From: Boris Brezillon Date: Wed, 15 Jun 2016 19:09:23 +0000 (+0200) Subject: mtd: nand: Add the sunxi NAND controller driver X-Git-Url: http://git.dujemihanovic.xyz/%22/img/sics.gif/%22/static/git-favicon.png?a=commitdiff_plain;h=4ccae81cdadce39e925f3e8c96567fd911568000;p=u-boot.git mtd: nand: Add the sunxi NAND controller driver We already have an SPL driver for the sunxi NAND controller, now add the normal/standard one. The source has been copied from Linux 4.6 with a few changes to make it work in u-boot. Signed-off-by: Boris Brezillon Acked-by: Hans de Goede --- diff --git a/board/sunxi/board.c b/board/sunxi/board.c index f6e28b050d..36cf96381c 100644 --- a/board/sunxi/board.c +++ b/board/sunxi/board.c @@ -136,7 +136,7 @@ int dram_init(void) return 0; } -#if defined(CONFIG_NAND_SUNXI) && defined(CONFIG_SPL_BUILD) +#if defined(CONFIG_NAND_SUNXI) static void nand_pinmux_setup(void) { unsigned int pin; @@ -173,6 +173,9 @@ void board_nand_init(void) { nand_pinmux_setup(); nand_clock_setup(); +#ifndef CONFIG_SPL_BUILD + sunxi_nand_init(); +#endif } #endif diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index 8c46a2ff8e..5ce7d6d06c 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -64,12 +64,14 @@ config NAND_PXA3XX PXA3xx processors (NFCv1) and also on Armada 370/XP (NFCv2). config NAND_SUNXI - bool "Support for NAND on Allwinner SoCs in SPL" + bool "Support for NAND on Allwinner SoCs" depends on MACH_SUN4I || MACH_SUN5I || MACH_SUN7I select SYS_NAND_SELF_INIT ---help--- - Enable support for NAND. This option allows SPL to read from - sunxi NAND using DMA transfers. + Enable support for NAND. This option enables the standard and + SPL drivers. + The SPL driver only supports reading from the NAND using DMA + transfers. config NAND_ARASAN bool "Configure Arasan Nand" diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index 837d397bda..1df9273cdd 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -66,6 +66,7 @@ obj-$(CONFIG_TEGRA_NAND) += tegra_nand.o obj-$(CONFIG_NAND_OMAP_GPMC) += omap_gpmc.o obj-$(CONFIG_NAND_OMAP_ELM) += omap_elm.o obj-$(CONFIG_NAND_PLAT) += nand_plat.o +obj-$(CONFIG_NAND_SUNXI) += sunxi_nand.o else # minimal SPL drivers diff --git a/drivers/mtd/nand/sunxi_nand.c b/drivers/mtd/nand/sunxi_nand.c new file mode 100644 index 0000000000..c4e2cd7f55 --- /dev/null +++ b/drivers/mtd/nand/sunxi_nand.c @@ -0,0 +1,1845 @@ +/* + * Copyright (C) 2013 Boris BREZILLON + * Copyright (C) 2015 Roy Spliet + * + * Derived from: + * https://github.com/yuq/sunxi-nfc-mtd + * Copyright (C) 2013 Qiang Yu + * + * https://github.com/hno/Allwinner-Info + * Copyright (C) 2013 Henrik Nordström + * + * Copyright (C) 2013 Dmitriy B. + * Copyright (C) 2013 Sergey Lapin + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include +#include +#include +#include + +#include +#include +#include +#include +#include + +#include +#include + +DECLARE_GLOBAL_DATA_PTR; + +#define NFC_REG_CTL 0x0000 +#define NFC_REG_ST 0x0004 +#define NFC_REG_INT 0x0008 +#define NFC_REG_TIMING_CTL 0x000C +#define NFC_REG_TIMING_CFG 0x0010 +#define NFC_REG_ADDR_LOW 0x0014 +#define NFC_REG_ADDR_HIGH 0x0018 +#define NFC_REG_SECTOR_NUM 0x001C +#define NFC_REG_CNT 0x0020 +#define NFC_REG_CMD 0x0024 +#define NFC_REG_RCMD_SET 0x0028 +#define NFC_REG_WCMD_SET 0x002C +#define NFC_REG_IO_DATA 0x0030 +#define NFC_REG_ECC_CTL 0x0034 +#define NFC_REG_ECC_ST 0x0038 +#define NFC_REG_DEBUG 0x003C +#define NFC_REG_ECC_ERR_CNT(x) ((0x0040 + (x)) & ~0x3) +#define NFC_REG_USER_DATA(x) (0x0050 + ((x) * 4)) +#define NFC_REG_SPARE_AREA 0x00A0 +#define NFC_REG_PAT_ID 0x00A4 +#define NFC_RAM0_BASE 0x0400 +#define NFC_RAM1_BASE 0x0800 + +/* define bit use in NFC_CTL */ +#define NFC_EN BIT(0) +#define NFC_RESET BIT(1) +#define NFC_BUS_WIDTH_MSK BIT(2) +#define NFC_BUS_WIDTH_8 (0 << 2) +#define NFC_BUS_WIDTH_16 (1 << 2) +#define NFC_RB_SEL_MSK BIT(3) +#define NFC_RB_SEL(x) ((x) << 3) +#define NFC_CE_SEL_MSK (0x7 << 24) +#define NFC_CE_SEL(x) ((x) << 24) +#define NFC_CE_CTL BIT(6) +#define NFC_PAGE_SHIFT_MSK (0xf << 8) +#define NFC_PAGE_SHIFT(x) (((x) < 10 ? 0 : (x) - 10) << 8) +#define NFC_SAM BIT(12) +#define NFC_RAM_METHOD BIT(14) +#define NFC_DEBUG_CTL BIT(31) + +/* define bit use in NFC_ST */ +#define NFC_RB_B2R BIT(0) +#define NFC_CMD_INT_FLAG BIT(1) +#define NFC_DMA_INT_FLAG BIT(2) +#define NFC_CMD_FIFO_STATUS BIT(3) +#define NFC_STA BIT(4) +#define NFC_NATCH_INT_FLAG BIT(5) +#define NFC_RB_STATE(x) BIT(x + 8) + +/* define bit use in NFC_INT */ +#define NFC_B2R_INT_ENABLE BIT(0) +#define NFC_CMD_INT_ENABLE BIT(1) +#define NFC_DMA_INT_ENABLE BIT(2) +#define NFC_INT_MASK (NFC_B2R_INT_ENABLE | \ + NFC_CMD_INT_ENABLE | \ + NFC_DMA_INT_ENABLE) + +/* define bit use in NFC_TIMING_CTL */ +#define NFC_TIMING_CTL_EDO BIT(8) + +/* define NFC_TIMING_CFG register layout */ +#define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD) \ + (((tWB) & 0x3) | (((tADL) & 0x3) << 2) | \ + (((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) | \ + (((tCAD) & 0x7) << 8)) + +/* define bit use in NFC_CMD */ +#define NFC_CMD_LOW_BYTE_MSK 0xff +#define NFC_CMD_HIGH_BYTE_MSK (0xff << 8) +#define NFC_CMD(x) (x) +#define NFC_ADR_NUM_MSK (0x7 << 16) +#define NFC_ADR_NUM(x) (((x) - 1) << 16) +#define NFC_SEND_ADR BIT(19) +#define NFC_ACCESS_DIR BIT(20) +#define NFC_DATA_TRANS BIT(21) +#define NFC_SEND_CMD1 BIT(22) +#define NFC_WAIT_FLAG BIT(23) +#define NFC_SEND_CMD2 BIT(24) +#define NFC_SEQ BIT(25) +#define NFC_DATA_SWAP_METHOD BIT(26) +#define NFC_ROW_AUTO_INC BIT(27) +#define NFC_SEND_CMD3 BIT(28) +#define NFC_SEND_CMD4 BIT(29) +#define NFC_CMD_TYPE_MSK (0x3 << 30) +#define NFC_NORMAL_OP (0 << 30) +#define NFC_ECC_OP (1 << 30) +#define NFC_PAGE_OP (2 << 30) + +/* define bit use in NFC_RCMD_SET */ +#define NFC_READ_CMD_MSK 0xff +#define NFC_RND_READ_CMD0_MSK (0xff << 8) +#define NFC_RND_READ_CMD1_MSK (0xff << 16) + +/* define bit use in NFC_WCMD_SET */ +#define NFC_PROGRAM_CMD_MSK 0xff +#define NFC_RND_WRITE_CMD_MSK (0xff << 8) +#define NFC_READ_CMD0_MSK (0xff << 16) +#define NFC_READ_CMD1_MSK (0xff << 24) + +/* define bit use in NFC_ECC_CTL */ +#define NFC_ECC_EN BIT(0) +#define NFC_ECC_PIPELINE BIT(3) +#define NFC_ECC_EXCEPTION BIT(4) +#define NFC_ECC_BLOCK_SIZE_MSK BIT(5) +#define NFC_ECC_BLOCK_512 (1 << 5) +#define NFC_RANDOM_EN BIT(9) +#define NFC_RANDOM_DIRECTION