT21 | BIT20 | BIT19 | BIT18 |
+ BIT17 | BIT16));
+ /* RCOMP Vref PU/PD */
+ mrc_alt_write_mask(DDRPHY,
+ (DQSVREFCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ ((0x08 << 24) | (0x03 << 16)),
+ (BIT29 | BIT28 | BIT27 | BIT26 | BIT25 |
+ BIT24 | BIT21 | BIT20 | BIT19 | BIT18 |
+ BIT17 | BIT16));
+ /* RCOMP Vref PU/PD */
+ mrc_alt_write_mask(DDRPHY,
+ (CTLVREFCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ ((0x0C << 24) | (0x03 << 16)),
+ (BIT29 | BIT28 | BIT27 | BIT26 | BIT25 |
+ BIT24 | BIT21 | BIT20 | BIT19 | BIT18 |
+ BIT17 | BIT16));
+
+ /* DQS Swapped Input Enable */
+ mrc_alt_write_mask(DDRPHY,
+ (COMPEN1CH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT19 | BIT17),
+ (BIT31 | BIT30 | BIT19 | BIT17 |
+ BIT15 | BIT14));
+
+ /* ODT VREF = 1.5 x 274/360+274 = 0.65V (code of ~50) */
+ /* ODT Vref PU/PD */
+ mrc_alt_write_mask(DDRPHY,
+ (DQVREFCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ ((0x32 << 8) | (0x03 << 0)),
+ (BIT13 | BIT12 | BIT11 | BIT10 | BIT9 | BIT8 |
+ BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0));
+ /* ODT Vref PU/PD */
+ mrc_alt_write_mask(DDRPHY,
+ (DQSVREFCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ ((0x32 << 8) | (0x03 << 0)),
+ (BIT13 | BIT12 | BIT11 | BIT10 | BIT9 | BIT8 |
+ BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0));
+ /* ODT Vref PU/PD */
+ mrc_alt_write_mask(DDRPHY,
+ (CLKVREFCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ ((0x0E << 8) | (0x05 << 0)),
+ (BIT13 | BIT12 | BIT11 | BIT10 | BIT9 | BIT8 |
+ BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0));
+
+ /*
+ * Slew rate settings are frequency specific,
+ * numbers below are for 800Mhz (speed == 0)
+ * - DQ/DQS/DM/CLK SR: 4V/ns,
+ * - CTRL/CMD SR: 1.5V/ns
+ */
+ temp = (0x0E << 16) | (0x0E << 12) | (0x08 << 8) |
+ (0x0B << 4) | (0x0B << 0);
+ /* DCOMP Delay Select: CTL,CMD,CLK,DQS,DQ */
+ mrc_alt_write_mask(DDRPHY,
+ (DLYSELCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ temp,
+ (BIT19 | BIT18 | BIT17 | BIT16 | BIT15 |
+ BIT14 | BIT13 | BIT12 | BIT11 | BIT10 |
+ BIT9 | BIT8 | BIT7 | BIT6 | BIT5 | BIT4 |
+ BIT3 | BIT2 | BIT1 | BIT0));
+ /* TCO Vref CLK,DQS,DQ */
+ mrc_alt_write_mask(DDRPHY,
+ (TCOVREFCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ ((0x05 << 16) | (0x05 << 8) | (0x05 << 0)),
+ (BIT21 | BIT20 | BIT19 | BIT18 | BIT17 |
+ BIT16 | BIT13 | BIT12 | BIT11 | BIT10 |
+ BIT9 | BIT8 | BIT5 | BIT4 | BIT3 | BIT2 |
+ BIT1 | BIT0));
+ /* ODTCOMP CMD/CTL PU/PD */
+ mrc_alt_write_mask(DDRPHY,
+ (CCBUFODTCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ ((0x03 << 8) | (0x03 << 0)),
+ (BIT12 | BIT11 | BIT10 | BIT9 | BIT8 |
+ BIT4 | BIT3 | BIT2 | BIT1 | BIT0));
+ /* COMP */
+ mrc_alt_write_mask(DDRPHY,
+ (COMPEN0CH0 + (ch * DDRCOMP_CH_OFFSET)),
+ 0, (BIT31 | BIT30 | BIT8));
+
+#ifdef BACKUP_COMPS
+ /* DQ COMP Overrides */
+ /* RCOMP PU */
+ mrc_alt_write_mask(DDRPHY,
+ (DQDRVPUCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x0A << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* RCOMP PD */
+ mrc_alt_write_mask(DDRPHY,
+ (DQDRVPDCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x0A << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* DCOMP PU */
+ mrc_alt_write_mask(DDRPHY,
+ (DQDLYPUCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x10 << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* DCOMP PD */
+ mrc_alt_write_mask(DDRPHY,
+ (DQDLYPDCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x10 << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* ODTCOMP PU */
+ mrc_alt_write_mask(DDRPHY,
+ (DQODTPUCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x0B << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* ODTCOMP PD */
+ mrc_alt_write_mask(DDRPHY,
+ (DQODTPDCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x0B << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* TCOCOMP PU */
+ mrc_alt_write_mask(DDRPHY,
+ (DQTCOPUCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31), (BIT31));
+ /* TCOCOMP PD */
+ mrc_alt_write_mask(DDRPHY,
+ (DQTCOPDCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31), (BIT31));
+
+ /* DQS COMP Overrides */
+ /* RCOMP PU */
+ mrc_alt_write_mask(DDRPHY,
+ (DQSDRVPUCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x0A << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* RCOMP PD */
+ mrc_alt_write_mask(DDRPHY,
+ (DQSDRVPDCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x0A << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* DCOMP PU */
+ mrc_alt_write_mask(DDRPHY,
+ (DQSDLYPUCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x10 << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* DCOMP PD */
+ mrc_alt_write_mask(DDRPHY,
+ (DQSDLYPDCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x10 << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* ODTCOMP PU */
+ mrc_alt_write_mask(DDRPHY,
+ (DQSODTPUCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x0B << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* ODTCOMP PD */
+ mrc_alt_write_mask(DDRPHY,
+ (DQSODTPDCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x0B << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* TCOCOMP PU */
+ mrc_alt_write_mask(DDRPHY,
+ (DQSTCOPUCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31), (BIT31));
+ /* TCOCOMP PD */
+ mrc_alt_write_mask(DDRPHY,
+ (DQSTCOPDCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31), (BIT31));
+
+ /* CLK COMP Overrides */
+ /* RCOMP PU */
+ mrc_alt_write_mask(DDRPHY,
+ (CLKDRVPUCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x0C << 16)),
+ (BIT31 | (0x0B << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* RCOMP PD */
+ mrc_alt_write_mask(DDRPHY,
+ (CLKDRVPDCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x0C << 16)),
+ (BIT31 | (0x0B << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* DCOMP PU */
+ mrc_alt_write_mask(DDRPHY,
+ (CLKDLYPUCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x07 << 16)),
+ (BIT31 | (0x0B << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* DCOMP PD */
+ mrc_alt_write_mask(DDRPHY,
+ (CLKDLYPDCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x07 << 16)),
+ (BIT31 | (0x0B << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* ODTCOMP PU */
+ mrc_alt_write_mask(DDRPHY,
+ (CLKODTPUCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x0B << 16)),
+ (BIT31 | (0x0B << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* ODTCOMP PD */
+ mrc_alt_write_mask(DDRPHY,
+ (CLKODTPDCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x0B << 16)),
+ (BIT31 | (0x0B << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* TCOCOMP PU */
+ mrc_alt_write_mask(DDRPHY,
+ (CLKTCOPUCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31), (BIT31));
+ /* TCOCOMP PD */
+ mrc_alt_write_mask(DDRPHY,
+ (CLKTCOPDCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31), (BIT31));
+
+ /* CMD COMP Overrides */
+ /* RCOMP PU */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDDRVPUCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x0D << 16)),
+ (BIT31 | BIT21 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* RCOMP PD */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDDRVPDCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x0D << 16)),
+ (BIT31 | BIT21 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* DCOMP PU */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDDLYPUCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x0A << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* DCOMP PD */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDDLYPDCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x0A << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+
+ /* CTL COMP Overrides */
+ /* RCOMP PU */
+ mrc_alt_write_mask(DDRPHY,
+ (CTLDRVPUCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x0D << 16)),
+ (BIT31 | BIT21 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* RCOMP PD */
