From: Michael Walle Date: Tue, 17 Dec 2019 23:09:58 +0000 (+0100) Subject: spi: nxp_fspi: new driver for the FlexSPI controller X-Git-Tag: v2025.01-rc5-pxa1908~2586^2~11 X-Git-Url: http://git.dujemihanovic.xyz/%22http:/www.sics.se/static/%7B%7B%20%24.Site.BaseURL%20%7D%7Dposts/index.xml?a=commitdiff_plain;h=383fded70c4f14370bc5525bdb9f547393876e31;p=u-boot.git spi: nxp_fspi: new driver for the FlexSPI controller This is a port of the kernel's spi-nxp-fspi driver. It uses the new spi-mem interface and does not expose the more generic spi-xfer interface. The source was taken from the v5.3-rc3 tag. The port was straightforward: - remove the interrupt handling and the completion by busy polling the controller - remove locks - move the setup of the memory windows into claim_bus() - move the setup of the speed into set_speed() - port the device tree bindings from the original fspi_probe() to ofdata_to_platdata() There were only some style change fixes, no change in any logic. For example, there are busy loops where the return code is not handled correctly, eg. only prints a warning with WARN_ON(). This port intentionally left most functions unchanged to ease future bugfixes. This was tested on a custom LS1028A board. Because the LS1028A doesn't have proper clock framework support, changing the clock speed was not tested. This also means that it is not possible to change the SPI speed on LS1028A for now (neither is it possible in the linux driver). Signed-off-by: Michael Walle Reviewed-by: Jagan Teki Tested-by: Kuldeep Singh --- diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig index 73d1a69807..4166c6104e 100644 --- a/drivers/spi/Kconfig +++ b/drivers/spi/Kconfig @@ -192,6 +192,13 @@ config MVEBU_A3700_SPI used to access the SPI NOR flash on platforms embedding this Marvell IP core. +config NXP_FSPI + bool "NXP FlexSPI driver" + depends on SPI_MEM + help + Enable the NXP FlexSPI (FSPI) driver. This driver can be used to + access the SPI NOR flash on platforms embedding this NXP IP core. + config PIC32_SPI bool "Microchip PIC32 SPI driver" depends on MACH_PIC32 diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile index ae4f2958f8..52462e19a3 100644 --- a/drivers/spi/Makefile +++ b/drivers/spi/Makefile @@ -43,6 +43,7 @@ obj-$(CONFIG_MSCC_BB_SPI) += mscc_bb_spi.o obj-$(CONFIG_MVEBU_A3700_SPI) += mvebu_a3700_spi.o obj-$(CONFIG_MXC_SPI) += mxc_spi.o obj-$(CONFIG_MXS_SPI) += mxs_spi.o +obj-$(CONFIG_NXP_FSPI) += nxp_fspi.o obj-$(CONFIG_ATCSPI200_SPI) += atcspi200_spi.o obj-$(CONFIG_OMAP3_SPI) += omap3_spi.o obj-$(CONFIG_PIC32_SPI) += pic32_spi.o diff --git a/drivers/spi/nxp_fspi.c b/drivers/spi/nxp_fspi.c new file mode 100644 index 0000000000..a2fab7ad0a --- /dev/null +++ b/drivers/spi/nxp_fspi.c @@ -0,0 +1,996 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * NXP FlexSPI(FSPI) controller driver. + * + * Copyright (c) 2019 Michael Walle + * Copyright (c) 2019 NXP + * + * This driver was originally ported from the linux kernel v5.4-rc3, which had + * the following notes: + * + * FlexSPI is a flexsible SPI host controller which supports two SPI + * channels and up to 4 external devices. Each channel supports + * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional + * data lines). + * + * FlexSPI controller is driven by the LUT(Look-up Table) registers + * LUT registers are a look-up-table for sequences of instructions. + * A valid sequence consists of four LUT registers. + * Maximum 32 LUT sequences can be programmed simultaneously. + * + * LUTs are being created at run-time based on the commands passed + * from the spi-mem framework, thus using single LUT index. + * + * Software triggered Flash read/write access by IP Bus. + * + * Memory mapped read access by