BIT(10) +#define NFC_ECC_MODE_MSK (0xf << 12) +#define NFC_ECC_MODE(x) ((x) << 12) +#define NFC_RANDOM_SEED_MSK (0x7fff << 16) +#define NFC_RANDOM_SEED(x) ((x) << 16) + +/* define bit use in NFC_ECC_ST */ +#define NFC_ECC_ERR(x) BIT(x) +#define NFC_ECC_PAT_FOUND(x) BIT(x + 16) +#define NFC_ECC_ERR_CNT(b, x) (((x) >> ((b) * 8)) & 0xff) + +#define NFC_DEFAULT_TIMEOUT_MS 1000 + +#define NFC_SRAM_SIZE 1024 + +#define NFC_MAX_CS 7 + +/* + * Ready/Busy detection type: describes the Ready/Busy detection modes + * + * @RB_NONE: no external detection available, rely on STATUS command + * and software timeouts + * @RB_NATIVE: use sunxi NAND controller Ready/Busy support. The Ready/Busy + * pin of the NAND flash chip must be connected to one of the + * native NAND R/B pins (those which can be muxed to the NAND + * Controller) + * @RB_GPIO: use a simple GPIO to handle Ready/Busy status. The Ready/Busy + * pin of the NAND flash chip must be connected to a GPIO capable + * pin. + */ +enum sunxi_nand_rb_type { + RB_NONE, + RB_NATIVE, + RB_GPIO, +}; + +/* + * Ready/Busy structure: stores information related to Ready/Busy detection + * + * @type: the Ready/Busy detection mode + * @info: information related to the R/B detection mode. Either a gpio + * id or a native R/B id (those supported by the NAND controller). + */ +struct sunxi_nand_rb { + enum sunxi_nand_rb_type type; + union { + struct gpio_desc gpio; + int nativeid; + } info; +}; + +/* + * Chip Select structure: stores information related to NAND Chip Select + * + * @cs: the NAND CS id used to communicate with a NAND Chip + * @rb: the Ready/Busy description + */ +struct sunxi_nand_chip_sel { + u8 cs; + struct sunxi_nand_rb rb; +}; + +/* + * sunxi HW ECC infos: stores information related to HW ECC support + * + * @mode: the sunxi ECC mode field deduced from ECC requirements + * @layout: the OOB layout depending on the ECC requirements and the + * selected ECC mode + */ +struct sunxi_nand_hw_ecc { + int mode; + struct nand_ecclayout layout; +}; + +/* + * NAND chip structure: stores NAND chip device related information + * + * @node: used to store NAND chips into a list + * @nand: base NAND chip structure + * @mtd: base MTD structure + * @clk_rate: clk_rate required for this NAND chip + * @timing_cfg TIMING_CFG register value for this NAND chip + * @selected: current active CS + * @nsels: number of CS lines required by the NAND chip + * @sels: array of CS lines descriptions + */ +struct sunxi_nand_chip { + struct list_head node; + struct nand_chip nand; + unsigned long clk_rate; + u32 timing_cfg; + u32 timing_ctl; + int selected; + int addr_cycles; + u32 addr[2]; + int cmd_cycles; + u8 cmd[2]; + int nsels; + struct sunxi_nand_chip_sel sels[0]; +}; + +static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand) +{ + return container_of(nand, struct sunxi_nand_chip, nand); +} + +/* + * NAND Controller structure: stores sunxi NAND controller information + * + * @controller: base controller structure + * @dev: parent device (used to print error messages) + * @regs: NAND controller registers + * @ahb_clk: NAND Controller AHB clock + * @mod_clk: NAND Controller mod clock + * @assigned_cs: bitmask describing already assigned CS lines + * @clk_rate: NAND controller current clock rate + * @chips: a list containing all the NAND chips attached to + * this NAND controller + * @complete: a completion object used to wait for NAND + * controller events + */ +struct sunxi_nfc { + struct nand_hw_control controller; + struct device *dev; + void __iomem *regs; + struct clk *ahb_clk; + struct clk *mod_clk; + unsigned long assigned_cs; + unsigned long clk_rate; + struct list_head chips; +}; + +static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl) +{ + return container_of(ctrl, struct sunxi_nfc, controller); +} + +static void sunxi_nfc_set_clk_rate(unsigned long hz) +{ + struct sunxi_ccm_reg *const ccm = + (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; + int div_m, div_n; + + div_m = (clock_get_pll6() + hz - 1) / hz; + for (div_n = 0; div_n < 3 && div_m > 16; div_n++) { + if (div_m % 2) + div_m++; + div_m >>= 1; + } + if (div_m > 16) + div_m = 16; + + /* config mod clock */ + writel(CCM_NAND_CTRL_ENABLE | CCM_NAND_CTRL_PLL6 | + CCM_NAND_CTRL_N(div_n) | CCM_NAND_CTRL_M(div_m), + &ccm->nand0_clk_cfg); + + /* gate on nand clock */ + setbits_le32(&ccm->ahb_gate0, (1 << AHB_GATE_OFFSET_NAND0)); +#ifdef CONFIG_MACH_SUN9I + setbits_le32(&ccm->ahb_gate1, (1 << AHB_GATE_OFFSET_DMA)); +#else + setbits_le32(&ccm->ahb_gate0, (1 << AHB_GATE_OFFSET_DMA)); +#endif +} + +static int sunxi_nfc_wait_int(struct sunxi_nfc *nfc, u32 flags, + unsigned int timeout_ms) +{ + unsigned int timeout_ticks; + u32 time_start, status; + int ret = -ETIMEDOUT; + + if (!timeout_ms) + timeout_ms = NFC_DEFAULT_TIMEOUT_MS; + + timeout_ticks = (timeout_ms * CONFIG_SYS_HZ) / 1000; + + time_start = get_timer(0); + + do { + status = readl(nfc->regs + NFC_REG_ST); + if ((status & flags) == flags) { + ret = 0; + break; + } + + udelay(1); + } while (get_timer(time_start) < timeout_ticks); + + writel(status & flags, nfc->regs + NFC_REG_ST); + + return ret; +} + +static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc) +{ + unsigned long timeout = (CONFIG_SYS_HZ * + NFC_DEFAULT_TIMEOUT_MS) / 1000; + u32 time_start; + + time_start = get_timer(0); + do { + if (!(readl(nfc->regs + NFC_REG_ST) & NFC_CMD_FIFO_STATUS)) + return 0; + } while (get_timer(time_start) < timeout); + + dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n"); + return -ETIMEDOUT; +} + +static int sunxi_nfc_rst(struct sunxi_nfc *nfc) +{ + unsigned long timeout = (CONFIG_SYS_HZ * + NFC_DEFAULT_TIMEOUT_MS) / 1000; + u32 time_start; + + writel(0, nfc->regs + NFC_REG_ECC_CTL); + writel(NFC_RESET, nfc->regs + NFC_REG_CTL); + + time_start = get_timer(0); + do { + if (!(readl(nfc->regs + NFC_REG_CTL) & NFC_RESET)) + return 0; + } while (get_timer(time_start) < timeout); + + dev_err(nfc->dev, "wait for NAND controller reset timedout\n"); + return -ETIMEDOUT; +} + +static int sunxi_nfc_dev_ready(struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); + struct sunxi_nand_rb *rb; + unsigned long timeo = (sunxi_nand->nand.state == FL_ERASING ? 400 : 20); + int ret; + + if (sunxi_nand->selected < 0) + return 0; + + rb = &sunxi_nand->sels[sunxi_nand->selected].rb; + + switch (rb->type) { + case RB_NATIVE: + ret = !!