+ mrc_alt_write_mask(DDRPHY,
+ (CTLDRVPDCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x0D << 16)),
+ (BIT31 | BIT21 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* DCOMP PU */
+ mrc_alt_write_mask(DDRPHY,
+ (CTLDLYPUCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x0A << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* DCOMP PD */
+ mrc_alt_write_mask(DDRPHY,
+ (CTLDLYPDCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x0A << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+#else
+ /* DQ TCOCOMP Overrides */
+ /* TCOCOMP PU */
+ mrc_alt_write_mask(DDRPHY,
+ (DQTCOPUCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x1F << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* TCOCOMP PD */
+ mrc_alt_write_mask(DDRPHY,
+ (DQTCOPDCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x1F << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+
+ /* DQS TCOCOMP Overrides */
+ /* TCOCOMP PU */
+ mrc_alt_write_mask(DDRPHY,
+ (DQSTCOPUCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x1F << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* TCOCOMP PD */
+ mrc_alt_write_mask(DDRPHY,
+ (DQSTCOPDCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x1F << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+
+ /* CLK TCOCOMP Overrides */
+ /* TCOCOMP PU */
+ mrc_alt_write_mask(DDRPHY,
+ (CLKTCOPUCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x1F << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+ /* TCOCOMP PD */
+ mrc_alt_write_mask(DDRPHY,
+ (CLKTCOPDCTLCH0 + (ch * DDRCOMP_CH_OFFSET)),
+ (BIT31 | (0x1F << 16)),
+ (BIT31 | BIT20 | BIT19 |
+ BIT18 | BIT17 | BIT16));
+#endif
+
+ /* program STATIC delays */
+#ifdef BACKUP_WCMD
+ set_wcmd(ch, ddr_wcmd[PLATFORM_ID]);
+#else
+ set_wcmd(ch, ddr_wclk[PLATFORM_ID] + HALF_CLK);
+#endif
+
+ for (rk = 0; rk < NUM_RANKS; rk++) {
+ if (mrc_params->rank_enables & (1<<rk)) {
+ set_wclk(ch, rk, ddr_wclk[PLATFORM_ID]);
+#ifdef BACKUP_WCTL
+ set_wctl(ch, rk, ddr_wctl[PLATFORM_ID]);
+#else
+ set_wctl(ch, rk, ddr_wclk[PLATFORM_ID] + HALF_CLK);
+#endif
+ }
+ }
+ }
+ }
+
+ /* COMP (non channel specific) */
+ /* RCOMP: Dither PU Enable */
+ mrc_alt_write_mask(DDRPHY, (DQANADRVPUCTL), (BIT30), (BIT30));
+ /* RCOMP: Dither PD Enable */
+ mrc_alt_write_mask(DDRPHY, (DQANADRVPDCTL), (BIT30), (BIT30));
+ /* RCOMP: Dither PU Enable */
+ mrc_alt_write_mask(DDRPHY, (CMDANADRVPUCTL), (BIT30), (BIT30));
+ /* RCOMP: Dither PD Enable */
+ mrc_alt_write_mask(DDRPHY, (CMDANADRVPDCTL), (BIT30), (BIT30));
+ /* RCOMP: Dither PU Enable */
+ mrc_alt_write_mask(DDRPHY, (CLKANADRVPUCTL), (BIT30), (BIT30));
+ /* RCOMP: Dither PD Enable */
+ mrc_alt_write_mask(DDRPHY, (CLKANADRVPDCTL), (BIT30), (BIT30));
+ /* RCOMP: Dither PU Enable */
+ mrc_alt_write_mask(DDRPHY, (DQSANADRVPUCTL), (BIT30), (BIT30));
+ /* RCOMP: Dither PD Enable */
+ mrc_alt_write_mask(DDRPHY, (DQSANADRVPDCTL), (BIT30), (BIT30));
+ /* RCOMP: Dither PU Enable */
+ mrc_alt_write_mask(DDRPHY, (CTLANADRVPUCTL), (BIT30), (BIT30));
+ /* RCOMP: Dither PD Enable */
+ mrc_alt_write_mask(DDRPHY, (CTLANADRVPDCTL), (BIT30), (BIT30));
+ /* ODT: Dither PU Enable */
+ mrc_alt_write_mask(DDRPHY, (DQANAODTPUCTL), (BIT30), (BIT30));
+ /* ODT: Dither PD Enable */
+ mrc_alt_write_mask(DDRPHY, (DQANAODTPDCTL), (BIT30), (BIT30));
+ /* ODT: Dither PU Enable */
+ mrc_alt_write_mask(DDRPHY, (CLKANAODTPUCTL), (BIT30), (BIT30));
+ /* ODT: Dither PD Enable */
+ mrc_alt_write_mask(DDRPHY, (CLKANAODTPDCTL), (BIT30), (BIT30));
+ /* ODT: Dither PU Enable */
+ mrc_alt_write_mask(DDRPHY, (DQSANAODTPUCTL), (BIT30), (BIT30));
+ /* ODT: Dither PD Enable */
+ mrc_alt_write_mask(DDRPHY, (DQSANAODTPDCTL), (BIT30), (BIT30));
+ /* DCOMP: Dither PU Enable */
+ mrc_alt_write_mask(DDRPHY, (DQANADLYPUCTL), (BIT30), (BIT30));
+ /* DCOMP: Dither PD Enable */
+ mrc_alt_write_mask(DDRPHY, (DQANADLYPDCTL), (BIT30), (BIT30));
+ /* DCOMP: Dither PU Enable */
+ mrc_alt_write_mask(DDRPHY, (CMDANADLYPUCTL), (BIT30), (BIT30));
+ /* DCOMP: Dither PD Enable */
+ mrc_alt_write_mask(DDRPHY, (CMDANADLYPDCTL), (BIT30), (BIT30));
+ /* DCOMP: Dither PU Enable */
+ mrc_alt_write_mask(DDRPHY, (CLKANADLYPUCTL), (BIT30), (BIT30));
+ /* DCOMP: Dither PD Enable */
+ mrc_alt_write_mask(DDRPHY, (CLKANADLYPDCTL), (BIT30), (BIT30));
+ /* DCOMP: Dither PU Enable */
+ mrc_alt_write_mask(DDRPHY, (DQSANADLYPUCTL), (BIT30), (BIT30));
+ /* DCOMP: Dither PD Enable */
+ mrc_alt_write_mask(DDRPHY, (DQSANADLYPDCTL), (BIT30), (BIT30));
+ /* DCOMP: Dither PU Enable */
+ mrc_alt_write_mask(DDRPHY, (CTLANADLYPUCTL), (BIT30), (BIT30));
+ /* DCOMP: Dither PD Enable */
+ mrc_alt_write_mask(DDRPHY, (CTLANADLYPDCTL), (BIT30), (BIT30));
+ /* TCO: Dither PU Enable */
+ mrc_alt_write_mask(DDRPHY, (DQANATCOPUCTL), (BIT30), (BIT30));
+ /* TCO: Dither PD Enable */
+ mrc_alt_write_mask(DDRPHY, (DQANATCOPDCTL), (BIT30), (BIT30));
+ /* TCO: Dither PU Enable */
+ mrc_alt_write_mask(DDRPHY, (CLKANATCOPUCTL), (BIT30), (BIT30));
+ /* TCO: Dither PD Enable */
+ mrc_alt_write_mask(DDRPHY, (CLKANATCOPDCTL), (BIT30), (BIT30));
+ /* TCO: Dither PU Enable */
+ mrc_alt_write_mask(DDRPHY, (DQSANATCOPUCTL), (BIT30), (BIT30));
+ /* TCO: Dither PD Enable */
+ mrc_alt_write_mask(DDRPHY, (DQSANATCOPDCTL), (BIT30), (BIT30));
+ /* TCOCOMP: Pulse Count */
+ mrc_alt_write_mask(DDRPHY, (TCOCNTCTRL), (0x1 << 0), (BIT1 | BIT0));
+ /* ODT: CMD/CTL PD/PU */
+ mrc_alt_write_mask(DDRPHY,
+ (CHNLBUFSTATIC), ((0x03 << 24) | (0x03 << 16)),
+ (BIT28 | BIT27 | BIT26 | BIT25 | BIT24 |
+ BIT20 | BIT19 | BIT18 | BIT17 | BIT16));
+ /* Set 1us counter */
+ mrc_alt_write_mask(DDRPHY,
+ (MSCNTR), (0x64 << 0),
+ (BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0));
+ mrc_alt_write_mask(DDRPHY,
+ (LATCH1CTL), (0x1 << 28),
+ (BIT30 | BIT29 | BIT28));
+
+ /* Release PHY from reset */
+ mrc_alt_write_mask(DDRPHY, MASTERRSTN, BIT0, BIT0);
+
+ /* STEP1 */
+ mrc_post_code(0x03, 0x11);
+
+ for (ch = 0; ch < NUM_CHANNELS; ch++) {
+ if (mrc_params->channel_enables & (1 << ch)) {
+ /* DQ01-DQ23 */
+ for (bl_grp = 0;
+ bl_grp < ((NUM_BYTE_LANES / bl_divisor) / 2);
+ bl_grp++) {
+ mrc_alt_write_mask(DDRPHY,
+ (DQMDLLCTL +
+ (bl_grp * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ (BIT13),
+ (BIT13)); /* Enable VREG */
+ delay_n(3);
+ }
+
+ /* ECC */
+ mrc_alt_write_mask(DDRPHY, (ECCMDLLCTL),
+ (BIT13), (BIT13)); /* Enable VREG */
+ delay_n(3);
+ /* CMD */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDMDLLCTL + (ch * DDRIOCCC_CH_OFFSET)),
+ (BIT13), (BIT13)); /* Enable VREG */
+ delay_n(3);
+ /* CLK-CTL */
+ mrc_alt_write_mask(DDRPHY,
+ (CCMDLLCTL + (ch * DDRIOCCC_CH_OFFSET)),
+ (BIT13), (BIT13)); /* Enable VREG */
+ delay_n(3);
+ }
+ }
+
+ /* STEP2 */
+ mrc_post_code(0x03, 0x12);
+ delay_n(200);
+
+ for (ch = 0; ch < NUM_CHANNELS; ch++) {
+ if (mrc_params->channel_enables & (1 << ch)) {
+ /* DQ01-DQ23 */
+ for (bl_grp = 0;
+ bl_grp < ((NUM_BYTE_LANES / bl_divisor) / 2);
+ bl_grp++) {
+ mrc_alt_write_mask(DDRPHY,
+ (DQMDLLCTL +
+ (bl_grp * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ (BIT17),
+ (BIT17)); /* Enable MCDLL */
+ delay_n(50);
+ }
+
+ /* ECC */
+ mrc_alt_write_mask(DDRPHY, (ECCMDLLCTL),
+ (BIT17), (BIT17)); /* Enable MCDLL */
+ delay_n(50);
+ /* CMD */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDMDLLCTL + (ch * DDRIOCCC_CH_OFFSET)),
+ (BIT18), (BIT18)); /* Enable MCDLL */
+ delay_n(50);
+ /* CLK-CTL */
+ mrc_alt_write_mask(DDRPHY,
+ (CCMDLLCTL + (ch * DDRIOCCC_CH_OFFSET)),
+ (BIT18), (BIT18)); /* Enable MCDLL */
+ delay_n(50);
+ }
+ }
+
+ /* STEP3: */
+ mrc_post_code(0x03, 0x13);
+ delay_n(100);
+
+ for (ch = 0; ch < NUM_CHANNELS; ch++) {
+ if (mrc_params->channel_enables & (1 << ch)) {
+ /* DQ01-DQ23 */
+ for (bl_grp = 0;
+ bl_grp < ((NUM_BYTE_LANES / bl_divisor) / 2);
+ bl_grp++) {
+#ifdef FORCE_16BIT_DDRIO
+ temp = ((bl_grp) &&
+ (mrc_params->channel_width == X16)) ?