AHB Bus. + * + * Based on SPI MEM interface and spi-fsl-qspi.c driver. + * + * Author: + * Yogesh Narayan Gaur + * Boris Brezillon + * Frieder Schrempf + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/* + * The driver only uses one single LUT entry, that is updated on + * each call of exec_op(). Index 0 is preset at boot with a basic + * read operation, so let's use the last entry (31). + */ +#define SEQID_LUT 31 + +/* Registers used by the driver */ +#define FSPI_MCR0 0x00 +#define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24) +#define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16) +#define FSPI_MCR0_LEARN_EN BIT(15) +#define FSPI_MCR0_SCRFRUN_EN BIT(14) +#define FSPI_MCR0_OCTCOMB_EN BIT(13) +#define FSPI_MCR0_DOZE_EN BIT(12) +#define FSPI_MCR0_HSEN BIT(11) +#define FSPI_MCR0_SERCLKDIV BIT(8) +#define FSPI_MCR0_ATDF_EN BIT(7) +#define FSPI_MCR0_ARDF_EN BIT(6) +#define FSPI_MCR0_RXCLKSRC(x) ((x) << 4) +#define FSPI_MCR0_END_CFG(x) ((x) << 2) +#define FSPI_MCR0_MDIS BIT(1) +#define FSPI_MCR0_SWRST BIT(0) + +#define FSPI_MCR1 0x04 +#define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16) +#define FSPI_MCR1_AHB_TIMEOUT(x) (x) + +#define FSPI_MCR2 0x08 +#define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24) +#define FSPI_MCR2_SAMEDEVICEEN BIT(15) +#define FSPI_MCR2_CLRLRPHS BIT(14) +#define FSPI_MCR2_ABRDATSZ BIT(8) +#define FSPI_MCR2_ABRLEARN BIT(7) +#define FSPI_MCR2_ABR_READ BIT(6) +#define FSPI_MCR2_ABRWRITE BIT(5) +#define FSPI_MCR2_ABRDUMMY BIT(4) +#define FSPI_MCR2_ABR_MODE BIT(3) +#define FSPI_MCR2_ABRCADDR BIT(2) +#define FSPI_MCR2_ABRRADDR BIT(1) +#define FSPI_MCR2_ABR_CMD BIT(0) + +#define FSPI_AHBCR 0x0c +#define FSPI_AHBCR_RDADDROPT BIT(6) +#define FSPI_AHBCR_PREF_EN BIT(5) +#define FSPI_AHBCR_BUFF_EN BIT(4) +#define FSPI_AHBCR_CACH_EN BIT(3) +#define FSPI_AHBCR_CLRTXBUF BIT(2) +#define FSPI_AHBCR_CLRRXBUF BIT(1) +#define FSPI_AHBCR_PAR_EN BIT(0) + +#define FSPI_INTEN 0x10 +#define FSPI_INTEN_SCLKSBWR BIT(9) +#define FSPI_INTEN_SCLKSBRD BIT(8) +#define FSPI_INTEN_DATALRNFL BIT(7) +#define FSPI_INTEN_IPTXWE BIT(6) +#define FSPI_INTEN_IPRXWA BIT(5) +#define FSPI_INTEN_AHBCMDERR BIT(4) +#define FSPI_INTEN_IPCMDERR BIT(3) +#define FSPI_INTEN_AHBCMDGE BIT(2) +#define FSPI_INTEN_IPCMDGE BIT(1) +#define FSPI_INTEN_IPCMDDONE BIT(0) + +#define FSPI_INTR 0x14 +#define FSPI_INTR_SCLKSBWR BIT(9) +#define FSPI_INTR_SCLKSBRD BIT(8) +#define FSPI_INTR_DATALRNFL BIT(7) +#define FSPI_INTR_IPTXWE BIT(6) +#define FSPI_INTR_IPRXWA BIT(5) +#define FSPI_INTR_AHBCMDERR BIT(4) +#define FSPI_INTR_IPCMDERR BIT(3) +#define FSPI_INTR_AHBCMDGE BIT(2) +#define FSPI_INTR_IPCMDGE BIT(1) +#define FSPI_INTR_IPCMDDONE BIT(0) + +#define FSPI_LUTKEY 0x18 +#define FSPI_LUTKEY_VALUE 0x5AF05AF0 + +#define FSPI_LCKCR 0x1C + +#define FSPI_LCKER_LOCK 0x1 +#define FSPI_LCKER_UNLOCK 0x2 + +#define FSPI_BUFXCR_INVALID_MSTRID 0xE +#define FSPI_AHBRX_BUF0CR0 0x20 +#define FSPI_AHBRX_BUF1CR0 0x24 +#define FSPI_AHBRX_BUF2CR0 0x28 +#define FSPI_AHBRX_BUF3CR0 0x2C +#define FSPI_AHBRX_BUF4CR0 0x30 +#define FSPI_AHBRX_BUF5CR0 0x34 +#define FSPI_AHBRX_BUF6CR0 0x38 +#define FSPI_AHBRX_BUF7CR0 0x3C +#define FSPI_AHBRXBUF0CR7_PREF BIT(31) + +#define FSPI_AHBRX_BUF0CR1 0x40 +#define FSPI_AHBRX_BUF1CR1 0x44 +#define FSPI_AHBRX_BUF2CR1 0x48 +#define FSPI_AHBRX_BUF3CR1 0x4C +#define FSPI_AHBRX_BUF4CR1 0x50 +#define FSPI_AHBRX_BUF5CR1 0x54 +#define FSPI_AHBRX_BUF6CR1 0x58 +#define FSPI_AHBRX_BUF7CR1 0x5C + +#define FSPI_FLSHA1CR0 0x60 +#define FSPI_FLSHA2CR0 0x64 +#define FSPI_FLSHB1CR0 0x68 +#define FSPI_FLSHB2CR0 0x6C +#define FSPI_FLSHXCR0_SZ_KB 10 +#define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB) + +#define FSPI_FLSHA1CR1 0x70 +#define FSPI_FLSHA2CR1 0x74 +#define