(readl(nfc->regs + NFC_REG_ST) & + NFC_RB_STATE(rb->info.nativeid)); + if (ret) + break; + + sunxi_nfc_wait_int(nfc, NFC_RB_B2R, timeo); + ret = !!(readl(nfc->regs + NFC_REG_ST) & + NFC_RB_STATE(rb->info.nativeid)); + break; + case RB_GPIO: + ret = dm_gpio_get_value(&rb->info.gpio); + break; + case RB_NONE: + default: + ret = 0; + dev_err(nfc->dev, "cannot check R/B NAND status!\n"); + break; + } + + return ret; +} + +static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); + struct sunxi_nand_chip_sel *sel; + u32 ctl; + + if (chip > 0 && chip >= sunxi_nand->nsels) + return; + + if (chip == sunxi_nand->selected) + return; + + ctl = readl(nfc->regs + NFC_REG_CTL) & + ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN); + + if (chip >= 0) { + sel = &sunxi_nand->sels[chip]; + + ctl |= NFC_CE_SEL(sel->cs) | NFC_EN | + NFC_PAGE_SHIFT(nand->page_shift - 10); + if (sel->rb.type == RB_NONE) { + nand->dev_ready = NULL; + } else { + nand->dev_ready = sunxi_nfc_dev_ready; + if (sel->rb.type == RB_NATIVE) + ctl |= NFC_RB_SEL(sel->rb.info.nativeid); + } + + writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA); + + if (nfc->clk_rate != sunxi_nand->clk_rate) { + sunxi_nfc_set_clk_rate(sunxi_nand->clk_rate); + nfc->clk_rate = sunxi_nand->clk_rate; + } + } + + writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL); + writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG); + writel(ctl, nfc->regs + NFC_REG_CTL); + + sunxi_nand->selected = chip; +} + +static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); + int ret; + int cnt; + int offs = 0; + u32 tmp; + + while (len > offs) { + cnt = min(len - offs, NFC_SRAM_SIZE); + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + break; + + writel(cnt, nfc->regs + NFC_REG_CNT); + tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD; + writel(tmp, nfc->regs + NFC_REG_CMD); + + ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); + if (ret) + break; + + if (buf) + memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE, + cnt); + offs += cnt; + } +} + +static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, + int len) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); + int ret; + int cnt; + int offs = 0; + u32 tmp; + + while (len > offs) { + cnt = min(len - offs, NFC_SRAM_SIZE); + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + break; + + writel(cnt, nfc->regs + NFC_REG_CNT); + memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt); + tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | + NFC_ACCESS_DIR; + writel(tmp, nfc->regs + NFC_REG_CMD); + + ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); + if (ret) + break; + + offs += cnt; + } +} + +static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd) +{ + uint8_t ret; + + sunxi_nfc_read_buf(mtd, &ret, 1); + + return ret; +} + +static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat, + unsigned int ctrl) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); + int ret; + u32 tmp; + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + return; + + if (ctrl & NAND_CTRL_CHANGE) { + tmp = readl(nfc->regs + NFC_REG_CTL); + if (ctrl & NAND_NCE) + tmp |= NFC_CE_CTL; + else + tmp &= ~NFC_CE_CTL; + writel(tmp, nfc->regs + NFC_REG_CTL); + } + + if (dat == NAND_CMD_NONE && (ctrl & NAND_NCE) && + !(ctrl & (NAND_CLE | NAND_ALE))) { + u32 cmd = 0; + + if (!sunxi_nand->addr_cycles && !sunxi_nand->cmd_cycles) + return; + + if (sunxi_nand->cmd_cycles--) + cmd |= NFC_SEND_CMD1 | sunxi_nand->cmd[0]; + + if (sunxi_nand->cmd_cycles--) { + cmd |= NFC_SEND_CMD2; + writel(sunxi_nand->cmd[1], + nfc->regs + NFC_REG_RCMD_SET); + } + + sunxi_nand->cmd_cycles = 0; + + if (sunxi_nand->addr_cycles) { + cmd |= NFC_SEND_ADR | + NFC_ADR_NUM(sunxi_nand->addr_cycles); + writel(sunxi_nand->addr[0], + nfc->regs + NFC_REG_ADDR_LOW); + } + + if (sunxi_nand->addr_cycles > 4) + writel(sunxi_nand->addr[1], + nfc->regs + NFC_REG_ADDR_HIGH); + + writel(cmd, nfc->regs + NFC_REG_CMD); + sunxi_nand->addr[0] = 0; + sunxi_nand->addr[1] = 0; + sunxi_nand->addr_cycles = 0; + sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); + } + + if (ctrl & NAND_CLE) { + sunxi_nand->cmd[sunxi_nand->cmd_cycles++] = dat; + } else if (ctrl & NAND_ALE) { + sunxi_nand->addr[sunxi_nand->addr_cycles / 4] |= + dat << ((sunxi_nand->addr_cycles % 4) * 8); + sunxi_nand->addr_cycles++; + } +} + +/* These seed values have been extracted from Allwinner's BSP */ +static const u16 sunxi_nfc_randomizer_page_seeds[] = { + 0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72, + 0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436, + 0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d, + 0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130, + 0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56, + 0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55, + 0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb, + 0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17, + 0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62, + 0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064, + 0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126, + 0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e, + 0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3, + 0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b, + 0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d, + 0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db, +}; + +/* + * sunxi_nfc_randomizer_ecc512_seeds and sunxi_nfc_randomizer_ecc1024_seeds + * have been generated using + * sunxi_nfc_randomizer_step(seed, (step_size * 8) + 15), which is what + * the randomizer engine does internally before de/scrambling OOB data. + * + * Those tables are statically defined to avoid calculating randomizer state + * at runtime. + */ +static const u16 sunxi_nfc_randomizer_ecc512_seeds[] = { + 0x3346, 0x367f, 0x1f18, 0x769a, 0x4f64, 0x068c, 0x2ef1, 0x6b64, + 0x28a9, 0x15d7, 0x30f8, 0x3659, 0x53db, 0x7c5f, 0x71d4, 0x4409, + 0x26eb, 0x03cc, 0x655d, 0x47d4, 0x4daa, 0x0877, 0x712d, 0x3617, + 0x3264, 0x49aa, 0x7f9e, 0x588e, 0x4fbc, 0x7176, 0x7f91, 0x6c6d, + 0x4b95, 0x5fb7, 0x3844, 0x4037, 0x0184, 0x081b, 0x0ee8, 0x5b91, + 0x293d, 0x1f71, 0x0e6f, 0x402b, 0x5122, 0x1e52, 