+ ((0x1 << 12) | (0x1 << 8) |
+ (0xF << 4) | (0xF << 0)) :
+ ((0xF << 12) | (0xF << 8) |
+ (0xF << 4) | (0xF << 0));
+#else
+ temp = ((0xF << 12) | (0xF << 8) |
+ (0xF << 4) | (0xF << 0));
+#endif
+ /* Enable TXDLL */
+ mrc_alt_write_mask(DDRPHY,
+ (DQDLLTXCTL +
+ (bl_grp * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ temp, 0xFFFF);
+ delay_n(3);
+ /* Enable RXDLL */
+ mrc_alt_write_mask(DDRPHY,
+ (DQDLLRXCTL +
+ (bl_grp * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ (BIT3 | BIT2 | BIT1 | BIT0),
+ (BIT3 | BIT2 | BIT1 | BIT0));
+ delay_n(3);
+ /* Enable RXDLL Overrides BL0 */
+ mrc_alt_write_mask(DDRPHY,
+ (B0OVRCTL +
+ (bl_grp * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ (BIT3 | BIT2 | BIT1 | BIT0),
+ (BIT3 | BIT2 | BIT1 | BIT0));
+ }
+
+ /* ECC */
+ temp = ((0xF << 12) | (0xF << 8) |
+ (0xF << 4) | (0xF << 0));
+ mrc_alt_write_mask(DDRPHY, (ECCDLLTXCTL),
+ temp, 0xFFFF);
+ delay_n(3);
+
+ /* CMD (PO) */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDDLLTXCTL + (ch * DDRIOCCC_CH_OFFSET)),
+ temp, 0xFFFF);
+ delay_n(3);
+ }
+ }
+
+ /* STEP4 */
+ mrc_post_code(0x03, 0x14);
+
+ for (ch = 0; ch < NUM_CHANNELS; ch++) {
+ if (mrc_params->channel_enables & (1 << ch)) {
+ /* Host To Memory Clock Alignment (HMC) for 800/1066 */
+ for (bl_grp = 0;
+ bl_grp < ((NUM_BYTE_LANES / bl_divisor) / 2);
+ bl_grp++) {
+ /* CLK_ALIGN_MOD_ID */
+ mrc_alt_write_mask(DDRPHY,
+ (DQCLKALIGNREG2 +
+ (bl_grp * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ (bl_grp) ? (0x3) : (0x1),
+ (BIT3 | BIT2 | BIT1 | BIT0));
+ }
+
+ mrc_alt_write_mask(DDRPHY,
+ (ECCCLKALIGNREG2 + (ch * DDRIODQ_CH_OFFSET)),
+ 0x2,
+ (BIT3 | BIT2 | BIT1 | BIT0));
+ mrc_alt_write_mask(DDRPHY,
+ (CMDCLKALIGNREG2 + (ch * DDRIODQ_CH_OFFSET)),
+ 0x0,
+ (BIT3 | BIT2 | BIT1 | BIT0));
+ mrc_alt_write_mask(DDRPHY,
+ (CCCLKALIGNREG2 + (ch * DDRIODQ_CH_OFFSET)),
+ 0x2,
+ (BIT3 | BIT2 | BIT1 | BIT0));
+ mrc_alt_write_mask(DDRPHY,
+ (CMDCLKALIGNREG0 + (ch * DDRIOCCC_CH_OFFSET)),
+ (0x2 << 4), (BIT5 | BIT4));
+ /*
+ * NUM_SAMPLES, MAX_SAMPLES,
+ * MACRO_PI_STEP, MICRO_PI_STEP
+ */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDCLKALIGNREG1 + (ch * DDRIOCCC_CH_OFFSET)),
+ ((0x18 << 16) | (0x10 << 8) |
+ (0x8 << 2) | (0x1 << 0)),
+ (BIT22 | BIT21 | BIT20 | BIT19 | BIT18 | BIT17 |
+ BIT16 | BIT14 | BIT13 | BIT12 | BIT11 | BIT10 |
+ BIT9 | BIT8 | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 |
+ BIT2 | BIT1 | BIT0));
+ /* TOTAL_NUM_MODULES, FIRST_U_PARTITION */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDCLKALIGNREG2 + (ch * DDRIOCCC_CH_OFFSET)),
+ ((0x10 << 16) | (0x4 << 8) | (0x2 << 4)),
+ (BIT20 | BIT19 | BIT18 | BIT17 | BIT16 |
+ BIT11 | BIT10 | BIT9 | BIT8 | BIT7 | BIT6 |
+ BIT5 | BIT4));
+#ifdef HMC_TEST
+ /* START_CLK_ALIGN=1 */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDCLKALIGNREG0 + (ch * DDRIOCCC_CH_OFFSET)),
+ BIT24, BIT24);
+ while (msg_port_alt_read(DDRPHY,
+ (CMDCLKALIGNREG0 + (ch * DDRIOCCC_CH_OFFSET))) &
+ BIT24)
+ ; /* wait for START_CLK_ALIGN=0 */
+#endif
+
+ /* Set RD/WR Pointer Seperation & COUNTEN & FIFOPTREN */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDPTRREG + (ch * DDRIOCCC_CH_OFFSET)),
+ BIT0, BIT0); /* WRPTRENABLE=1 */
+
+ /* COMP initial */
+ /* enable bypass for CLK buffer (PO) */
+ mrc_alt_write_mask(DDRPHY,
+ (COMPEN0CH0 + (ch * DDRCOMP_CH_OFFSET)),
+ BIT5, BIT5);
+ /* Initial COMP Enable */
+ mrc_alt_write_mask(DDRPHY, (CMPCTRL),
+ (BIT0), (BIT0));
+ /* wait for Initial COMP Enable = 0 */
+ while (msg_port_alt_read(DDRPHY, (CMPCTRL)) & BIT0)
+ ;
+ /* disable bypass for CLK buffer (PO) */
+ mrc_alt_write_mask(DDRPHY,
+ (COMPEN0CH0 + (ch * DDRCOMP_CH_OFFSET)),
+ ~BIT5, BIT5);
+
+ /* IOBUFACT */
+
+ /* STEP4a */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDCFGREG0 + (ch * DDRIOCCC_CH_OFFSET)),
+ BIT2, BIT2); /* IOBUFACTRST_N=1 */
+
+ /* DDRPHY initialization complete */
+ mrc_alt_write_mask(DDRPHY,
+ (CMDPMCONFIG0 + (ch * DDRIOCCC_CH_OFFSET)),
+ BIT20, BIT20); /* SPID_INIT_COMPLETE=1 */
+ }
+ }
+
+ LEAVEFN();
+}
+
+/* This function performs JEDEC initialization on all enabled channels */
+void perform_jedec_init(struct mrc_params *mrc_params)
+{
+ uint8_t twr, wl, rank;
+ uint32_t tck;
+ u32 dtr0;
+ u32 drp;
+ u32 drmc;
+ u32 mrs0_cmd = 0;
+ u32 emrs1_cmd = 0;
+ u32 emrs2_cmd = 0;
+ u32 emrs3_cmd = 0;
+
+ ENTERFN();
+
+ /* jedec_init starts */
+ mrc_post_code(0x04, 0x00);
+
+ /* DDR3_RESET_SET=0, DDR3_RESET_RESET=1 */
+ mrc_alt_write_mask(DDRPHY, CCDDR3RESETCTL, BIT1, (BIT8 | BIT1));
+
+ /* Assert RESET# for 200us */
+ delay_u(200);
+
+ /* DDR3_RESET_SET=1, DDR3_RESET_RESET=0 */
+ mrc_alt_write_mask(DDRPHY, CCDDR3RESETCTL, BIT8, (BIT8 | BIT1));
+
+ dtr0 = msg_port_read(MEM_CTLR, DTR0);
+
+ /*
+ * Set CKEVAL for populated ranks
+ * then send NOP to each rank (#4550197)
+ */
+
+ drp = msg_port_read(MEM_CTLR, DRP);
+ drp &= 0x3;
+
+ drmc = msg_port_read(MEM_CTLR, DRMC);
+ drmc &= 0xFFFFFFFC;
+ drmc |= (BIT4 | drp);
+
+ msg_port_write(MEM_CTLR, DRMC, drmc);
+
+ for (rank = 0; rank < NUM_RANKS; rank++) {
+ /* Skip to next populated rank */
+ if ((mrc_params->rank_enables & (1 << rank)) == 0)
+ continue;
+
+ dram_init_command(DCMD_NOP(rank));
+ }
+
+ msg_port_write(MEM_CTLR, DRMC,
+ (mrc_params->rd_odt_value == 0 ? BIT12 : 0));
+
+ /*
+ * setup for emrs 2
+ * BIT[15:11] --> Always "0"
+ * BIT[10:09] --> Rtt_WR: want "Dynamic ODT Off" (0)
+ * BIT[08] --> Always "0"
+ * BIT[07] --> SRT: use sr_temp_range
+ * BIT[06] --> ASR: want "Manual SR Reference" (0)
+ * BIT[05:03] --> CWL: use oem_tCWL
+ * BIT[02:00] --> PASR: want "Full Array" (0)
+ */
+ emrs2_cmd |= (2 << 3);
+ wl = 5 + mrc_params->ddr_speed;
+ emrs2_cmd |= ((wl - 5) << 9);
+ emrs2_cmd |= (mrc_params->sr_temp_range << 13);
+
+ /*
+ * setup for emrs 3
+ * BIT[15:03] --> Always "0"
+ * BIT[02] --> MPR: want "Normal Operation" (0)
+ * BIT[01:00] --> MPR_Loc: want "Predefined Pattern" (0)
+ */
+ emrs3_cmd |= (3 << 3);
+
+ /*
+ * setup for emrs 1
+ * BIT[15:13] --> Always "0"
+ * BIT[12:12] --> Qoff: want "Output Buffer Enabled" (0)
+ * BIT[11:11] --> TDQS: want "Disabled" (0)
+ * BIT[10:10] --> Always "0"
+ * BIT[09,06,02] --> Rtt_nom: use rtt_nom_value
+ * BIT[08] --> Always "0"
+ * BIT[07] --> WR_LVL: want "Disabled" (0)
+ * BIT[05,01] --> DIC: use ron_value
+ * BIT[04:03] --> AL: additive latency want "0" (0)
+ * BIT[00] --> DLL: want "Enable" (0)
+ *
+ * (BIT5|BIT1) set Ron value
+ * 00 --> RZQ/6 (40ohm)
+ * 01 --> RZQ/7 (34ohm)
+ * 1* --> RESERVED
+ *
+ * (BIT9|BIT6|BIT2) set Rtt_nom value
+ * 000 --> Disabled
+ * 001 --> RZQ/4 ( 60ohm)
+ * 010 --> RZQ/2 (120ohm)
+ * 011 --> RZQ/6 ( 40ohm)
+ * 1** --> RESERVED
+ */
+ emrs1_cmd |= (1 << 3);
+ emrs1_cmd &= ~BIT6;
+
+ if (mrc_params->ron_value == 0)
+ emrs1_cmd |= BIT7;
+ else
+ emrs1_cmd &= ~BIT7;
+
+ if (mrc_params->rtt_nom_value == 0)
+ emrs1_cmd |= (DDR3_EMRS1_RTTNOM_40 << 6);
+ else if (mrc_params->rtt_nom_value == 1)
+ emrs1_cmd |= (DDR3_EMRS1_RTTNOM_60 << 6);
+ else if (mrc_params->rtt_nom_value == 2)
+ emrs1_cmd |= (DDR3_EMRS1_RTTNOM_120 << 6);
+
+ /* save MRS1 value (excluding control fields) */
+ mrc_params->mrs1 = emrs1_cmd >> 6;
+
+ /*
+ * setup for mrs 0
+ * BIT[15:13] --> Always "0"
+ * BIT[12] --> PPD: for Quark (1)
+ * BIT[11:09] --> WR: use oem_tWR
+ * BIT[08] --> DLL: want "Reset" (1, self clearing)
+ * BIT[07] --> MODE: want "Normal" (0)
+ * BIT[06:04,02] --> CL: use oem_tCAS
+ * BIT[03] --> RD_BURST_TYPE: want "Interleave" (1)
+ * BIT[01:00] --> BL: want "8 Fixed" (0)
+ * WR:
+ * 0 --> 16
+ * 1 --> 5
+ * 2 --> 6
+ * 3 --> 7
+ * 4 --> 8
+ * 5 --> 10
+ * 6 --> 12
+ * 7 --> 14
+ * CL:
+ * BIT[02:02] "0" if oem_tCAS <= 11 (1866?)