FSPI_FLSHB1CR1 0x78 +#define FSPI_FLSHB2CR1 0x7C +#define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16) +#define FSPI_FLSHXCR1_CAS(x) ((x) << 11) +#define FSPI_FLSHXCR1_WA BIT(10) +#define FSPI_FLSHXCR1_TCSH(x) ((x) << 5) +#define FSPI_FLSHXCR1_TCSS(x) (x) + +#define FSPI_FLSHA1CR2 0x80 +#define FSPI_FLSHA2CR2 0x84 +#define FSPI_FLSHB1CR2 0x88 +#define FSPI_FLSHB2CR2 0x8C +#define FSPI_FLSHXCR2_CLRINSP BIT(24) +#define FSPI_FLSHXCR2_AWRWAIT BIT(16) +#define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13 +#define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8 +#define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5 +#define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0 + +#define FSPI_IPCR0 0xA0 + +#define FSPI_IPCR1 0xA4 +#define FSPI_IPCR1_IPAREN BIT(31) +#define FSPI_IPCR1_SEQNUM_SHIFT 24 +#define FSPI_IPCR1_SEQID_SHIFT 16 +#define FSPI_IPCR1_IDATSZ(x) (x) + +#define FSPI_IPCMD 0xB0 +#define FSPI_IPCMD_TRG BIT(0) + +#define FSPI_DLPR 0xB4 + +#define FSPI_IPRXFCR 0xB8 +#define FSPI_IPRXFCR_CLR BIT(0) +#define FSPI_IPRXFCR_DMA_EN BIT(1) +#define FSPI_IPRXFCR_WMRK(x) ((x) << 2) + +#define FSPI_IPTXFCR 0xBC +#define FSPI_IPTXFCR_CLR BIT(0) +#define FSPI_IPTXFCR_DMA_EN BIT(1) +#define FSPI_IPTXFCR_WMRK(x) ((x) << 2) + +#define FSPI_DLLACR 0xC0 +#define FSPI_DLLACR_OVRDEN BIT(8) + +#define FSPI_DLLBCR 0xC4 +#define FSPI_DLLBCR_OVRDEN BIT(8) + +#define FSPI_STS0 0xE0 +#define FSPI_STS0_DLPHB(x) ((x) << 8) +#define FSPI_STS0_DLPHA(x) ((x) << 4) +#define FSPI_STS0_CMD_SRC(x) ((x) << 2) +#define FSPI_STS0_ARB_IDLE BIT(1) +#define FSPI_STS0_SEQ_IDLE BIT(0) + +#define FSPI_STS1 0xE4 +#define FSPI_STS1_IP_ERRCD(x) ((x) << 24) +#define FSPI_STS1_IP_ERRID(x) ((x) << 16) +#define FSPI_STS1_AHB_ERRCD(x) ((x) << 8) +#define FSPI_STS1_AHB_ERRID(x) (x) + +#define FSPI_AHBSPNST 0xEC +#define FSPI_AHBSPNST_DATLFT(x) ((x) << 16) +#define FSPI_AHBSPNST_BUFID(x) ((x) << 1) +#define FSPI_AHBSPNST_ACTIVE BIT(0) + +#define FSPI_IPRXFSTS 0xF0 +#define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16) +#define FSPI_IPRXFSTS_FILL(x) (x) + +#define FSPI_IPTXFSTS 0xF4 +#define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16) +#define FSPI_IPTXFSTS_FILL(x) (x) + +#define FSPI_RFDR 0x100 +#define FSPI_TFDR 0x180 + +#define FSPI_LUT_BASE 0x200 +#define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4) +#define FSPI_LUT_REG(idx) \ + (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4) + +/* register map end */ + +/* Instruction set for the LUT register. */ +#define LUT_STOP 0x00 +#define LUT_CMD 0x01 +#define LUT_ADDR 0x02 +#define LUT_CADDR_SDR 0x03 +#define LUT_MODE 0x04 +#define LUT_MODE2 0x05 +#define LUT_MODE4 0x06 +#define LUT_MODE8 0x07 +#define LUT_NXP_WRITE 0x08 +#define LUT_NXP_READ 0x09 +#define LUT_LEARN_SDR 0x0A +#define LUT_DATSZ_SDR 0x0B +#define LUT_DUMMY 0x0C +#define LUT_DUMMY_RWDS_SDR 0x0D +#define LUT_JMP_ON_CS 0x1F +#define LUT_CMD_DDR 0x21 +#define LUT_ADDR_DDR 0x22 +#define LUT_CADDR_DDR 0x23 +#define LUT_MODE_DDR 0x24 +#define LUT_MODE2_DDR 0x25 +#define LUT_MODE4_DDR 0x26 +#define LUT_MODE8_DDR 0x27 +#define LUT_WRITE_DDR 0x28 +#define LUT_READ_DDR 0x29 +#define LUT_LEARN_DDR 0x2A +#define LUT_DATSZ_DDR 0x2B +#define LUT_DUMMY_DDR 0x2C +#define LUT_DUMMY_RWDS_DDR 0x2D + +/* + * Calculate number of required PAD bits for LUT register. + * + * The pad stands for the number of IO lines [0:7]. + * For example, the octal read needs eight IO lines, + * so you should use LUT_PAD(8). This macro + * returns 3 i.e. use eight (2^3) IP lines for read. + */ +#define LUT_PAD(x) (fls(x) - 1) + +/* + * Macro for constructing the LUT entries with the following + * register layout: + * + * --------------------------------------------------- + * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | + * --------------------------------------------------- + */ +#define PAD_SHIFT 8 +#define INSTR_SHIFT 10 +#define OPRND_SHIFT 16 + +/* Macros for constructing the LUT register. */ +#define LUT_DEF(idx, ins, pad, opr) \ + ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \ + (opr)) << (((idx) % 2) * OPRND_SHIFT)) + +#define POLL_TOUT 5000 +#define NXP_FSPI_MAX_CHIPSELECT 4 + +struct nxp_fspi_devtype_data { + unsigned int rxfifo; + unsigned int txfifo; + unsigned int ahb_buf_size; + unsigned int quirks; + bool little_endian; +}; + +static const struct nxp_fspi_devtype_data lx2160a_data = { + .rxfifo = SZ_512, /* (64 * 64 bits) */ + .txfifo = SZ_1K, /* (128 * 64 bits) */ + .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ + .quirks = 0, + .little_endian = true, /* little-endian */ +}; + +struct nxp_fspi { + struct udevice *dev; + void __iomem *iobase; + void __iomem *ahb_addr; + u32 memmap_phy; + u32 memmap_phy_size; + struct clk clk, clk_en; + const struct nxp_fspi_devtype_data *devtype_data; +}; + +/* + * R/W functions for big- or little-endian registers: + * The FSPI controller's endianness is independent of + * the CPU core's endianness. So far, although the CPU + * core is little-endian the FSPI controller can use + * big-endian or little-endian. + */ +static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr) +{ + if (f->devtype_data->little_endian) + out_le32(addr, val); + else + out_be32(addr, val); +} + +static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr) +{ + if (f->devtype_data->little_endian) + return in_le32(addr); + else + return in_be32(addr); +} + +static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width) +{ + switch (width) { + case 1: + case 2: + case 4: + case 8: + return 0; + } + + return -ENOTSUPP; +} + +static bool nxp_fspi_supports_op(struct spi_slave *slave, + const struct spi_mem_op *op) +{ + struct nxp_fspi *f; + struct udevice *bus; + int ret; + + bus = slave->dev->parent; + f = dev_get_priv(bus); + + ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth); + + if (op->addr.nbytes) + ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth); + + if (op->dummy.nbytes) + ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth); + + if (op->data.nbytes) + ret |= nxp_fspi_check_buswidth(f, op->data.buswidth); + + if (ret) + return false; + + /* + * The number of address bytes should be equal to or less than 4 bytes. + */ + if (op->addr.nbytes > 4) + return false; + + /* + * If requested address value is greater than controller assigned + * memory mapped space, return error as it didn't fit in the range + * of assigned address space. + */ + if (op->addr.val >= f->memmap_phy_size) + return false; + + /* Max 64 dummy clock cycles supported */ + if (op->dummy.buswidth && + (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) + return false; + + /* Max data length, check controller limits and alignment */ + if (op->data.dir == SPI_MEM_DATA_IN && + (op->data.nbytes > f->devtype_data->ahb_buf_size || + (op->data.nbytes > f->devtype_data->rxfifo - 4 && + !IS_ALIGNED(op->data.nbytes, 8)))) + return false; + + if (op->data.dir == SPI_MEM_DATA_OUT && + op->data.nbytes > f->devtype_data->txfifo) + return false; + + return true; +} + +/* Instead of busy looping invoke readl_poll_timeout functionality. */ +static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base, + u32 mask, u32 delay_us, + u32 timeout_us, bool c) +{ + u32 reg; + + if (!f->devtype_data->little_endian) + mask = (u32)cpu_to_be32(mask); + + if (c) + return readl_poll_timeout(base, reg, (reg & mask), + timeout_us); + else + return readl_poll_timeout(base, reg, !