0x22be, 0x3d2d, + 0x75bc, 0x7c60, 0x6291, 0x1a2f, 0x61d4, 0x74aa, 0x4140, 0x29ab, + 0x472d, 0x2852, 0x017e, 0x15e8, 0x5ec2, 0x17cf, 0x7d0f, 0x06b8, + 0x117a, 0x6b94, 0x789b, 0x3126, 0x6ac5, 0x5be7, 0x150f, 0x51f8, + 0x7889, 0x0aa5, 0x663d, 0x77e8, 0x0b87, 0x3dcb, 0x360d, 0x218b, + 0x512f, 0x7dc9, 0x6a4d, 0x630a, 0x3547, 0x1dd2, 0x5aea, 0x69a5, + 0x7bfa, 0x5e4f, 0x1519, 0x6430, 0x3a0e, 0x5eb3, 0x5425, 0x0c7a, + 0x5540, 0x3670, 0x63c1, 0x31e9, 0x5a39, 0x2de7, 0x5979, 0x2891, + 0x1562, 0x014b, 0x5b05, 0x2756, 0x5a34, 0x13aa, 0x6cb5, 0x2c36, + 0x5e72, 0x1306, 0x0861, 0x15ef, 0x1ee8, 0x5a37, 0x7ac4, 0x45dd, + 0x44c4, 0x7266, 0x2f41, 0x3ccc, 0x045e, 0x7d40, 0x7c66, 0x0fa0, +}; + +static const u16 sunxi_nfc_randomizer_ecc1024_seeds[] = { + 0x2cf5, 0x35f1, 0x63a4, 0x5274, 0x2bd2, 0x778b, 0x7285, 0x32b6, + 0x6a5c, 0x70d6, 0x757d, 0x6769, 0x5375, 0x1e81, 0x0cf3, 0x3982, + 0x6787, 0x042a, 0x6c49, 0x1925, 0x56a8, 0x40a9, 0x063e, 0x7bd9, + 0x4dbf, 0x55ec, 0x672e, 0x7334, 0x5185, 0x4d00, 0x232a, 0x7e07, + 0x445d, 0x6b92, 0x528f, 0x4255, 0x53ba, 0x7d82, 0x2a2e, 0x3a4e, + 0x75eb, 0x450c, 0x6844, 0x1b5d, 0x581a, 0x4cc6, 0x0379, 0x37b2, + 0x419f, 0x0e92, 0x6b27, 0x5624, 0x01e3, 0x07c1, 0x44a5, 0x130c, + 0x13e8, 0x5910, 0x0876, 0x60c5, 0x54e3, 0x5b7f, 0x2269, 0x509f, + 0x7665, 0x36fd, 0x3e9a, 0x0579, 0x6295, 0x14ef, 0x0a81, 0x1bcc, + 0x4b16, 0x64db, 0x0514, 0x4f07, 0x0591, 0x3576, 0x6853, 0x0d9e, + 0x259f, 0x38b7, 0x64fb, 0x3094, 0x4693, 0x6ddd, 0x29bb, 0x0bc8, + 0x3f47, 0x490e, 0x0c0e, 0x7933, 0x3c9e, 0x5840, 0x398d, 0x3e68, + 0x4af1, 0x71f5, 0x57cf, 0x1121, 0x64eb, 0x3579, 0x15ac, 0x584d, + 0x5f2a, 0x47e2, 0x6528, 0x6eac, 0x196e, 0x6b96, 0x0450, 0x0179, + 0x609c, 0x06e1, 0x4626, 0x42c7, 0x273e, 0x486f, 0x0705, 0x1601, + 0x145b, 0x407e, 0x062b, 0x57a5, 0x53f9, 0x5659, 0x4410, 0x3ccd, +}; + +static u16 sunxi_nfc_randomizer_step(u16 state, int count) +{ + state &= 0x7fff; + + /* + * This loop is just a simple implementation of a Fibonacci LFSR using + * the x16 + x15 + 1 polynomial. + */ + while (count--) + state = ((state >> 1) | + (((state ^ (state >> 1)) & 1) << 14)) & 0x7fff; + + return state; +} + +static u16 sunxi_nfc_randomizer_state(struct mtd_info *mtd, int page, bool ecc) +{ + const u16 *seeds = sunxi_nfc_randomizer_page_seeds; + int mod = mtd->erasesize / mtd->writesize; + + if (mod > ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds)) + mod = ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds); + + if (ecc) { + if (mtd->ecc_step_size == 512) + seeds = sunxi_nfc_randomizer_ecc512_seeds; + else + seeds = sunxi_nfc_randomizer_ecc1024_seeds; + } + + return seeds[page % mod]; +} + +static void sunxi_nfc_randomizer_config(struct mtd_info *mtd, + int page, bool ecc) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + u32 ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL); + u16 state; + + if (!(nand->options & NAND_NEED_SCRAMBLING)) + return; + + ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL); + state = sunxi_nfc_randomizer_state(mtd, page, ecc); + ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_SEED_MSK; + writel(ecc_ctl | NFC_RANDOM_SEED(state), nfc->regs + NFC_REG_ECC_CTL); +} + +static void sunxi_nfc_randomizer_enable(struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + + if (!(nand->options & NAND_NEED_SCRAMBLING)) + return; + + writel(readl(nfc->regs + NFC_REG_ECC_CTL) | NFC_RANDOM_EN, + nfc->regs + NFC_REG_ECC_CTL); +} + +static void sunxi_nfc_randomizer_disable(struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + + if (!(nand->options & NAND_NEED_SCRAMBLING)) + return; + + writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_EN, + nfc->regs + NFC_REG_ECC_CTL); +} + +static void sunxi_nfc_randomize_bbm(struct mtd_info *mtd, int page, u8 *bbm) +{ + u16 state = sunxi_nfc_randomizer_state(mtd, page, true); + + bbm[0] ^= state; + bbm[1] ^= sunxi_nfc_randomizer_step(state, 8); +} + +static void sunxi_nfc_randomizer_write_buf(struct mtd_info *mtd, + const uint8_t *buf, int len, + bool ecc, int page) +{ + sunxi_nfc_randomizer_config(mtd, page, ecc); + sunxi_nfc_randomizer_enable(mtd); + sunxi_nfc_write_buf(mtd, buf, len); + sunxi_nfc_randomizer_disable(mtd); +} + +static void sunxi_nfc_randomizer_read_buf(struct mtd_info *mtd, uint8_t *buf, + int len, bool ecc, int page) +{ + sunxi_nfc_randomizer_config(mtd, page, ecc); + sunxi_nfc_randomizer_enable(mtd); + sunxi_nfc_read_buf(mtd, buf, len); + sunxi_nfc_randomizer_disable(mtd); +} + +static void sunxi_nfc_hw_ecc_enable(struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + struct sunxi_nand_hw_ecc *data = nand->ecc.priv; + u32 ecc_ctl; + + ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL); + ecc_ctl &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE | + NFC_ECC_BLOCK_SIZE_MSK); + ecc_ctl |= NFC_ECC_EN | NFC_ECC_MODE(data->mode) | NFC_ECC_EXCEPTION; + + if (nand->ecc.size == 512) + ecc_ctl |= NFC_ECC_BLOCK_512; + + writel(ecc_ctl, nfc->regs + NFC_REG_ECC_CTL); +} + +static void sunxi_nfc_hw_ecc_disable(struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + + writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN, + nfc->regs + NFC_REG_ECC_CTL); +} + +static inline void sunxi_nfc_user_data_to_buf(u32 user_data, u8 *buf) +{ + buf[0] = user_data; + buf[1] = user_data >> 8; + buf[2] = user_data >> 16; + buf[3] = user_data >> 24; +} + +static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd, + u8 *data, int data_off, + u8 *oob, int oob_off, + int *cur_off, + unsigned int *max_bitflips, + bool bbm, int page) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + struct nand_ecc_ctrl *ecc = &nand->ecc; + int raw_mode = 0; + u32 status; + int ret; + + if (*cur_off != data_off) + nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1); + + sunxi_nfc_randomizer_read_buf(mtd, NULL, ecc->size, false, page); + + if (data_off + ecc->size != oob_off) + nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1); + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + return ret; + + sunxi_nfc_randomizer_enable(mtd); + writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP, + nfc->regs + NFC_REG_CMD); + + ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); + sunxi_nfc_randomizer_disable(mtd); + if (ret) + return ret; + + *cur_off = oob_off + ecc->bytes + 4; + + status = readl(nfc->regs + NFC_REG_ECC_ST); + if (status & NFC_ECC_PAT_FOUND(0)) { + u8 pattern = 0xff; + + if (unlikely(!