+ * BIT[06:04] use oem_tCAS-4
+ */
+ mrs0_cmd |= BIT14;
+ mrs0_cmd |= BIT18;
+ mrs0_cmd |= ((((dtr0 >> 12) & 7) + 1) << 10);
+
+ tck = t_ck[mrc_params->ddr_speed];
+ /* Per JEDEC: tWR=15000ps DDR2/3 from 800-1600 */
+ twr = MCEIL(15000, tck);
+ mrs0_cmd |= ((twr - 4) << 15);
+
+ for (rank = 0; rank < NUM_RANKS; rank++) {
+ /* Skip to next populated rank */
+ if ((mrc_params->rank_enables & (1 << rank)) == 0)
+ continue;
+
+ emrs2_cmd |= (rank << 22);
+ dram_init_command(emrs2_cmd);
+
+ emrs3_cmd |= (rank << 22);
+ dram_init_command(emrs3_cmd);
+
+ emrs1_cmd |= (rank << 22);
+ dram_init_command(emrs1_cmd);
+
+ mrs0_cmd |= (rank << 22);
+ dram_init_command(mrs0_cmd);
+
+ dram_init_command(DCMD_ZQCL(rank));
+ }
+
+ LEAVEFN();
+}
+
+/*
+ * Dunit Initialization Complete
+ *
+ * Indicates that initialization of the Dunit has completed.
+ *
+ * Memory accesses are permitted and maintenance operation begins.
+ * Until this bit is set to a 1, the memory controller will not accept
+ * DRAM requests from the MEMORY_MANAGER or HTE.
+ */
+void set_ddr_init_complete(struct mrc_params *mrc_params)
+{
+ u32 dco;
+
+ ENTERFN();
+
+ dco = msg_port_read(MEM_CTLR, DCO);
+ dco &= ~BIT28;
+ dco |= BIT31;
+ msg_port_write(MEM_CTLR, DCO, dco);
+
+ LEAVEFN();
+}
+
+/*
+ * This function will retrieve relevant timing data
+ *
+ * This data will be used on subsequent boots to speed up boot times
+ * and is required for Suspend To RAM capabilities.
+ */
+void restore_timings(struct mrc_params *mrc_params)
+{
+ uint8_t ch, rk, bl;
+ const struct mrc_timings *mt = &mrc_params->timings;
+
+ for (ch = 0; ch < NUM_CHANNELS; ch++) {
+ for (rk = 0; rk < NUM_RANKS; rk++) {
+ for (bl = 0; bl < NUM_BYTE_LANES; bl++) {
+ set_rcvn(ch, rk, bl, mt->rcvn[ch][rk][bl]);
+ set_rdqs(ch, rk, bl, mt->rdqs[ch][rk][bl]);
+ set_wdqs(ch, rk, bl, mt->wdqs[ch][rk][bl]);
+ set_wdq(ch, rk, bl, mt->wdq[ch][rk][bl]);
+ if (rk == 0) {
+ /* VREF (RANK0 only) */
+ set_vref(ch, bl, mt->vref[ch][bl]);
+ }
+ }
+ set_wctl(ch, rk, mt->wctl[ch][rk]);
+ }
+ set_wcmd(ch, mt->wcmd[ch]);
+ }
+}
+
+/*
+ * Configure default settings normally set as part of read training
+ *
+ * Some defaults have to be set earlier as they may affect earlier
+ * training steps.
+ */
+void default_timings(struct mrc_params *mrc_params)
+{
+ uint8_t ch, rk, bl;
+
+ for (ch = 0; ch < NUM_CHANNELS; ch++) {
+ for (rk = 0; rk < NUM_RANKS; rk++) {
+ for (bl = 0; bl < NUM_BYTE_LANES; bl++) {
+ set_rdqs(ch, rk, bl, 24);
+ if (rk == 0) {
+ /* VREF (RANK0 only) */
+ set_vref(ch, bl, 32);
+ }
+ }
+ }
+ }
+}
+
+/*
+ * This function will perform our RCVEN Calibration Algorithm.
+ * We will only use the 2xCLK domain timings to perform RCVEN Calibration.
+ * All byte lanes will be calibrated "simultaneously" per channel per rank.
+ */
+void rcvn_cal(struct mrc_params *mrc_params)
+{
+ uint8_t ch; /* channel counter */
+ uint8_t rk; /* rank counter */
+ uint8_t bl; /* byte lane counter */
+ uint8_t bl_divisor = (mrc_params->channel_width == X16) ? 2 : 1;
+
+#ifdef R2R_SHARING
+ /* used to find placement for rank2rank sharing configs */
+ uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES];
+#ifndef BACKUP_RCVN
+ /* used to find placement for rank2rank sharing configs */
+ uint32_t num_ranks_enabled = 0;
+#endif
+#endif
+
+#ifdef BACKUP_RCVN
+#else
+ uint32_t temp;
+ /* absolute PI value to be programmed on the byte lane */
+ uint32_t delay[NUM_BYTE_LANES];
+ u32 dtr1, dtr1_save;
+#endif
+
+ ENTERFN();
+
+ /* rcvn_cal starts */
+ mrc_post_code(0x05, 0x00);
+
+#ifndef BACKUP_RCVN
+ /* need separate burst to sample DQS preamble */
+ dtr1 = msg_port_read(MEM_CTLR, DTR1);
+ dtr1_save = dtr1;
+ dtr1 |= BIT12;
+ msg_port_write(MEM_CTLR, DTR1, dtr1);
+#endif
+
+#ifdef R2R_SHARING
+ /* need to set "final_delay[][]" elements to "0" */
+ memset((void *)(final_delay), 0x00, (size_t)sizeof(final_delay));
+#endif
+
+ /* loop through each enabled channel */
+ for (ch = 0; ch < NUM_CHANNELS; ch++) {
+ if (mrc_params->channel_enables & (1 << ch)) {
+ /* perform RCVEN Calibration on a per rank basis */
+ for (rk = 0; rk < NUM_RANKS; rk++) {
+ if (mrc_params->rank_enables & (1 << rk)) {
+ /*
+ * POST_CODE here indicates the current
+ * channel and rank being calibrated
+ */
+ mrc_post_code(0x05, (0x10 + ((ch << 4) | rk)));
+
+#ifdef BACKUP_RCVN
+ /* et hard-coded timing values */
+ for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++)
+ set_rcvn(ch, rk, bl, ddr_rcvn[PLATFORM_ID]);
+#else
+ /* enable FIFORST */
+ for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl += 2) {
+ mrc_alt_write_mask(DDRPHY,
+ (B01PTRCTL1 +
+ ((bl >> 1) * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ 0, BIT8);
+ }
+ /* initialize the starting delay to 128 PI (cas +1 CLK) */
+ for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
+ /* 1x CLK domain timing is cas-4 */
+ delay[bl] = (4 + 1) * FULL_CLK;
+
+ set_rcvn(ch, rk, bl, delay[bl]);
+ }
+
+ /* now find the rising edge */
+ find_rising_edge(mrc_params, delay, ch, rk, true);
+
+ /* Now increase delay by 32 PI (1/4 CLK) to place in center of high pulse */
+ for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
+ delay[bl] += QRTR_CLK;
+ set_rcvn(ch, rk, bl, delay[bl]);
+ }
+ /* Now decrement delay by 128 PI (1 CLK) until we sample a "0" */
+ do {
+ temp = sample_dqs(mrc_params, ch, rk, true);
+ for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
+ if (temp & (1 << bl)) {
+ if (delay[bl] >= FULL_CLK) {
+ delay[bl] -= FULL_CLK;
+ set_rcvn(ch, rk, bl, delay[bl]);
+ } else {
+ /* not enough delay */
+ training_message(ch, rk, bl);
+ mrc_post_code(0xEE, 0x50);
+ }
+ }
+ }
+ } while (temp & 0xFF);
+
+#ifdef R2R_SHARING
+ /* increment "num_ranks_enabled" */
+ num_ranks_enabled++;
+ /* Finally increment delay by 32 PI (1/4 CLK) to place in center of preamble */
+ for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
+ delay[bl] += QRTR_CLK;
+ /* add "delay[]" values to "final_delay[][]" for rolling average */
+ final_delay[ch][bl] += delay[bl];
+ /* set timing based on rolling average values */
+ set_rcvn(ch, rk, bl, ((final_delay[ch][bl]) / num_ranks_enabled));
+ }
+#else
+ /* Finally increment delay by 32 PI (1/4 CLK) to place in center of preamble */
+ for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
+ delay[bl] += QRTR_CLK;
+ set_rcvn(ch, rk, bl, delay[bl]);
+ }
+#endif
+
+ /* disable FIFORST */
+ for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl += 2) {
+ mrc_alt_write_mask(DDRPHY,
+ (B01PTRCTL1 +
+ ((bl >> 1) * DDRIODQ_BL_OFFSET) +
+ (ch * DDRIODQ_CH_OFFSET)),
+ BIT8, BIT8);
+ }
+#endif
+ }
+ }
+ }
+ }
+
+#ifndef BACKUP_RCVN
+ /* restore original */
+ msg_port_write(MEM_CTLR, DTR1, dtr1_save);
+#endif
+
+ LEAVEFN();
+}
+
+/*
+ * This function will perform the Write Levelling algorithm
+ * (align WCLK and WDQS).