(reg & mask), + timeout_us); +} + +/* + * If the slave device content being changed by Write/Erase, need to + * invalidate the AHB buffer. This can be achieved by doing the reset + * of controller after setting MCR0[SWRESET] bit. + */ +static inline void nxp_fspi_invalid(struct nxp_fspi *f) +{ + u32 reg; + int ret; + + reg = fspi_readl(f, f->iobase + FSPI_MCR0); + fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0); + + /* w1c register, wait unit clear */ + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, + FSPI_MCR0_SWRST, 0, POLL_TOUT, false); + WARN_ON(ret); +} + +static void nxp_fspi_prepare_lut(struct nxp_fspi *f, + const struct spi_mem_op *op) +{ + void __iomem *base = f->iobase; + u32 lutval[4] = {}; + int lutidx = 1, i; + + /* cmd */ + lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), + op->cmd.opcode); + + /* addr bytes */ + if (op->addr.nbytes) { + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR, + LUT_PAD(op->addr.buswidth), + op->addr.nbytes * 8); + lutidx++; + } + + /* dummy bytes, if needed */ + if (op->dummy.nbytes) { + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, + /* + * Due to FlexSPI controller limitation number of PAD for dummy + * buswidth needs to be programmed as equal to data buswidth. + */ + LUT_PAD(op->data.buswidth), + op->dummy.nbytes * 8 / + op->dummy.buswidth); + lutidx++; + } + + /* read/write data bytes */ + if (op->data.nbytes) { + lutval[lutidx / 2] |= LUT_DEF(lutidx, + op->data.dir == SPI_MEM_DATA_IN ? + LUT_NXP_READ : LUT_NXP_WRITE, + LUT_PAD(op->data.buswidth), + 0); + lutidx++; + } + + /* stop condition. */ + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); + + /* unlock LUT */ + fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); + fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR); + + /* fill LUT */ + for (i = 0; i < ARRAY_SIZE(lutval); i++) + fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i)); + + dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n", + op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]); + + /* lock LUT */ + fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); + fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR); +} + +#if CONFIG_IS_ENABLED(CONFIG_CLK) +static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f) +{ + int ret; + + ret = clk_enable(&f->clk_en); + if (ret) + return ret; + + ret = clk_enable(&f->clk); + if (ret) { + clk_disable(&f->clk_en); + return ret; + } + + return 0; +} + +static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f) +{ + clk_disable(&f->clk); + clk_disable(&f->clk_en); +} +#endif + +/* + * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0 + * register and start base address of the slave device. + * + * (Higher address) + * -------- <-- FLSHB2CR0 + * | B2 | + * | | + * B2 start address --> -------- <-- FLSHB1CR0 + * | B1 | + * | | + * B1 start address --> -------- <-- FLSHA2CR0 + * | A2 | + * | | + * A2 start address --> -------- <-- FLSHA1CR0 + * | A1 | + * | | + * A1 start address --> -------- (Lower address) + * + * + * Start base address defines the starting address range for given CS and + * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS. + * + * But, different targets are having different combinations of number of CS, + * some targets only have single CS or two CS covering controller's full + * memory mapped space area. + * Thus, implementation is being done as independent of the size and number + * of the connected slave device. + * Assign controller memory mapped space size as the size to the connected + * slave device. + * Mark FLSHxxCR0 as zero initially and then assign value only to the selected + * chip-select Flash configuration register. + * + * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the + * memory mapped