(readl(nfc->regs + NFC_REG_PAT_ID) & 0x1))) + pattern = 0x0; + + memset(data, pattern, ecc->size); + memset(oob, pattern, ecc->bytes + 4); + + return 1; + } + + ret = NFC_ECC_ERR_CNT(0, readl(nfc->regs + NFC_REG_ECC_ERR_CNT(0))); + + memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, ecc->size); + + nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1); + sunxi_nfc_randomizer_read_buf(mtd, oob, ecc->bytes + 4, true, page); + + if (status & NFC_ECC_ERR(0)) { + /* + * Re-read the data with the randomizer disabled to identify + * bitflips in erased pages. + */ + if (nand->options & NAND_NEED_SCRAMBLING) { + nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1); + nand->read_buf(mtd, data, ecc->size); + nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1); + nand->read_buf(mtd, oob, ecc->bytes + 4); + } + + ret = nand_check_erased_ecc_chunk(data, ecc->size, + oob, ecc->bytes + 4, + NULL, 0, ecc->strength); + if (ret >= 0) + raw_mode = 1; + } else { + /* + * The engine protects 4 bytes of OOB data per chunk. + * Retrieve the corrected OOB bytes. + */ + sunxi_nfc_user_data_to_buf(readl(nfc->regs + + NFC_REG_USER_DATA(0)), + oob); + + /* De-randomize the Bad Block Marker. */ + if (bbm && nand->options & NAND_NEED_SCRAMBLING) + sunxi_nfc_randomize_bbm(mtd, page, oob); + } + + if (ret < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += ret; + *max_bitflips = max_t(unsigned int, *max_bitflips, ret); + } + + return raw_mode; +} + +static void sunxi_nfc_hw_ecc_read_extra_oob(struct mtd_info *mtd, + u8 *oob, int *cur_off, + bool randomize, int page) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &nand->ecc; + int offset = ((ecc->bytes + 4) * ecc->steps); + int len = mtd->oobsize - offset; + + if (len <= 0) + return; + + if (*cur_off != offset) + nand->cmdfunc(mtd, NAND_CMD_RNDOUT, + offset + mtd->writesize, -1); + + if (!randomize) + sunxi_nfc_read_buf(mtd, oob + offset, len); + else + sunxi_nfc_randomizer_read_buf(mtd, oob + offset, len, + false, page); + + *cur_off = mtd->oobsize + mtd->writesize; +} + +static inline u32 sunxi_nfc_buf_to_user_data(const u8 *buf) +{ + return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24); +} + +static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd, + const u8 *data, int data_off, + const u8 *oob, int oob_off, + int *cur_off, bool bbm, + int page) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + struct nand_ecc_ctrl *ecc = &nand->ecc; + int ret; + + if (data_off != *cur_off) + nand->cmdfunc(mtd, NAND_CMD_RNDIN, data_off, -1); + + sunxi_nfc_randomizer_write_buf(mtd, data, ecc->size, false, page); + + /* Fill OOB data in */ + if ((nand->options & NAND_NEED_SCRAMBLING) && bbm) { + u8 user_data[4]; + + memcpy(user_data, oob, 4); + sunxi_nfc_randomize_bbm(mtd, page, user_data); + writel(sunxi_nfc_buf_to_user_data(user_data), + nfc->regs + NFC_REG_USER_DATA(0)); + } else { + writel(sunxi_nfc_buf_to_user_data(oob), + nfc->regs + NFC_REG_USER_DATA(0)); + } + + if (data_off + ecc->size != oob_off) + nand->cmdfunc(mtd, NAND_CMD_RNDIN, oob_off, -1); + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + return ret; + + sunxi_nfc_randomizer_enable(mtd); + writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | + NFC_ACCESS_DIR | NFC_ECC_OP, + nfc->regs + NFC_REG_CMD); + + ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); + sunxi_nfc_randomizer_disable(mtd); + if (ret) + return ret; + + *cur_off = oob_off + ecc->bytes + 4; + + return 0; +} + +static void sunxi_nfc_hw_ecc_write_extra_oob(struct mtd_info *mtd, + u8 *oob, int *cur_off, + int page) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &nand->ecc; + int offset = ((ecc->bytes + 4) * ecc->steps); + int len = mtd->oobsize - offset; + + if (len <= 0) + return; + + if (*cur_off != offset) + nand->cmdfunc(mtd, NAND_CMD_RNDIN, + offset + mtd->writesize, -1); + + sunxi_nfc_randomizer_write_buf(mtd, oob + offset, len, false, page); + + *cur_off = mtd->oobsize + mtd->writesize; +} + +static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct nand_ecc_ctrl *ecc = &chip->ecc; + unsigned int max_bitflips = 0; + int ret, i, cur_off = 0; + bool raw_mode = false; + + sunxi_nfc_hw_ecc_enable(mtd); + + for (i = 0; i < ecc->steps; i++) { + int data_off = i * ecc->size; + int oob_off = i * (ecc->bytes + 4); + u8 *data = buf + data_off; + u8 *oob = chip->oob_poi + oob_off; + + ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob, + oob_off + mtd->writesize, + &cur_off, &max_bitflips, + !i, page); + if (ret < 0) + return ret; + else if (ret) + raw_mode = true; + } + + if (oob_required) + sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off, + !raw_mode, page); + + sunxi_nfc_hw_ecc_disable(mtd); + + return max_bitflips; +} + +static int sunxi_nfc_hw_ecc_read_subpage(struct mtd_info *mtd, + struct nand_chip *chip, + uint32_t data_offs, uint32_t readlen, + uint8_t *bufpoi, int page) +{ + struct nand_ecc_ctrl *ecc = &chip->ecc; + int ret, i, cur_off = 0; + unsigned int max_bitflips = 0; + + sunxi_nfc_hw_ecc_enable(mtd); + + chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); + for (i = data_offs / ecc->size; + i < DIV_ROUND_UP(data_offs + readlen, ecc->size); i++) { + int data_off = i * ecc->size; + int oob_off = i * (ecc->bytes + 4); + u8 *data = bufpoi + data_off; + u8 *oob = chip->oob_poi + oob_off; + + ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, + oob, oob_off + mtd->writesize, + &cur_off, &max_bitflips, !i, page); + if (ret < 0) + return ret; + } + + sunxi_nfc_hw_ecc_disable(mtd); + + return max_bitflips; +} + +static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf, int oob_required, + int page) +{ + struct nand_ecc_ctrl *ecc = &chip->ecc; + int ret, i, cur_off = 0; + + sunxi_nfc_hw_ecc_enable(mtd); + + for (i = 0; i < ecc->steps; i++) { + int data_off = i * ecc->size; + int oob_off = i * (ecc->bytes + 4); + const u8 *data = buf + data_off; + const u8 *oob = chip->oob_poi + oob_off; + + ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob, + oob_off + mtd->writesize, + &cur_off, !i, page); + if (ret) + return ret; + } + + if (oob_required || (chip->options & NAND_NEED_SCRAMBLING)) + sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, + &cur_off, page); + + sunxi_nfc_hw_ecc_disable(mtd); + + return 