+ *
+ * This algorithm will act on each rank in each channel separately.
+ */
+void wr_level(struct mrc_params *mrc_params)
+{
+ uint8_t ch; /* channel counter */
+ uint8_t rk; /* rank counter */
+ uint8_t bl; /* byte lane counter */
+ uint8_t bl_divisor = (mrc_params->channel_width == X16) ? 2 : 1;
+
+#ifdef R2R_SHARING
+ /* used to find placement for rank2rank sharing configs */
+ uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES];
+#ifndef BACKUP_WDQS
+ /* used to find placement for rank2rank sharing configs */
+ uint32_t num_ranks_enabled = 0;
+#endif
+#endif
+
+#ifdef BACKUP_WDQS
+#else
+ /* determines stop condition for CRS_WR_LVL */
+ bool all_edges_found;
+ /* absolute PI value to be programmed on the byte lane */
+ uint32_t delay[NUM_BYTE_LANES];
+ /*
+ * static makes it so the data is loaded in the heap once by shadow(),
+ * where non-static copies the data onto the stack every time this
+ * function is called
+ */
+ uint32_t address; /* address to be checked during COARSE_WR_LVL */
+ u32 dtr4, dtr4_save;
+#endif
+
+ ENTERFN();
+
+ /* wr_level starts */
+ mrc_post_code(0x06, 0x00);
+
+#ifdef R2R_SHARING
+ /* need to set "final_delay[][]" elements to "0" */
+ memset((void *)(final_delay), 0x00, (size_t)sizeof(final_delay));
+#endif
+
+ /* loop through each enabled channel */
+ for (ch = 0; ch < NUM_CHANNELS; ch++) {
+ if (mrc_params->channel_enables & (1 << ch)) {
+ /* perform WRITE LEVELING algorithm on a per rank basis */
+ for (rk = 0; rk < NUM_RANKS; rk++) {
+ if (mrc_params->rank_enables & (1 << rk)) {
+ /*
+ * POST_CODE here indicates the current
+ * rank and channel being calibrated
+ */
+ mrc_post_code(0x06, (0x10 + ((ch << 4) | rk)));
+
+#ifdef BACKUP_WDQS
+ for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
+ set_wdqs(ch, rk, bl, ddr_wdqs[PLATFORM_ID]);
+ set_wdq(ch, rk, bl, (ddr_wdqs[PLATFORM_ID] - QRTR_CLK));
+ }
+#else
+ /*
+ * perform a single PRECHARGE_ALL command to
+ * make DRAM state machine go to IDLE state
+ */
+ dram_init_command(DCMD_PREA(rk));
+
+ /*
+ * enable Write Levelling Mode
+ * (EMRS1 w/ Write Levelling Mode Enable)
+ */
+ dram_init_command(DCMD_MRS1(rk, 0x0082));
+
+ /*
+ * set ODT DRAM Full Time Termination
+ * disable in MCU
+ */
+
+ dtr4 = msg_port_read(MEM_CTLR, DTR4);
+ dtr4_save = dtr4;
+ dtr4 |= BIT15;
+ msg_port_write(MEM_CTLR, DTR4, dtr4);
+
+ for (bl = 0; bl < ((NUM_BYTE_LANES / bl_divisor) / 2); bl++) {
+ /*
+ * Enable Sandy Bridge Mode (WDQ Tri-State) &
+ * Ensure 5 WDQS pulses during Write Leveling
+ */
+ mrc_alt_write_mask(DDRPHY,
+ DQCTL + (DDRIODQ_BL_OFFSET * bl) + (DDRIODQ_CH_OFFSET * ch),
+ (BIT28 | BIT8 | BIT6 | BIT4 | BIT2),
+ (BIT28 | BIT9 | BIT8 | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2));
+ }
+
+ /* Write Leveling Mode enabled in IO */
+ mrc_alt_write_mask(DDRPHY,
+ CCDDR3RESETCTL + (DDRIOCCC_CH_OFFSET * ch),
+ BIT16, BIT16);
+
+ /* Initialize the starting delay to WCLK */
+ for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
+ /*
+ * CLK0 --> RK0
+ * CLK1 --> RK1
+ */
+ delay[bl] = get_wclk(ch, rk);
+
+ set_wdqs(ch, rk, bl, delay[bl]);
+ }
+
+ /* now find the rising edge */
+ find_rising_edge(mrc_params, delay, ch, rk, false);
+
+ /* disable Write Levelling Mode */
+ mrc_alt_write_mask(DDRPHY,
+ CCDDR3RESETCTL + (DDRIOCCC_CH_OFFSET * ch),
+ 0, BIT16);
+
+ for (bl = 0; bl < ((NUM_BYTE_LANES / bl_divisor) / 2); bl++) {
+ /* Disable Sandy Bridge Mode & Ensure 4 WDQS pulses during normal operation */
+ mrc_alt_write_mask(DDRPHY,
+ DQCTL + (DDRIODQ_BL_OFFSET * bl) + (DDRIODQ_CH_OFFSET * ch),
+ (BIT8 | BIT6 | BIT4 | BIT2),
+ (BIT28 | BIT9 | BIT8 | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2));
+ }
+
+ /* restore original DTR4 */
+ msg_port_write(MEM_CTLR, DTR4, dtr4_save);
+
+ /*
+ * restore original value
+ * (Write Levelling Mode Disable)
+ */
+ dram_init_command(DCMD_MRS1(rk, mrc_params->mrs1));
+
+ /*
+ * perform a single PRECHARGE_ALL command to
+ * make DRAM state machine go to IDLE state
+ */
+ dram_init_command(DCMD_PREA(rk));
+
+ mrc_post_code(0x06, (0x30 + ((ch << 4) | rk)));
+
+ /*
+ * COARSE WRITE LEVEL:
+ * check that we're on the correct clock edge
+ */
+
+ /* hte reconfiguration request */
+ mrc_params->hte_setup = 1;
+
+ /* start CRS_WR_LVL with WDQS = WDQS + 128 PI */
+ for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
+ delay[bl] = get_wdqs(ch, rk, bl) + FULL_CLK;
+ set_wdqs(ch, rk, bl, delay[bl]);
+ /*
+ * program WDQ timings based on WDQS
+ * (WDQ = WDQS - 32 PI)
+ */
+ set_wdq(ch, rk, bl, (delay[bl] - QRTR_CLK));
+ }
+
+ /* get an address in the targeted channel/rank */
+ address = get_addr(ch, rk);
+ do {
+ uint32_t coarse_result = 0x00;
+ uint32_t coarse_result_mask = byte_lane_mask(mrc_params);
+ /* assume pass */
+ all_edges_found = true;
+
+ mrc_params->hte_setup = 1;
+ coarse_result = check_rw_coarse(mrc_params, address);
+
+ /* check for failures and margin the byte lane back 128 PI (1 CLK) */
+ for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
+ if (coarse_result & (coarse_result_mask << bl)) {
+ all_edges_found = false;
+ delay[bl] -= FULL_CLK;
+ set_wdqs(ch, rk, bl, delay[bl]);
+ /* program WDQ timings based on WDQS (WDQ = WDQS - 32 PI) */
+ set_wdq(ch, rk, bl, (delay[bl] - QRTR_CLK));
+ }
+ }
+ } while (!all_edges_found);
+
+#ifdef R2R_SHARING
+ /* increment "num_ranks_enabled" */
+ num_ranks_enabled++;
+ /* accumulate "final_delay[][]" values from "delay[]" values for rolling average */
+ for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
+ final_delay[ch][bl] += delay[bl];
+ set_wdqs(ch, rk, bl, ((final_delay[ch][bl]) / num_ranks_enabled));
+ /* program WDQ timings based on WDQS (WDQ = WDQS - 32 PI) */
+ set_wdq(ch, rk, bl, ((final_delay[ch][bl]) / num_ranks_enabled) - QRTR_CLK);
+ }
+#endif
+#endif
+ }
+ }
+ }
+ }
+
+ LEAVEFN();
+}
+
+void prog_page_ctrl(struct mrc_params *mrc_params)
+{
+ u32 dpmc0;
+
+ ENTERFN();
+
+ dpmc0 = msg_port_read(MEM_CTLR, DPMC0);
+ dpmc0 &= ~(BIT16 | BIT17 | BIT18);
+ dpmc0 |= (4 << 16);
+ dpmc0 |= BIT21;
+ msg_port_write(MEM_CTLR, DPMC0, dpmc0);
+}
+
+/*
+ * This function will perform the READ TRAINING Algorithm on all
+ * channels/ranks/byte_lanes simultaneously to minimize execution time.
+ *
+ * The idea here is to train the VREF and RDQS (and eventually RDQ) values
+ * to achieve maximum READ margins. The algorithm will first determine the
+ * X coordinate (RDQS setting). This is done by collapsing the VREF eye
+ * until we find a minimum required RDQS eye for VREF_MIN and VREF_MAX.
+ * Then we take the averages of the RDQS eye at VREF_MIN and VREF_MAX,
+ * then average those; this will be the final X coordinate. The algorithm
+ * will then determine the Y coordinate (VREF setting). This is done by
+ * collapsing the RDQS eye until we find a minimum required VREF eye for
+ * RDQS_MIN and RDQS_MAX. Then we take the averages of the VREF eye at
+ * RDQS_MIN and RDQS_MAX, then average those; this will be the final Y
+ * coordinate.
+ *
+ * NOTE: this algorithm assumes the eye curves have a one-to-one relationship,
+ * meaning for each X the curve has only one Y and vice-a-versa.