size of the controller. + * Value for rest of the CS FLSHxxCR0 register would be zero. + * + */ +static void nxp_fspi_select_mem(struct nxp_fspi *f, int chip_select) +{ + u64 size_kb; + + /* Reset FLSHxxCR0 registers */ + fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0); + fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0); + fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0); + fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0); + + /* Assign controller memory mapped space as size, KBytes, of flash. */ + size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size); + + fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 + + 4 * chip_select); + + dev_dbg(f->dev, "Slave device [CS:%x] selected\n", chip_select); +} + +static void nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op) +{ + u32 len = op->data.nbytes; + + /* Read out the data directly from the AHB buffer. */ + memcpy_fromio(op->data.buf.in, (f->ahb_addr + op->addr.val), len); +} + +static void nxp_fspi_fill_txfifo(struct nxp_fspi *f, + const struct spi_mem_op *op) +{ + void __iomem *base = f->iobase; + int i, ret; + u8 *buf = (u8 *)op->data.buf.out; + + /* clear the TX FIFO. */ + fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR); + + /* + * Default value of water mark level is 8 bytes, hence in single + * write request controller can write max 8 bytes of data. + */ + + for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) { + /* Wait for TXFIFO empty */ + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, + FSPI_INTR_IPTXWE, 0, + POLL_TOUT, true); + WARN_ON(ret); + + fspi_writel(f, *(u32 *)(buf + i), base + FSPI_TFDR); + fspi_writel(f, *(u32 *)(buf + i + 4), base + FSPI_TFDR + 4); + fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); + } + + if (i < op->data.nbytes) { + u32 data = 0; + int j; + /* Wait for TXFIFO empty */ + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, + FSPI_INTR_IPTXWE, 0, + POLL_TOUT, true); + WARN_ON(ret); + + for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) { + memcpy(&data, buf + i + j, 4); + fspi_writel(f, data, base + FSPI_TFDR + j); + } + fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); + } +} + +static void nxp_fspi_read_rxfifo(struct nxp_fspi *f, + const struct spi_mem_op *op) +{ + void __iomem *base = f->iobase; + int i, ret; + int len = op->data.nbytes; + u8 *buf = (u8 *)op->data.buf.in; + + /* + * Default value of water mark level is 8 bytes, hence in single + * read request controller can read max 8 bytes of data. + */ + for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) { + /* Wait for RXFIFO available */ + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, + FSPI_INTR_IPRXWA, 0, + POLL_TOUT, true); + WARN_ON(ret); + + *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR); + *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4); + /* move the FIFO pointer */ + fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); + } + + if (i < len) { + u32 tmp; + int size, j; + + buf = op->data.buf.in + i; + /* Wait for RXFIFO available */ + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, + FSPI_INTR_IPRXWA, 0, + POLL_TOUT, true); + WARN_ON(ret); + + len = op->data.nbytes - i; + for (j = 0; j < op->data.nbytes - i; j += 4) { + tmp = fspi_readl(f, base + FSPI_RFDR + j); + size = min(len, 4); + memcpy(buf + j, &tmp, size); + len -= size; + } + } + + /* invalid the RXFIFO */ + fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR); + /* move the FIFO pointer */ + fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); +} + +static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op) +{ + void __iomem *base = f->iobase; + int seqnum = 0; + int err = 0; + u32 reg; + + reg = fspi_readl(f, base + FSPI_IPRXFCR); + /* invalid RXFIFO first */ + reg &= ~FSPI_IPRXFCR_DMA_EN; + reg = reg | FSPI_IPRXFCR_CLR; + fspi_writel(f, reg, base + FSPI_IPRXFCR); + + fspi_writel(f, op->addr.val, base + FSPI_IPCR0); + /* + * Always start the sequence at the same index since we update + * the LUT at each exec_op() call. And also specify the DATA + * length, since it's has not been specified in the LUT. + */ + fspi_writel(f, op->data.nbytes | + (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) | + (seqnum << FSPI_IPCR1_SEQNUM_SHIFT), + base + FSPI_IPCR1); + + /* Trigger the LUT now. */ + fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD); + + /* Wait for the completion. */ + err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0, + FSPI_STS0_ARB_IDLE, 1, 1000 * 1000, true); + + /* Invoke IP data read, if request is of data read. */ + if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) + nxp_fspi_read_rxfifo(f, op); + + return err; +} + +static int nxp_fspi_exec_op(struct spi_slave *slave, + const struct spi_mem_op *op) +{ + struct nxp_fspi *f; + struct udevice *bus; + int err = 0; + + bus = slave->dev->parent; + f = dev_get_priv(bus); + + /* Wait for controller being ready. */ + err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0, + FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true); + WARN_ON(err); + + nxp_fspi_prepare_lut(f, op); + /* + * If we have large chunks of data, we read them through the AHB bus + * by accessing the mapped memory. In all other cases we use + * IP commands to access the flash. + */ + if (op->data.nbytes > (f->devtype_data->rxfifo - 4) && + op->data.dir == SPI_MEM_DATA_IN) { + nxp_fspi_read_ahb(f, op); + } else { + if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) + nxp_fspi_fill_txfifo(f, op); + + err = nxp_fspi_do_op(f, op); + } + + /* Invalidate the data in the AHB buffer. */ + nxp_fspi_invalid(f); + + return err; +} + +static int nxp_fspi_adjust_op_size(struct spi_slave *slave, + struct spi_mem_op *op) +{ + struct nxp_fspi *f; + struct udevice *bus; + + bus = slave->dev->parent; + f = dev_get_priv(bus); + + if (op->data.dir == SPI_MEM_DATA_OUT) { + if (op->data.nbytes > f->devtype_data->txfifo) + op->data.nbytes = f->devtype_data->txfifo; + } else { + if (op->data.nbytes > f->devtype_data->ahb_buf_size) + op->data.nbytes = f->devtype_data->ahb_buf_size; + else if (op->data.nbytes > (f->devtype_data->rxfifo - 4)) + op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); + } + + return 0; +} + +static int nxp_fspi_default_setup(struct nxp_fspi *f) +{ + void __iomem *base = f->iobase; + int ret, i; + u32 reg; + +#if CONFIG_IS_ENABLED(CONFIG_CLK) + /* disable and unprepare clock to avoid glitch pass to controller */ + nxp_fspi_clk_disable_unprep(f); + + /* the default frequency, we will change it later if necessary. */ + ret = clk_set_rate(&f->clk, 20000000); + if (ret) + return ret; + + ret = nxp_fspi_clk_prep_enable(f); + if (ret) + return ret; +#endif + + /* Reset the module */ + /* w1c register, wait unit clear */ + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, + FSPI_MCR0_SWRST, 0, POLL_TOUT, false); + WARN_ON(ret); + + /* Disable the module */ + fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0); + + /* Reset the DLL register to default value */ + fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR); + fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR); + + /* enable module */ + fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | FSPI_MCR0_IP_TIMEOUT(0xFF), + base + FSPI_MCR0); + + /* + * Disable same device enable bit and configure all slave devices + * independently. + */ + reg = fspi_readl(f, f->iobase + FSPI_MCR2); + reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN); + fspi_writel(f, reg, base + FSPI_MCR2); + + /* AHB configuration for access buffer 0~7. */ + for (i = 0; i < 7; i++) + fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i); + + /* + * Set ADATSZ with the maximum AHB buffer size to improve the read + * performance. + */ + fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 | + FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0); + + /* prefetch and no start address alignment limitation */ + fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT, + base + FSPI_AHBCR); + + /* AHB Read - Set lut sequence ID for all CS. */ + fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2); + fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2); + fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2); + fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2); + + return 0; +} + +static int nxp_fspi_probe(struct udevice *bus) +{ + struct nxp_fspi *f = dev_get_priv(bus); + + f->devtype_data = + (struct nxp_fspi_devtype_data *)dev_get_driver_data(bus); + nxp_fspi_default_setup(f); + + return 0; +} + +static int nxp_fspi_claim_bus(struct udevice *dev) +{ + struct nxp_fspi *f; + struct udevice *bus; + struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev); + + bus = dev->parent; + f = dev_get_priv(bus); + + nxp_fspi_select_mem(f, slave_plat->cs); + + return 0; +} + +static int nxp_fspi_set_speed(struct udevice *bus, uint speed) +{ +#if CONFIG_IS_ENABLED(CONFIG_CLK) + struct nxp_fspi *f = dev_get_priv(bus); + int ret; + + nxp_fspi_clk_disable_unprep(f); + + ret = clk_set_rate(&f->clk, speed); + if (ret) + return ret; + + ret = nxp_fspi_clk_prep_enable(f); + if (ret) + return ret; +#endif + return 0; +} + +static int nxp_fspi_set_mode(struct udevice *bus, uint mode) +{ + /* Nothing to do */ + return 0; +} + +static int nxp_fspi_ofdata_to_platdata(struct udevice *bus) +{ + struct nxp_fspi *f = dev_get_priv(bus); +#if CONFIG_IS_ENABLED(CONFIG_CLK) + int ret; +#endif + + fdt_addr_t iobase; + fdt_addr_t iobase_size; + fdt_addr_t ahb_addr; + fdt_addr_t ahb_size; + + f->dev = bus; + + iobase = devfdt_get_addr_size_name(bus, "fspi_base", &iobase_size); + if (iobase == FDT_ADDR_T_NONE) { + dev_err(bus, "fspi_base regs missing\n"); + return -ENODEV; + } + f->iobase = map_physmem(iobase, iobase_size, MAP_NOCACHE); + + ahb_addr = devfdt_get_addr_size_name(bus, "fspi_mmap", &ahb_size); + if (ahb_addr == FDT_ADDR_T_NONE) { + dev_err(bus, "fspi_mmap regs missing\n"); + return -ENODEV; + } + f->ahb_addr = map_physmem(ahb_addr, ahb_size, MAP_NOCACHE); + f->memmap_phy_size = ahb_size; + +#if CONFIG_IS_ENABLED(CONFIG_CLK) + ret = clk_get_by_name(bus, "fspi_en", &f->clk_en); + if (ret) { + dev_err(bus, "failed to get fspi_en clock\n"); + return ret; + } + + ret = clk_get_by_name(bus, "fspi", &f->clk); + if (ret) { + dev_err(bus, "failed to get fspi clock\n"); + return ret; + } +#endif + + dev_dbg(bus, "iobase=<0x%llx>, ahb_addr=<0x%llx>\n", iobase, ahb_addr); + + return 0; +} + +static const struct spi_controller_mem_ops nxp_fspi_mem_ops = { + .adjust_op_size = nxp_fspi_adjust_op_size, + .supports_op = nxp_fspi_supports_op, + .exec_op = nxp_fspi_exec_op, +}; + +static const struct dm_spi_ops nxp_fspi_ops = { + .claim_bus = nxp_fspi_claim_bus, + .set_speed = nxp_fspi_set_speed, + .set_mode = nxp_fspi_set_mode, + .mem_ops = &nxp_fspi_mem_ops, +}; + +static const struct udevice_id nxp_fspi_ids[] = { + { .compatible = "nxp,lx2160a-fspi", .data = (ulong)&lx2160a_data, }, + { } +}; + +U_BOOT_DRIVER(nxp_fspi) = { + .name = "nxp_fspi", + .id = UCLASS_SPI, + .of_match = nxp_fspi_ids, + .ops = &nxp_fspi_ops, + .ofdata_to_platdata = nxp_fspi_ofdata_to_platdata, + .priv_auto_alloc_size = sizeof(struct nxp_fspi), + .probe = nxp_fspi_probe, +};