0; +} + +static int sunxi_nfc_hw_ecc_write_subpage(struct mtd_info *mtd, + struct nand_chip *chip, + u32 data_offs, u32 data_len, + const u8 *buf, int oob_required, + int page) +{ + struct nand_ecc_ctrl *ecc = &chip->ecc; + int ret, i, cur_off = 0; + + sunxi_nfc_hw_ecc_enable(mtd); + + for (i = data_offs / ecc->size; + i < DIV_ROUND_UP(data_offs + data_len, ecc->size); i++) { + int data_off = i * ecc->size; + int oob_off = i * (ecc->bytes + 4); + const u8 *data = buf + data_off; + const u8 *oob = chip->oob_poi + oob_off; + + ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob, + oob_off + mtd->writesize, + &cur_off, !i, page); + if (ret) + return ret; + } + + sunxi_nfc_hw_ecc_disable(mtd); + + return 0; +} + +static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd, + struct nand_chip *chip, + uint8_t *buf, int oob_required, + int page) +{ + struct nand_ecc_ctrl *ecc = &chip->ecc; + unsigned int max_bitflips = 0; + int ret, i, cur_off = 0; + bool raw_mode = false; + + sunxi_nfc_hw_ecc_enable(mtd); + + for (i = 0; i < ecc->steps; i++) { + int data_off = i * (ecc->size + ecc->bytes + 4); + int oob_off = data_off + ecc->size; + u8 *data = buf + (i * ecc->size); + u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4)); + + ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob, + oob_off, &cur_off, + &max_bitflips, !i, page); + if (ret < 0) + return ret; + else if (ret) + raw_mode = true; + } + + if (oob_required) + sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off, + !raw_mode, page); + + sunxi_nfc_hw_ecc_disable(mtd); + + return max_bitflips; +} + +static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf, + int oob_required, int page) +{ + struct nand_ecc_ctrl *ecc = &chip->ecc; + int ret, i, cur_off = 0; + + sunxi_nfc_hw_ecc_enable(mtd); + + for (i = 0; i < ecc->steps; i++) { + int data_off = i * (ecc->size + ecc->bytes + 4); + int oob_off = data_off + ecc->size; + const u8 *data = buf + (i * ecc->size); + const u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4)); + + ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, + oob, oob_off, &cur_off, + false, page); + if (ret) + return ret; + } + + if (oob_required || (chip->options & NAND_NEED_SCRAMBLING)) + sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, + &cur_off, page); + + sunxi_nfc_hw_ecc_disable(mtd); + + return 0; +} + +static const s32 tWB_lut[] = {6, 12, 16, 20}; +static const s32 tRHW_lut[] = {4, 8, 12, 20}; + +static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration, + u32 clk_period) +{ + u32 clk_cycles = DIV_ROUND_UP(duration, clk_period); + int i; + + for (i = 0; i < lut_size; i++) { + if (clk_cycles <= lut[i]) + return i; + } + + /* Doesn't fit */ + return -EINVAL; +} + +#define sunxi_nand_lookup_timing(l, p, c) \ + _sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c) + +static int sunxi_nand_chip_set_timings(struct sunxi_nand_chip *chip, + const struct nand_sdr_timings *timings) +{ + u32 min_clk_period = 0; + s32 tWB, tADL, tWHR, tRHW, tCAD; + + /* T1 <=> tCLS */ + if (timings->tCLS_min > min_clk_period) + min_clk_period = timings->tCLS_min; + + /* T2 <=> tCLH */ + if (timings->tCLH_min > min_clk_period) + min_clk_period = timings->tCLH_min; + + /* T3 <=> tCS */ + if (timings->tCS_min > min_clk_period) + min_clk_period = timings->tCS_min; + + /* T4 <=> tCH */ + if (timings->tCH_min > min_clk_period) + min_clk_period = timings->tCH_min; + + /* T5 <=> tWP */ + if (timings->tWP_min > min_clk_period) + min_clk_period = timings->tWP_min; + + /* T6 <=> tWH */ + if (timings->tWH_min > min_clk_period) + min_clk_period = timings->tWH_min; + + /* T7 <=> tALS */ + if (timings->tALS_min > min_clk_period) + min_clk_period = timings->tALS_min; + + /* T8 <=> tDS */ + if (timings->tDS_min > min_clk_period) + min_clk_period = timings->tDS_min; + + /* T9 <=> tDH */ + if (timings->tDH_min > min_clk_period) + min_clk_period = timings->tDH_min; + + /* T10 <=> tRR */ + if (timings->tRR_min > (min_clk_period * 3)) + min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3); + + /* T11 <=> tALH */ + if (timings->tALH_min > min_clk_period) + min_clk_period = timings->tALH_min; + + /* T12 <=> tRP */ + if (timings->tRP_min > min_clk_period) + min_clk_period = timings->tRP_min; + + /* T13 <=> tREH */ + if (timings->tREH_min > min_clk_period) + min_clk_period = timings->tREH_min; + + /* T14 <=> tRC */ + if (timings->tRC_min > (min_clk_period * 2)) + min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2); + + /* T15 <=> tWC */ + if (timings->tWC_min > (min_clk_period * 2)) + min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2); + + /* T16 - T19 + tCAD */ + tWB = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max, + min_clk_period); + if (tWB < 0) { + dev_err(nfc->dev, "unsupported tWB\n"); + return tWB; + } + + tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3; + if (tADL > 3) { + dev_err(nfc->dev, "unsupported tADL\n"); + return -EINVAL; + } + + tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3; + if (tWHR > 3) { + dev_err(nfc->dev, "unsupported tWHR\n"); + return -EINVAL; + } + + tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min, + min_clk_period); + if (tRHW < 0) { + dev_err(nfc->dev, "unsupported tRHW\n"); + return tRHW; + } + + /* + * TODO: according to ONFI specs this value only applies for DDR NAND, + * but Allwinner seems to set this to 0x7. Mimic them for now. + */ + tCAD = 0x7; + + /* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */ + chip->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD); + + /* + * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data + * output cycle timings shall be used if the host drives tRC less than + * 30 ns. + */ + chip->timing_ctl = (timings->tRC_min < 30000) ? NFC_TIMING_CTL_EDO : 0; + + /* Convert min_clk_period from picoseconds to nanoseconds */ + min_clk_period = DIV_ROUND_UP(min_clk_period, 1000); + + /* + * Convert min_clk_period into a clk frequency, then get the + * appropriate rate for the NAND controller IP given this formula + * (specified in the datasheet): + * nand clk_rate = min_clk_rate + */ + chip->clk_rate = 1000000000L / min_clk_period; + + return 0; +} + +static int sunxi_nand_chip_init_timings(struct sunxi_nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(&chip->nand); + const