+ */
+void rd_train(struct mrc_params *mrc_params)
+{
+ uint8_t ch; /* channel counter */
+ uint8_t rk; /* rank counter */
+ uint8_t bl; /* byte lane counter */
+ uint8_t bl_divisor = (mrc_params->channel_width == X16) ? 2 : 1;
+#ifdef BACKUP_RDQS
+#else
+ uint8_t side_x; /* tracks LEFT/RIGHT approach vectors */
+ uint8_t side_y; /* tracks BOTTOM/TOP approach vectors */
+ /* X coordinate data (passing RDQS values) for approach vectors */
+ uint8_t x_coordinate[2][2][NUM_CHANNELS][NUM_RANKS][NUM_BYTE_LANES];
+ /* Y coordinate data (passing VREF values) for approach vectors */
+ uint8_t y_coordinate[2][2][NUM_CHANNELS][NUM_BYTE_LANES];
+ /* centered X (RDQS) */
+ uint8_t x_center[NUM_CHANNELS][NUM_RANKS][NUM_BYTE_LANES];
+ /* centered Y (VREF) */
+ uint8_t y_center[NUM_CHANNELS][NUM_BYTE_LANES];
+ uint32_t address; /* target address for check_bls_ex() */
+ uint32_t result; /* result of check_bls_ex() */
+ uint32_t bl_mask; /* byte lane mask for result checking */
+#ifdef R2R_SHARING
+ /* used to find placement for rank2rank sharing configs */
+ uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES];
+ /* used to find placement for rank2rank sharing configs */
+ uint32_t num_ranks_enabled = 0;
+#endif
+#endif
+
+ /* rd_train starts */
+ mrc_post_code(0x07, 0x00);
+
+ ENTERFN();
+
+#ifdef BACKUP_RDQS
+ for (ch = 0; ch < NUM_CHANNELS; ch++) {
+ if (mrc_params->channel_enables & (1 << ch)) {
+ for (rk = 0; rk < NUM_RANKS; rk++) {
+ if (mrc_params->rank_enables & (1 << rk)) {
+ for (bl = 0;
+ bl < (NUM_BYTE_LANES / bl_divisor);
+ bl++) {
+ set_rdqs(ch, rk, bl, ddr_rdqs[PLATFORM_ID]);
+ }
+ }
+ }
+ }
+ }
+#else
+ /* initialize x/y_coordinate arrays */
+ for (ch = 0; ch < NUM_CHANNELS; ch++) {
+ if (mrc_params->channel_enables & (1 << ch)) {
+ for (rk = 0; rk < NUM_RANKS; rk++) {
+ if (mrc_params->rank_enables & (1 << rk)) {
+ for (bl = 0;
+ bl < (NUM_BYTE_LANES / bl_divisor);
+ bl++) {
+ /* x_coordinate */
+ x_coordinate[L][B][ch][rk][bl] = RDQS_MIN;
+ x_coordinate[R][B][ch][rk][bl] = RDQS_MAX;
+ x_coordinate[L][T][ch][rk][bl] = RDQS_MIN;
+ x_coordinate[R][T][ch][rk][bl] = RDQS_MAX;
+ /* y_coordinate */
+ y_coordinate[L][B][ch][bl] = VREF_MIN;
+ y_coordinate[R][B][ch][bl] = VREF_MIN;
+ y_coordinate[L][T][ch][bl] = VREF_MAX;
+ y_coordinate[R][T][ch][bl] = VREF_MAX;
+ }
+ }
+ }
+ }
+ }
+
+ /* initialize other variables */
+ bl_mask = byte_lane_mask(mrc_params);
+ address = get_addr(0, 0);
+
+#ifdef R2R_SHARING
+ /* need to set "final_delay[][]" elements to "0" */
+ memset((void *)(final_delay), 0x00, (size_t)sizeof(final_delay));
+#endif
+
+ /* look for passing coordinates */
+ for (side_y = B; side_y <= T; side_y++) {
+ for (side_x = L; side_x <= R; side_x++) {
+ mrc_post_code(0x07, (0x10 + (side_y * 2) + (side_x)));
+
+ /* find passing values */
+ for (ch = 0; ch < NUM_CHANNELS; ch++) {
+ if (mrc_params->channel_enables & (0x1 << ch)) {
+ for (rk = 0; rk < NUM_RANKS; rk++) {
+ if (mrc_params->rank_enables &
+ (0x1 << rk)) {
+ /* set x/y_coordinate search starting settings */
+ for (bl = 0;
+ bl < (NUM_BYTE_LANES / bl_divisor);
+ bl++) {
+ set_rdqs(ch, rk, bl,
+ x_coordinate[side_x][side_y][ch][rk][bl]);
+ set_vref(ch, bl,
+ y_coordinate[side_x][side_y][ch][bl]);
+ }
+
+ /* get an address in the target channel/rank */
+ address = get_addr(ch, rk);
+
+ /* request HTE reconfiguration */
+ mrc_params->hte_setup = 1;
+
+ /* test the settings */
+ do {
+ /* result[07:00] == failing byte lane (MAX 8) */
+ result = check_bls_ex(mrc_params, address);
+
+ /* check for failures */
+ if (result & 0xFF) {
+ /* at least 1 byte lane failed */
+ for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
+ if (result &
+ (bl_mask << bl)) {
+ /* adjust the RDQS values accordingly */
+ if (side_x == L)
+ x_coordinate[L][side_y][ch][rk][bl] += RDQS_STEP;
+ else
+ x_coordinate[R][side_y][ch][rk][bl] -= RDQS_STEP;
+
+ /* check that we haven't closed the RDQS_EYE too much */
+ if ((x_coordinate[L][side_y][ch][rk][bl] > (RDQS_MAX - MIN_RDQS_EYE)) ||
+ (x_coordinate[R][side_y][ch][rk][bl] < (RDQS_MIN + MIN_RDQS_EYE)) ||
+ (x_coordinate[L][side_y][ch][rk][bl] ==
+ x_coordinate[R][side_y][ch][rk][bl])) {
+ /*
+ * not enough RDQS margin available at this VREF
+ * update VREF values accordingly
+ */
+ if (side_y == B)
+ y_coordinate[side_x][B][ch][bl] += VREF_STEP;
+ else
+ y_coordinate[side_x][T][ch][bl] -= VREF_STEP;
+
+ /* check that we haven't closed the VREF_EYE too much */
+ if ((y_coordinate[side_x][B][ch][bl] > (VREF_MAX - MIN_VREF_EYE)) ||
+ (y_coordinate[side_x][T][ch][bl] < (VREF_MIN + MIN_VREF_EYE)) ||
+ (y_coordinate[side_x][B][ch][bl] == y_coordinate[side_x][T][ch][bl])) {
+ /* VREF_EYE collapsed below MIN_VREF_EYE */
+ training_message(ch, rk, bl);
+ mrc_post_code(0xEE, (0x70 + (side_y * 2) + (side_x)));
+ } else {
+ /* update the VREF setting */
+ set_vref(ch, bl, y_coordinate[side_x][side_y][ch][bl]);
+ /* reset the X coordinate to begin the search at the new VREF */
+ x_coordinate[side_x][side_y][ch][rk][bl] =
+ (side_x == L) ? (RDQS_MIN) : (RDQS_MAX);
+ }
+ }
+
+ /* update the RDQS setting */
+ set_rdqs(ch, rk, bl, x_coordinate[side_x][side_y][ch][rk][bl]);
+ }
+ }
+ }
+ } while (result & 0xFF);
+ }
+ }
+ }
+ }
+ }
+ }
+
+ mrc_post_code(0x07, 0x20);
+
+ /* find final RDQS (X coordinate) & final VREF (Y coordinate) */
+ for (ch = 0; ch < NUM_CHANNELS; ch++) {
+ if (mrc_params->channel_enables & (1 << ch)) {
+ for (rk = 0; rk < NUM_RANKS; rk++) {
+ if (mrc_params->rank_enables & (1 << rk)) {
+ for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
+ uint32_t temp1;
+ uint32_t temp2;
+
+ /* x_coordinate */
+ DPF(D_INFO,
+ "RDQS T/B eye rank%d lane%d : %d-%d %d-%d\n",
+ rk, bl,
+ x_coordinate[L][T][ch][rk][bl],
+ x_coordinate[R][T][ch][rk][bl],
+ x_coordinate[L][B][ch][rk][bl],
+ x_coordinate[R][B][ch][rk][bl]);
+
+ /* average the TOP side LEFT & RIGHT values */
+ temp1 = (x_coordinate[R][T][ch][rk][bl] + x_coordinate[L][T][ch][rk][bl]) / 2;
+ /* average the BOTTOM side LEFT & RIGHT values */
+ temp2 = (x_coordinate[R][B][ch][rk][bl] + x_coordinate[L][B][ch][rk][bl]) / 2;
+ /* average the above averages */
+ x_center[ch][rk][bl] = (uint8_t) ((temp1 + temp2) / 2);
+
+ /* y_coordinate */
+ DPF(D_INFO,
+ "VREF R/L eye lane%d : %d-%d %d-%d\n",
+ bl,
+ y_coordinate[R][B][ch][bl],
+ y_coordinate[R][T][ch][bl],
+ y_coordinate[L][B][ch][bl],
+ y_coordinate[L][T][ch][bl]);
+
+ /* average the RIGHT side TOP & BOTTOM values */
+ temp1 = (y_coordinate[R][T][ch][bl] + y_coordinate[R][B][ch][bl]) / 2;
+ /* average the LEFT side TOP & BOTTOM values */
+ temp2 = (y_coordinate[L][T][ch][bl] + y_coordinate[L][B][ch][bl]) / 2;
+ /* average the above averages */
+ y_center[ch][bl] = (uint8_t) ((temp1 + temp2) / 2);
+ }
+ }
+ }
+ }
+ }
+
+#ifdef RX_EYE_CHECK
+ /* perform an eye check */
+ for (side_y = B; side_y <= T; side_y++) {
+ for (side_x = L; side_x <= R; side_x++) {
+ mrc_post_code(0x07, (0x30 + (side_y * 2) + (side_x)));
+
+ /* update the settings for the eye check */
+ for (ch = 0; ch < NUM_CHANNELS; ch++) {
+ if (mrc_params->channel_enables & (1 << ch)) {
+ for (rk = 0; rk < NUM_RANKS; rk++) {
+ if (mrc_params->rank_enables & (1 << rk)) {
+ for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
+ if (side_x == L)
+ set_rdqs(ch, rk, bl, (x_center[ch][rk][bl] - (MIN_RDQS_EYE / 2)));
+ else
+ set_rdqs(ch, rk, bl, (x_center[ch][rk][bl] + (MIN_RDQS_EYE / 2)));
+
+ if (side_y == B)
+ set_vref(ch, bl, (y_center[ch][bl] - (MIN_VREF_EYE / 2)));
+ else
+ set_vref(ch, bl, (y_center[ch][bl] + (MIN_VREF_EYE / 2)));
+ }
+ }
+ }
+ }
+ }
+
+ /* request HTE reconfiguration */
+ mrc_params->hte_setup = 1;
+
+ /* check the eye */
+ if (check_bls_ex(mrc_params, address) & 0xFF) {
+ /* one or more byte lanes failed */
+ mrc_post_code(0xEE, (0x74 + (side_x * 2) + (side_y)));
+ }
+ }
+ }
+#endif
+
+ mrc_post_code(0x07, 0x40);
+
+ /* set final placements */
+ for (ch = 0; ch < NUM_CHANNELS; ch++) {
+ if (mrc_params->channel_enables & (1 << ch)) {
+ for (rk = 0; rk < NUM_RANKS; rk++) {
+ if (mrc_params->rank_enables & (1 << rk)) {
+#ifdef R2R_SHARING
+ /* increment "num_ranks_enabled" */
+ num_ranks_enabled++;
+#endif
+ for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
+ /* x_coordinate */
+#ifdef R2R_SHARING
+ final_delay[ch][bl] += x_center[ch][rk][bl];
+ set_rdqs(ch, rk, bl, ((final_delay[ch][bl]) / num_ranks_enabled));
+#else
+ set_rdqs(ch, rk, bl, x_center[ch][rk][bl]);
+#endif
+ /* y_coordinate */
+ set_vref(ch, bl, y_center[ch][bl]);
+ }
+ }
+ }
+ }
+ }
+#endif
+
+ LEAVEFN();
+}
+
+/*
+ * This function will perform the WRITE TRAINING Algorithm on all
+ * channels/ranks/byte_lanes simultaneously to minimize execution time.
+ *
+ * The idea here is to train the WDQ timings to achieve maximum WRITE margins.
+ * The algorithm will start with WDQ at the current WDQ setting (tracks WDQS
+ * in WR_LVL) +/- 32 PIs (+/- 1/4 CLK) and collapse the eye until all data
+ * patterns pass. This is because WDQS will be aligned to WCLK by the
+ * Write Leveling algorithm and WDQ will only ever have a 1/2 CLK window
+ * of validity.
+ */
+void wr_train(struct mrc_params *mrc_params)
+{
+ uint8_t ch; /* channel counter */
+ uint8_t rk; /* rank counter */
+ uint8_t bl; /* byte lane counter */
+ uint8_t bl_divisor = (mrc_params->channel_width == X16) ? 2 : 1;
+#ifdef BACKUP_WDQ
+#else
+ uint8_t side; /* LEFT/RIGHT side indicator (0=L, 1=R) */
+ uint32_t temp; /* temporary DWORD */
+ /* 2 arrays, for L & R side passing delays */
+ uint32_t delay[2][NUM_CHANNELS][NUM_RANKS][NUM_BYTE_LANES];
+ uint32_t address; /* target address for check_bls_ex() */
+ uint32_t result; /* result of check_bls_ex() */
+ uint32_t bl_mask; /* byte lane mask for result checking */
+#ifdef R2R_SHARING
+ /* used to find placement for rank2rank sharing configs */
+ uint32_t final_delay[NUM_CHANNELS][NUM_BYTE_LANES];
+ /* used to find placement for rank2rank sharing configs */
+ uint32_t num_ranks_enabled = 0;
+#endif
+#endif
+
+ /* wr_train starts */
+ mrc_post_code(0x08, 0x00);
+
+ ENTERFN();
+
+#ifdef BACKUP_WDQ
+ for (ch = 0; ch < NUM_CHANNELS; ch++) {
+ if (mrc_params->channel_enables & (1 << ch)) {
+ for (rk = 0; rk < NUM_RANKS; rk++) {
+ if (mrc_params->rank_enables & (1 << rk)) {
+ for (bl = 0;
+ bl < (NUM_BYTE_LANES / bl_divisor);
+ bl++) {
+ set_wdq(ch, rk, bl, ddr_wdq[PLATFORM_ID]);
+ }
+ }
+ }
+ }
+ }
+#else
+ /* initialize "delay" */
+ for (ch = 0; ch < NUM_CHANNELS; ch++) {
+ if (mrc_params->channel_enables & (1 << ch)) {
+ for (rk = 0; rk < NUM_RANKS; rk++) {
+ if (mrc_params->rank_enables & (1 << rk)) {
+ for (bl = 0;
+ bl < (NUM_BYTE_LANES / bl_divisor);
+ bl++) {
+ /*
+ * want to start with
+ * WDQ = (WDQS - QRTR_CLK)
+ * +/- QRTR_CLK
+ */
+ temp = get_wdqs(ch, rk, bl) - QRTR_CLK;
+ delay[L][ch][rk][bl] = temp - QRTR_CLK;
+ delay[R][ch][rk][bl] = temp + QRTR_CLK;
+ }
+ }
+ }
+ }
+ }
+
+ /* initialize other variables */
+ bl_mask = byte_lane_mask(mrc_params);
+ address = get_addr(0, 0);
+
+#ifdef R2R_SHARING
+ /* need to set "final_delay[][]" elements to "0" */
+ memset((void *)(final_delay), 0x00, (size_t)sizeof(final_delay));
+#endif
+
+ /*
+ * start algorithm on the LEFT side and train each channel/bl
+ * until no failures are observed, then repeat for the RIGHT side.
+ */
+ for (side = L; side <= R; side++) {
+ mrc_post_code(0x08, (0x10 + (side)));
+
+ /* set starting values */
+ for (ch = 0; ch < NUM_CHANNELS; ch++) {
+ if (mrc_params->channel_enables & (1 << ch)) {
+ for (rk = 0; rk < NUM_RANKS; rk++) {
+ if (mrc_params->rank_enables &
+ (1 << rk)) {
+ for (bl = 0;
+ bl < (NUM_BYTE_LANES / bl_divisor);
+ bl++) {
+ set_wdq(ch, rk, bl, delay[side][ch][rk][bl]);
+ }
+ }
+ }
+ }
+ }
+
+ /* find passing values */
+ for (ch = 0; ch < NUM_CHANNELS; ch++) {
+ if (mrc_params->channel_enables & (1 << ch)) {
+ for (rk = 0; rk < NUM_RANKS; rk++) {
+ if (mrc_params->rank_enables &
+ (1 << rk)) {
+ /* get an address in the target channel/rank */
+ address = get_addr(ch, rk);
+
+ /* request HTE reconfiguration */
+ mrc_params->hte_setup = 1;
+
+ /* check the settings */
+ do {
+ /* result[07:00] == failing byte lane (MAX 8) */
+ result = check_bls_ex(mrc_params, address);
+ /* check for failures */
+ if (result & 0xFF) {
+ /* at least 1 byte lane failed */
+ for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
+ if (result &
+ (bl_mask << bl)) {
+ if (side == L)
+ delay[L][ch][rk][bl] += WDQ_STEP;
+ else
+ delay[R][ch][rk][bl] -= WDQ_STEP;
+
+ /* check for algorithm failure */
+ if (delay[L][ch][rk][bl] != delay[R][ch][rk][bl]) {
+ /*
+ * margin available
+ * update delay setting
+ */
+ set_wdq(ch, rk, bl,
+ delay[side][ch][rk][bl]);
+ } else {
+ /*
+ * no margin available
+ * notify the user and halt
+ */
+ training_message(ch, rk, bl);
+ mrc_post_code(0xEE, (0x80 + side));
+ }
+ }
+ }
+ }
+ /* stop when all byte lanes pass */
+ } while (result & 0xFF);
+ }
+ }
+ }
+ }
+ }
+
+ /* program WDQ to the middle of passing window */
+ for (ch = 0; ch < NUM_CHANNELS; ch++) {
+ if (mrc_params->channel_enables & (1 << ch)) {
+ for (rk = 0; rk < NUM_RANKS; rk++) {
+ if (mrc_params->rank_enables & (1 << rk)) {
+#ifdef R2R_SHARING
+ /* increment "num_ranks_enabled" */
+ num_ranks_enabled++;
+#endif
+ for (bl = 0; bl < (NUM_BYTE_LANES / bl_divisor); bl++) {
+ DPF(D_INFO,
+ "WDQ eye rank%d lane%d : %d-%d\n",
+ rk, bl,
+ delay[L][ch][rk][bl],
+ delay[R][ch][rk][bl]);
+
+ temp = (delay[R][ch][rk][bl] + delay[L][ch][rk][bl]) / 2;
+
+#ifdef R2R_SHARING
+ final_delay[ch][bl] += temp;
+ set_wdq(ch, rk, bl,
+ ((final_delay[ch][bl]) / num_ranks_enabled));
+#else
+ set_wdq(ch, rk, bl, temp);
+#endif
+ }
+ }
+ }
+ }
+ }
+#endif
+
+ LEAVEFN();
+}
+
+/*
+ * This function will store relevant timing data
+ *
+ * This data will be used on subsequent boots to speed up boot times
+ * and is required for Suspend To RAM capabilities.
+ */
+void store_timings(struct mrc_params *mrc_params)
+{
+ uint8_t ch, rk, bl;
+ struct mrc_timings *mt = &mrc_params->timings;
+
+ for (ch = 0; ch < NUM_CHANNELS; ch++) {
+ for (rk = 0; rk < NUM_RANKS; rk++) {
+ for (bl = 0; bl < NUM_BYTE_LANES; bl++) {
+ mt->rcvn[ch][rk][bl] = get_rcvn(ch, rk, bl);
+ mt->rdqs[ch][rk][bl] = get_rdqs(ch, rk, bl);
+ mt->wdqs[ch][rk][bl] = get_wdqs(ch, rk, bl);
+ mt->wdq[ch][rk][bl] = get_wdq(ch, rk, bl);
+
+ if (rk == 0)
+ mt->vref[ch][bl] = get_vref(ch, bl);
+ }
+
+ mt->wctl[ch][rk] = get_wctl(ch, rk);
+ }
+
+ mt->wcmd[ch] = get_wcmd(ch);
+ }
+
+ /* need to save for a case of changing frequency after warm reset */
+ mt->ddr_speed = mrc_params->ddr_speed;
+}
+
+/*
+ * The purpose of this function is to ensure the SEC comes out of reset
+ * and IA initiates the SEC enabling Memory Scrambling.
+ */
+void enable_scrambling(struct mrc_params *mrc_params)
+{
+ uint32_t lfsr = 0;
+ uint8_t i;
+
+ if (mrc_params->scrambling_enables == 0)
+ return;
+
+ ENTERFN();
+
+ /* 32 bit seed is always stored in BIOS NVM */
+ lfsr = mrc_params->timings.scrambler_seed;
+
+ if (mrc_params->boot_mode == BM_COLD) {
+ /*
+ * factory value is 0 and in first boot,
+ * a clock based seed is loaded.