struct nand_sdr_timings *timings; + int ret; + int mode; + + mode = onfi_get_async_timing_mode(&chip->nand); + if (mode == ONFI_TIMING_MODE_UNKNOWN) { + mode = chip->nand.onfi_timing_mode_default; + } else { + uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {}; + int i; + + mode = fls(mode) - 1; + if (mode < 0) + mode = 0; + + feature[0] = mode; + for (i = 0; i < chip->nsels; i++) { + chip->nand.select_chip(mtd, i); + ret = chip->nand.onfi_set_features(mtd, + &chip->nand, + ONFI_FEATURE_ADDR_TIMING_MODE, + feature); + chip->nand.select_chip(mtd, -1); + if (ret) + return ret; + } + } + + timings = onfi_async_timing_mode_to_sdr_timings(mode); + if (IS_ERR(timings)) + return PTR_ERR(timings); + + return sunxi_nand_chip_set_timings(chip, timings); +} + +static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd, + struct nand_ecc_ctrl *ecc) +{ + static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 }; + struct sunxi_nand_hw_ecc *data; + struct nand_ecclayout *layout; + int nsectors; + int ret; + int i; + + data = kzalloc(sizeof(*data), GFP_KERNEL); + if (!data) + return -ENOMEM; + + if (ecc->size != 512 && ecc->size != 1024) + return -EINVAL; + + /* Prefer 1k ECC chunk over 512 ones */ + if (ecc->size == 512 && mtd->writesize > 512) { + ecc->size = 1024; + ecc->strength *= 2; + } + + /* Add ECC info retrieval from DT */ + for (i = 0; i < ARRAY_SIZE(strengths); i++) { + if (ecc->strength <= strengths[i]) + break; + } + + if (i >= ARRAY_SIZE(strengths)) { + dev_err(nfc->dev, "unsupported strength\n"); + ret = -ENOTSUPP; + goto err; + } + + data->mode = i; + + /* HW ECC always request ECC bytes for 1024 bytes blocks */ + ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8); + + /* HW ECC always work with even numbers of ECC bytes */ + ecc->bytes = ALIGN(ecc->bytes, 2); + + layout = &data->layout; + nsectors = mtd->writesize / ecc->size; + + if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) { + ret = -EINVAL; + goto err; + } + + layout->eccbytes = (ecc->bytes * nsectors); + + ecc->layout = layout; + ecc->priv = data; + + return 0; + +err: + kfree(data); + + return ret; +} + +#ifndef __UBOOT__ +static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc) +{ + kfree(ecc->priv); +} +#endif /* __UBOOT__ */ + +static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd, + struct nand_ecc_ctrl *ecc) +{ + struct nand_ecclayout *layout; + int nsectors; + int i, j; + int ret; + + ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc); + if (ret) + return ret; + + ecc->read_page = sunxi_nfc_hw_ecc_read_page; + ecc->write_page = sunxi_nfc_hw_ecc_write_page; + ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage; + ecc->write_subpage = sunxi_nfc_hw_ecc_write_subpage; + layout = ecc->layout; + nsectors = mtd->writesize / ecc->size; + + for (i = 0; i < nsectors; i++) { + if (i) { + layout->oobfree[i].offset = + layout->oobfree[i - 1].offset + + layout->oobfree[i - 1].length + + ecc->bytes; + layout->oobfree[i].length = 4; + } else { + /* + * The first 2 bytes are used for BB markers, hence we + * only have 2 bytes available in the first user data + * section. + */ + layout->oobfree[i].length = 2; + layout->oobfree[i].offset = 2; + } + + for (j = 0; j < ecc->bytes; j++) + layout->eccpos[(ecc->bytes * i) + j] = + layout->oobfree[i].offset + + layout->oobfree[i].length + j; + } + + if (mtd->oobsize > (ecc->bytes + 4) * nsectors) { + layout->oobfree[nsectors].offset = + layout->oobfree[nsectors - 1].offset + + layout->oobfree[nsectors - 1].length + + ecc->bytes; + layout->oobfree[nsectors].length = mtd->oobsize - + ((ecc->bytes + 4) * nsectors); + } + + return 0; +} + +static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd, + struct nand_ecc_ctrl *ecc) +{ + struct nand_ecclayout *layout; + int nsectors; + int i; + int ret; + + ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc); + if (ret) + return ret; + + ecc->prepad = 4; + ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page; + ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page; + + layout = ecc->layout; + nsectors = mtd->writesize / ecc->size; + + for (i = 0; i < (ecc->bytes * nsectors); i++) + layout->eccpos[i] = i; + + layout->oobfree[0].length = mtd->oobsize - i; + layout->oobfree[0].offset = i; + + return 0; +} + +#ifndef __UBOOT__ +static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc) +{ + switch (ecc->mode) { + case NAND_ECC_HW: + case NAND_ECC_HW_SYNDROME: + sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc); + break; + case NAND_ECC_NONE: + kfree(ecc->layout); + default: + break; + } +} +#endif /* __UBOOT__ */ + +static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + int ret; + + if (!ecc->size) { + ecc->size = nand->ecc_step_ds; + ecc->strength = nand->ecc_strength_ds; + } + + if (!ecc->size || !ecc->strength) + return -EINVAL; + + switch (ecc->mode) { + case NAND_ECC_SOFT_BCH: + break; + case NAND_ECC_HW: + ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc); + if (ret) + return ret; + break; + case NAND_ECC_HW_SYNDROME: + ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc); + if (ret) + return ret; + break; + case NAND_ECC_NONE: + ecc->layout = kzalloc(sizeof(*ecc->layout), GFP_KERNEL); + if (!ecc->layout) + return -ENOMEM; + ecc->layout->oobfree[0].length = mtd->oobsize; + case NAND_ECC_SOFT: + break; + default: + return -EINVAL; + } + + return 0; +} + +static int sunxi_nand_chip_init(int node, struct sunxi_nfc *nfc, int devnum) +{ + const struct nand_sdr_timings *timings; + const void *blob = gd->fdt_blob; + struct sunxi_nand_chip *chip; + struct mtd_info *mtd; + struct nand_chip *nand; + int nsels; + int ret; + int i; + u32 cs[8], rb[8]; + + if (!fdt_getprop(blob, node, "reg", &nsels)) + return -EINVAL; + + nsels /= sizeof(u32); + if (!nsels || nsels > 8) { + dev_err(dev, "invalid reg property size\n"); + return -EINVAL; + } + + chip = kzalloc(sizeof(*chip) + + (nsels * sizeof(struct sunxi_nand_chip_sel)), + GFP_KERNEL); + if (!chip) { + dev_err(dev, "could not allocate chip\n"); + return -ENOMEM; + } + + chip->nsels = nsels; + chip->selected = -1; + + for (i = 0; i < nsels; i++) { + cs[i] = -1; + rb[i] = -1; + } + + ret = fdtdec_get_int_array(gd->fdt_blob, node, "reg", cs, nsels); + if (ret) { + dev_err(dev, "could not retrieve reg property: %d\n", ret); + return