+ */
+ if (lfsr == 0) {
+ /*
+ * get seed from system clock
+ * and make sure it is not all 1's
+ */
+ lfsr = rdtsc() & 0x0FFFFFFF;
+ } else {
+ /*
+ * Need to replace scrambler
+ *
+ * get next 32bit LFSR 16 times which is the last
+ * part of the previous scrambler vector
+ */
+ for (i = 0; i < 16; i++)
+ lfsr32(&lfsr);
+ }
+
+ /* save new seed */
+ mrc_params->timings.scrambler_seed = lfsr;
+ }
+
+ /*
+ * In warm boot or S3 exit, we have the previous seed.
+ * In cold boot, we have the last 32bit LFSR which is the new seed.
+ */
+ lfsr32(&lfsr); /* shift to next value */
+ msg_port_write(MEM_CTLR, SCRMSEED, (lfsr & 0x0003FFFF));
+
+ for (i = 0; i < 2; i++)
+ msg_port_write(MEM_CTLR, SCRMLO + i, (lfsr & 0xAAAAAAAA));
+
+ LEAVEFN();
+}
+
+/*
+ * Configure MCU Power Management Control Register
+ * and Scheduler Control Register
+ */
+void prog_ddr_control(struct mrc_params *mrc_params)
+{
+ u32 dsch;
+ u32 dpmc0;
+
+ ENTERFN();
+
+ dsch = msg_port_read(MEM_CTLR, DSCH);
+ dsch &= ~(BIT8 | BIT9 | BIT12);
+ msg_port_write(MEM_CTLR, DSCH, dsch);
+
+ dpmc0 = msg_port_read(MEM_CTLR, DPMC0);
+ dpmc0 &= ~BIT25;
+ dpmc0 |= (mrc_params->power_down_disable << 25);
+ dpmc0 &= ~BIT24;
+ dpmc0 &= ~(BIT16 | BIT17 | BIT18);
+ dpmc0 |= (4 << 16);
+ dpmc0 |= BIT21;
+ msg_port_write(MEM_CTLR, DPMC0, dpmc0);
+
+ /* CMDTRIST = 2h - CMD/ADDR are tristated when no valid command */
+ mrc_write_mask(MEM_CTLR, DPMC1, 2 << 4, BIT4 | BIT5);
+
+ LEAVEFN();
+}
+
+/*
+ * After training complete configure MCU Rank Population Register
+ * specifying: ranks enabled, device width, density, address mode
+ */
+void prog_dra_drb(struct mrc_params *mrc_params)
+{
+ u32 drp;
+ u32 dco;
+ u8 density = mrc_params->params.density;
+
+ ENTERFN();
+
+ dco = msg_port_read(MEM_CTLR, DCO);
+ dco &= ~BIT31;
+ msg_port_write(MEM_CTLR, DCO, dco);
+
+ drp = 0;
+ if (mrc_params->rank_enables & 1)
+ drp |= BIT0;
+ if (mrc_params->rank_enables & 2)
+ drp |= BIT1;
+ if (mrc_params->dram_width == X16) {
+ drp |= (1 << 4);
+ drp |= (1 << 9);
+ }
+
+ /*
+ * Density encoding in struct dram_params: 0=512Mb, 1=Gb, 2=2Gb, 3=4Gb
+ * has to be mapped RANKDENSx encoding (0=1Gb)
+ */
+ if (density == 0)
+ density = 4;
+
+ drp |= ((density - 1) << 6);
+ drp |= ((density - 1) << 11);
+
+ /* Address mode can be overwritten if ECC enabled */
+ drp |= (mrc_params->address_mode << 14);
+
+ msg_port_write(MEM_CTLR, DRP, drp);
+
+ dco &= ~BIT28;
+ dco |= BIT31;
+ msg_port_write(MEM_CTLR, DCO, dco);
+
+ LEAVEFN();
+}
+
+/* Send DRAM wake command */
+void perform_wake(struct mrc_params *mrc_params)
+{
+ ENTERFN();
+
+ dram_wake_command();
+
+ LEAVEFN();
+}
+
+/*
+ * Configure refresh rate and short ZQ calibration interval
+ * Activate dynamic self refresh
+ */
+void change_refresh_period(struct mrc_params *mrc_params)
+{
+ u32 drfc;
+ u32 dcal;
+ u32 dpmc0;
+
+ ENTERFN();
+
+ drfc = msg_port_read(MEM_CTLR, DRFC);
+ drfc &= ~(BIT12 | BIT13 | BIT14);
+ drfc |= (mrc_params->refresh_rate << 12);
+ drfc |= BIT21;
+ msg_port_write(MEM_CTLR, DRFC, drfc);
+
+ dcal = msg_port_read(MEM_CTLR, DCAL);
+ dcal &= ~(BIT8 | BIT9 | BIT10);
+ dcal |= (3 << 8); /* 63ms */
+ msg_port_write(MEM_CTLR, DCAL, dcal);
+
+ dpmc0 = msg_port_read(MEM_CTLR, DPMC0);
+ dpmc0 |= (BIT23 | BIT29);
+ msg_port_write(MEM_CTLR, DPMC0, dpmc0);
+
+ LEAVEFN();
+}
+
+/*
+ * Configure DDRPHY for Auto-Refresh, Periodic Compensations,
+ * Dynamic Diff-Amp, ZQSPERIOD, Auto-Precharge, CKE Power-Down
+ */
+void set_auto_refresh(struct mrc_params *mrc_params)
+{
+ uint32_t channel;
+ uint32_t rank;
+ uint32_t bl;
+ uint32_t bl_divisor = 1;
+ uint32_t temp;
+
+ ENTERFN();
+
+ /*
+ * Enable Auto-Refresh, Periodic Compensations, Dynamic Diff-Amp,
+ * ZQSPERIOD, Auto-Precharge, CKE Power-Down
+ */
+ for (channel = 0; channel < NUM_CHANNELS; channel++) {
+ if (mrc_params->channel_enables & (1 << channel)) {
+ /* Enable Periodic RCOMPS */
+ mrc_alt_write_mask(DDRPHY, CMPCTRL, BIT1, BIT1);
+
+ /* Enable Dynamic DiffAmp & Set Read ODT Value */
+ switch (mrc_params->rd_odt_value) {
+ case 0:
+ temp = 0x3F; /* OFF */
+ break;
+ default:
+ temp = 0x00; /* Auto */
+ break;
+ }
+
+ for (bl = 0; bl < ((NUM_BYTE_LANES / bl_divisor) / 2); bl++) {
+ /* Override: DIFFAMP, ODT */
+ mrc_alt_write_mask(DDRPHY,
+ (B0OVRCTL + (bl * DDRIODQ_BL_OFFSET) +
+ (channel * DDRIODQ_CH_OFFSET)),
+ (0x00 << 16) | (temp << 10),
+ (BIT21 | BIT20 | BIT19 | BIT18 |
+ BIT17 | BIT16 | BIT15 | BIT14 |
+ BIT13 | BIT12 | BIT11 | BIT10));
+
+ /* Override: DIFFAMP, ODT */
+ mrc_alt_write_mask(DDRPHY,
+ (B1OVRCTL + (bl * DDRIODQ_BL_OFFSET) +
+ (channel * DDRIODQ_CH_OFFSET)),
+ (0x00 << 16) | (temp << 10),
+ (BIT21 | BIT20 | BIT19 | BIT18 |
+ BIT17 | BIT16 | BIT15 | BIT14 |
+ BIT13 | BIT12 | BIT11 | BIT10));
+ }
+
+ /* Issue ZQCS command */
+ for (rank = 0; rank < NUM_RANKS; rank++) {
+ if (mrc_params->rank_enables & (1 << rank))
+ dram_init_command(DCMD_ZQCS(rank));
+ }
+ }
+ }
+
+ clear_pointers();
+
+ LEAVEFN();
+}
+
+/*
+ * Depending on configuration enables ECC support
+ *
+ * Available memory size is decreased, and updated with 0s
+ * in order to clear error status. Address mode 2 forced.
+ */
+void ecc_enable(struct mrc_params *mrc_params)
+{
+ u32 drp;
+ u32 dsch;
+ u32 ecc_ctrl;
+
+ if (mrc_params->ecc_enables == 0)
+ return;
+
+ ENTERFN();
+
+ /* Configuration required in ECC mode */
+ drp = msg_port_read(MEM_CTLR, DRP);
+ drp &= ~(BIT14 | BIT15);
+ drp |= BIT15;
+ drp |= BIT13;
+ msg_port_write(MEM_CTLR, DRP, drp);
+
+ /* Disable new request bypass */
+ dsch = msg_port_read(MEM_CTLR, DSCH);
+ dsch |= BIT12;
+ msg_port_write(MEM_CTLR, DSCH, dsch);
+
+ /* Enable ECC */
+ ecc_ctrl = (BIT0 | BIT1 | BIT17);
+ msg_port_write(MEM_CTLR, DECCCTRL, ecc_ctrl);
+
+ /* Assume 8 bank memory, one bank is gone for ECC */
+ mrc_params->mem_size -= mrc_params->mem_size / 8;
+
+ /* For S3 resume memory content has to be preserved */
+ if (mrc_params->boot_mode != BM_S3) {
+ select_hte();
+ hte_mem_init(mrc_params, MRC_MEM_INIT);
+ select_mem_mgr();
+ }
+
+ LEAVEFN();
+}
+
+/*
+ * Execute memory test
+ * if error detected it is indicated in mrc_params->status
+ */
+void memory_test(struct mrc_params *mrc_params)
+{
+ uint32_t result = 0;
+
+ ENTERFN();
+
+ select_hte();
+ result = hte_mem_init(mrc_params, MRC_MEM_TEST);
+ select_mem_mgr();
+
+ DPF(D_INFO, "Memory test result %x\n", result);
+ mrc_params->status = ((result == 0) ? MRC_SUCCESS : MRC_E_MEMTEST);
+ LEAVEFN();
+}
+
+/* Lock MCU registers at the end of initialization sequence */
+void lock_registers(struct mrc_params *mrc_params)
+{
+ u32 dco;
+
+ ENTERFN();
+
+ dco = msg_port_read(MEM_CTLR, DCO);
+ dco &= ~(BIT28 | BIT29);
+ dco |= (BIT0 | BIT8);
+ msg_port_write(MEM_CTLR, DCO, dco);
+
+ LEAVEFN();
+}