ret; + } + + ret = fdtdec_get_int_array(gd->fdt_blob, node, "allwinner,rb", rb, + nsels); + if (ret) { + dev_err(dev, "could not retrieve reg property: %d\n", ret); + return ret; + } + + for (i = 0; i < nsels; i++) { + int tmp = cs[i]; + + if (tmp > NFC_MAX_CS) { + dev_err(dev, + "invalid reg value: %u (max CS = 7)\n", + tmp); + return -EINVAL; + } + + if (test_and_set_bit(tmp, &nfc->assigned_cs)) { + dev_err(dev, "CS %d already assigned\n", tmp); + return -EINVAL; + } + + chip->sels[i].cs = tmp; + + tmp = rb[i]; + if (tmp >= 0 && tmp < 2) { + chip->sels[i].rb.type = RB_NATIVE; + chip->sels[i].rb.info.nativeid = tmp; + } else { + ret = gpio_request_by_name_nodev(blob, node, + "rb-gpios", i, + &chip->sels[i].rb.info.gpio, + GPIOD_IS_IN); + if (ret) + chip->sels[i].rb.type = RB_GPIO; + else + chip->sels[i].rb.type = RB_NONE; + } + } + + timings = onfi_async_timing_mode_to_sdr_timings(0); + if (IS_ERR(timings)) { + ret = PTR_ERR(timings); + dev_err(dev, + "could not retrieve timings for ONFI mode 0: %d\n", + ret); + return ret; + } + + ret = sunxi_nand_chip_set_timings(chip, timings); + if (ret) { + dev_err(dev, "could not configure chip timings: %d\n", ret); + return ret; + } + + nand = &chip->nand; + /* Default tR value specified in the ONFI spec (chapter 4.15.1) */ + nand->chip_delay = 200; + nand->controller = &nfc->controller; + /* + * Set the ECC mode to the default value in case nothing is specified + * in the DT. + */ + nand->ecc.mode = NAND_ECC_HW; + nand->flash_node = node; + nand->select_chip = sunxi_nfc_select_chip; + nand->cmd_ctrl = sunxi_nfc_cmd_ctrl; + nand->read_buf = sunxi_nfc_read_buf; + nand->write_buf = sunxi_nfc_write_buf; + nand->read_byte = sunxi_nfc_read_byte; + + mtd = nand_to_mtd(nand); + ret = nand_scan_ident(mtd, nsels, NULL); + if (ret) + return ret; + + if (nand->bbt_options & NAND_BBT_USE_FLASH) + nand->bbt_options |= NAND_BBT_NO_OOB; + + if (nand->options & NAND_NEED_SCRAMBLING) + nand->options |= NAND_NO_SUBPAGE_WRITE; + + nand->options |= NAND_SUBPAGE_READ; + + ret = sunxi_nand_chip_init_timings(chip); + if (ret) { + dev_err(dev, "could not configure chip timings: %d\n", ret); + return ret; + } + + ret = sunxi_nand_ecc_init(mtd, &nand->ecc); + if (ret) { + dev_err(dev, "ECC init failed: %d\n", ret); + return ret; + } + + ret = nand_scan_tail(mtd); + if (ret) { + dev_err(dev, "nand_scan_tail failed: %d\n", ret); + return ret; + } + + ret = nand_register(devnum, mtd); + if (ret) { + dev_err(dev, "failed to register mtd device: %d\n", ret); + return ret; + } + + list_add_tail(&chip->node, &nfc->chips); + + return 0; +} + +static int sunxi_nand_chips_init(int node, struct sunxi_nfc *nfc) +{ + const void *blob = gd->fdt_blob; + int nand_node; + int ret, i = 0; + + for (nand_node = fdt_first_subnode(blob, node); nand_node >= 0; + nand_node = fdt_next_subnode(blob, nand_node)) + i++; + + if (i > 8) { + dev_err(dev, "too many NAND chips: %d (max = 8)\n", i); + return -EINVAL; + } + + i = 0; + for (nand_node = fdt_first_subnode(blob, node); nand_node >= 0; + nand_node = fdt_next_subnode(blob, nand_node)) { + ret = sunxi_nand_chip_init(nand_node, nfc, i++); + if (ret) + return ret; + } + + return 0; +} + +#ifndef __UBOOT__ +static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc) +{ + struct sunxi_nand_chip *chip; + + while (!list_empty(&nfc->chips)) { + chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip, + node); + nand_release(&chip->mtd); + sunxi_nand_ecc_cleanup(&chip->nand.ecc); + list_del(&chip->node); + kfree(chip); + } +} +#endif /* __UBOOT__ */ + +void sunxi_nand_init(void) +{ + const void *blob = gd->fdt_blob; + struct sunxi_nfc *nfc; + fdt_addr_t regs; + int node; + int ret; + + nfc = kzalloc(sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return; + + spin_lock_init(&nfc->controller.lock); + init_waitqueue_head(&nfc->controller.wq); + INIT_LIST_HEAD(&nfc->chips); + + node = fdtdec_next_compatible(blob, 0, COMPAT_SUNXI_NAND); + if (node < 0) { + pr_err("unable to find nfc node in device tree\n"); + goto err; + } + + if (!fdtdec_get_is_enabled(blob, node)) { + pr_err("nfc disabled in device tree\n"); + goto err; + } + + regs = fdtdec_get_addr(blob, node, "reg"); + if (regs == FDT_ADDR_T_NONE) { + pr_err("unable to find nfc address in device tree\n"); + goto err; + } + + nfc->regs = (void *)regs; + + ret = sunxi_nfc_rst(nfc); + if (ret) + goto err; + + ret = sunxi_nand_chips_init(node, nfc); + if (ret) { + dev_err(dev, "failed to init nand chips\n"); + goto err; + } + + return; + +err: + kfree(nfc); +} + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Boris BREZILLON"); +MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver"); diff --git a/include/configs/sunxi-common.h b/include/configs/sunxi-common.h index 635890122d..f55192609c 100644 --- a/include/configs/sunxi-common.h +++ b/include/configs/sunxi-common.h @@ -135,6 +135,8 @@ #ifdef CONFIG_NAND_SUNXI #define CONFIG_SPL_NAND_SUPPORT 1 +#define CONFIG_SYS_NAND_ONFI_DETECTION +#define CONFIG_SYS_MAX_NAND_DEVICE 8 #endif #ifdef CONFIG_SPL_SPI_SUNXI diff --git a/include/fdtdec.h b/include/fdtdec.h index 151c590ed1..70ea0bfc0b 100644 --- a/include/fdtdec.h +++ b/include/fdtdec.h @@ -155,6 +155,7 @@ enum fdt_compat_id { COMPAT_INTEL_BAYTRAIL_FSP, /* Intel Bay Trail FSP */ COMPAT_INTEL_BAYTRAIL_FSP_MDP, /* Intel FSP memory-down params */ COMPAT_INTEL_IVYBRIDGE_FSP, /* Intel Ivy Bridge FSP */ + COMPAT_SUNXI_NAND, /* SUNXI NAND controller */ COMPAT_COUNT, }; diff --git a/include/nand.h b/include/nand.h index 627b21769b..b6eb223fb6 100644 --- a/include/nand.h +++ b/include/nand.h @@ -142,3 +142,6 @@ __attribute__((noreturn)) void nand_boot(void); int get_nand_env_oob(struct mtd_info *mtd, unsigned long *result); #endif int spl_nand_erase_one(int block, int page); + +/* platform specific init functions */ +void sunxi_nand_init(void); diff --git a/lib/fdtdec.c b/lib/fdtdec.c index c2bcbde258..462a24f96a 100644 --- a/lib/fdtdec.c +++ b/lib/fdtdec.c @@ -65,6 +65,7 @@ static const char * const compat_names[COMPAT_COUNT] = { COMPAT(INTEL_BAYTRAIL_FSP, "intel,baytrail-fsp"), COMPAT(INTEL_BAYTRAIL_FSP_MDP, "intel,baytrail-fsp-mdp"), COMPAT(INTEL_IVYBRIDGE_FSP, "intel,ivybridge-fsp"), + COMPAT(COMPAT_SUNXI_NAND, "allwinner,sun4i-a10-nand"), }; const char *fdtdec_get_compatible(enum fdt_compat_id id)